Personal Page

M. Sc. Kumar, Prerana

5.522a
Section for Computational Sensomotorics
Department of Cognitive Neurology
Hertie Institute for Clinical Brain Research
Centre for Integrative Neuroscience
University Clinic Tübingen
Otfried-Müller-Str. 25
72076 Tübingen, Germany
+4970712989137
Prerana Kumar

Projects

Publications

Kumar, P., Taubert, N., Raman, R., Bognár, A., Nejad, G. G., Vogels, R. et al (2023). Neurodynamical Model of the Visual Recognition of Dynamic Bodily Actions from Silhouettes. In Iliadis, Lazaros, Papaleonidas, Antonios, Angelov, Plamen et al (editors), Artificial Neural Networks and Machine Learning -- ICANN 2023 , 533-544. Cham : Springer Nature Switzerland.
Neurodynamical Model of the Visual Recognition of Dynamic Bodily Actions from Silhouettes
Abstract:

For social species, including primates, the recognition of dynamic body actions is crucial for survival. However, the detailed neural circuitry underlying this process is currently not well understood. In monkeys, body-selective patches in the visual temporal cortex may contribute to this processing. We propose a physiologically-inspired neural model of the visual recognition of body movements, which combines an existing image-computable model (`ShapeComp') that produces high-dimensional shape vectors of object silhouettes, with a neurodynamical model that encodes dynamic image sequences exploiting sequence-selective neural fields. The model successfully classifies videos of body silhouettes performing different actions. At the population level, the model reproduces characteristics of macaque single-unit responses from the rostral dorsal bank of the Superior Temporal Sulcus (Anterior Medial Upper Body (AMUB) patch). In the presence of time gaps in the stimulus videos, the predictions made by the model match the data from real neurons. The underlying neurodynamics can be analyzed by exploiting the framework of neural field dynamics.

Authors: Kumar, Prerana; Taubert, Nick; Raman, Rajani Bognár, Anna Nejad, Ghazaleh Ghamkhari Vogels, Rufin Giese, Martin A.
Type of Publication: In Collection
JRESEARCH_BOOK_TITLE: Artificial Neural Networks and Machine Learning -- ICANN 2023
Publisher: Springer Nature Switzerland
Editor: Iliadis, Lazaros and Papaleonidas, Antonios and Angelov, Plamen and Jayne, Chrisina
Address: Cham
Pages: 533-544
ISBN: 978-3-031-44210-0
Kumar, P., Taubert, N., Raman, R., Vogels, R., de Gelder, B. & Giese, M. A (2022). Neural model for the representation of static and dynamic bodies in cortical body patches . VSS 2022.
Neural model for the representation of static and dynamic bodies in cortical body patches
Authors: Kumar, Prerana; Taubert, Nick; Raman, Rajani Vogels, Rufin de Gelder, Beatrice Giese, Martin A.
Type of Publication: In Collection
Kumar, P., Taubert, N., Raman, R., Vogels, R., de Gelder, B. & Giese, M. A (2021). Physiologically-inspired neural model for the visual recognition of dynamic bodies . Neuroscience 2021.
Physiologically-inspired neural model for the visual recognition of dynamic bodies
Authors: Kumar, Prerana; Taubert, Nick; Raman, Rajani Vogels, Rufin de Gelder, Beatrice Giese, Martin A.
Type of Publication: In Collection
Kumar, P., Taubert, N., Stettler, M., Vogels, R., de Gelder, B. & Giese, M. A (2021). Neurodynamical model for the visual recognition of dynamic bodies . ECVP 2021.
Neurodynamical model for the visual recognition of dynamic bodies
Type of Publication: In Collection
Kumar, P., Taubert, N., Stettler, M., Vogels, R., de Gelder, B. & Giese, M. A (2021). Neurodynamical model for the visual recognition of dynamic bodies . CNS 2021.
Neurodynamical model for the visual recognition of dynamic bodies
Type of Publication: In Collection
Taubert, N., St-Amand, J., Kumar, P., Gizzi, L. & Giese, M. A. (2020). Reactive Hand Movements from Arm Kinematics and EMG Signals Based on Hierarchical Gaussian Process Dynamical Models. Artificial Neural Networks and Machine Learning – ICANN 2020 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part I. Springer, Berlin(127-140).
Reactive Hand Movements from Arm Kinematics and EMG Signals Based on Hierarchical Gaussian Process Dynamical Models
Type of Publication: Article
Journal: Artificial Neural Networks and Machine Learning – ICANN 2020 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part I. Springer, Berlin
Number: 127-140
Year: 2020
View less

Information

All images and videos displayed on this webpage are protected by copyright law. These copyrights are owned by Computational Sensomotorics.

If you wish to use any of the content featured on this webpage for purposes other than personal viewing, please contact us for permission.

Social Media

We use cookies

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.