Personal Page

M. Sc. Salatiello, Alessandro

5.522a
Section for Computational Sensomotorics
Department of Cognitive Neurology
Hertie Institute for Clinical Brain Research
Centre for Integrative Neuroscience
University Clinic Tübingen
Otfried-Müller-Str. 25
72076 Tübingen, Germany
+497071 2989130
Alessandro Salatiello

Projects

Publications

Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A., Stettler, M., Vogels, R. & Giese, M. A (2022). Neurophysiologically-inspired computational model of the visual recognition of social behavior and intent . FENS Forum, Paris.
Neurophysiologically-inspired computational model of the visual recognition of social behavior and intent
Abstract:

AIMS: Humans recognize social interactions and intentions from videos of moving abstract stimuli, including simple geometric figures (Heider {&} Simmel, 1944). The neural machinery supporting such social interaction perception is completely unclear. Here, we present a physiologically plausible neural model of social interaction recognition that identifies social interactions in videos of simple geometric figures and fully articulating animal avatars, moving in naturalistic environments. METHODS: We generated the trajectories for both geometric and animal avatars using an algorithm based on a dynamical model of human navigation (Hovaidi-Ardestani, et al., 2018, Warren, 2006). Our neural recognition model combines a Deep Neural Network, realizing a shape-recognition pathway (VGG16), with a top-level neural network that integrates RBFs, motion energy detectors, and dynamic neural fields. The model implements robust tracking of interacting agents based on interaction-specific visual features (relative position, speed, acceleration, and orientation). RESULTS: A simple neural classifier, trained to predict social interaction categories from the features extracted by our neural recognition model, makes predictions that resemble those observed in previous psychophysical experiments on social interaction recognition from abstract (Salatiello, et al. 2021) and naturalistic videos. CONCLUSION: The model demonstrates that recognition of social interactions can be achieved by simple physiologically plausible neural mechanisms and makes testable predictions about single-cell and population activity patterns in relevant brain areas. Acknowledgments: ERC 2019-SyG-RELEVANCE-856495, HFSP RGP0036/2016, BMBF FKZ 01GQ1704, SSTeP-KiZ BMG: ZMWI1-2520DAT700, and NVIDIA Corporation.

Type of Publication: In Collection
Publisher: FENS Forum, Paris
Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A., Stettler, M., Vogels, R. & Giese, M. A (2022). Physiologically-inspired neural model for social interaction recognition from abstract and naturalistic videos . VSS Annual Meeting 2022.
Physiologically-inspired neural model for social interaction recognition from abstract and naturalistic videos
Type of Publication: In Collection
Chiovetto, E., Salatiello, A., D'Avella, A. & Giese, M. A. (2022). Toward a unifying framework for the modeling and identification of motor primitives. Frontiers in computational neuroscience, 16 926345.
Toward a unifying framework for the modeling and identification of motor primitives
Abstract:

A large body of evidence suggests that human and animal movements, despite their apparent complexity and flexibility, are remarkably structured. Quantitative analyses of various classes of motor behaviors consistently identify spatial and temporal features that are invariant across movements. Such invariant features have been observed at different levels of organization in the motor system, including the electromyographic, kinematic, and kinetic levels, and are thought to reflect fixed modules-named motor primitives-that the brain uses to simplify the construction of movement. However, motor primitives across space, time, and organization levels are often described with ad-hoc mathematical models that tend to be domain-specific. This, in turn, generates the need to use model-specific algorithms for the identification of both the motor primitives and additional model parameters. The lack of a comprehensive framework complicates the comparison and interpretation of the results obtained across different domains and studies. In this work, we take the first steps toward addressing these issues, by introducing a unifying framework for the modeling and identification of qualitatively different classes of motor primitives. Specifically, we show that a single model, the anechoic mixture model, subsumes many popular classes of motor primitive models. Moreover, we exploit the flexibility of the anechoic mixture model to develop a new class of identification algorithms based on the Fourier-based Anechoic Demixing Algorithm (FADA). We validate our framework by identifying eight qualitatively different classes of motor primitives from both simulated and experimental data. We show that, compared to established model-specific algorithms for the identification of motor primitives, our flexible framework reaches overall comparable and sometimes superior reconstruction performance. The identification framework is publicly released as a MATLAB toolbox (FADA-T, https://tinyurl.com/compsens) to facilitate the identification and comparison of different motor primitive models.

Type of Publication: Article
Journal: Frontiers in computational neuroscience
Volume: 16 926345
Year: 2022
Full text: PDF
Giese, M. A., Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A. & Stettler, M. (2021). Neurophysiologically-inspired model for social interactions recognition from abstract and naturalistic stimuli. VSS 2021.
Neurophysiologically-inspired model for social interactions recognition from abstract and naturalistic stimuli
Research Areas: Uncategorized
Type of Publication: Article
Salatiello, A. & Giese, M. A. (2021). Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses.. Proceedings of the 2021 IEEE International Joint Conference on Neural Networks, 1-8.
Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses.
Abstract:

State-of-the-art motorized hand prostheses are endowed with actuators able to provide independent and proportional control of as many as six degrees of freedom (DOFs). The control signals are derived from residual electromyographic (EMG) activity, recorded concurrently from relevant forearm muscles. Nevertheless, the functional mapping between forearm EMG activity and hand kinematics is only known with limited accuracy. Therefore, no robust method exists for the reliable computation of control signals for the independent and proportional actuation of more than two DOFs. A common approach to deal with this limitation is to preprogram the prostheses for the execution of a restricted number of behaviors (e.g., pinching, grasping, and wrist rotation) that are activated by the detection of specific EMG activation patterns. However, this approach severely limits the range of activities users can perform with the prostheses during their daily living. In this work, we introduce a novel method, based on a long short-term memory (LSTM) network, to map forearm EMG activity onto hand kinematics online. Critically, unlike previous research efforts that tend to focus on simple and highly controlled motor tasks, we tested our method on a dataset of daily living activities (ADLs): the KIN-MUS UJI dataset. To the best of our knowledge, ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset. Remarkably, we show that our network is able to generalize to novel untrained ADLs. Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.

Research Areas: Uncategorized
Type of Publication: Article
View All

Information

All images and videos displayed on this webpage are protected by copyright law. These copyrights are owned by Computational Sensomotorics.

If you wish to use any of the content featured on this webpage for purposes other than personal viewing, please contact us for permission.

Social Media