Personal Page

M. Sc. Salatiello, Alessandro

5.522a
Section for Computational Sensomotorics
Department of Cognitive Neurology
Hertie Institute for Clinical Brain Research
Centre for Integrative Neuroscience
University Clinic Tübingen
Otfried-Müller-Str. 25
72076 Tübingen, Germany
+497071 2989130
Alessandro Salatiello

Projects

Publications

Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A., Stettler, M., Vogels, R. & Giese, M. A (2022). Neurophysiologically-inspired computational model of the visual recognition of social behavior and intent . FENS Forum, Paris.
Neurophysiologically-inspired computational model of the visual recognition of social behavior and intent
Abstract:

AIMS: Humans recognize social interactions and intentions from videos of moving abstract stimuli, including simple geometric figures (Heider {&} Simmel, 1944). The neural machinery supporting such social interaction perception is completely unclear. Here, we present a physiologically plausible neural model of social interaction recognition that identifies social interactions in videos of simple geometric figures and fully articulating animal avatars, moving in naturalistic environments. METHODS: We generated the trajectories for both geometric and animal avatars using an algorithm based on a dynamical model of human navigation (Hovaidi-Ardestani, et al., 2018, Warren, 2006). Our neural recognition model combines a Deep Neural Network, realizing a shape-recognition pathway (VGG16), with a top-level neural network that integrates RBFs, motion energy detectors, and dynamic neural fields. The model implements robust tracking of interacting agents based on interaction-specific visual features (relative position, speed, acceleration, and orientation). RESULTS: A simple neural classifier, trained to predict social interaction categories from the features extracted by our neural recognition model, makes predictions that resemble those observed in previous psychophysical experiments on social interaction recognition from abstract (Salatiello, et al. 2021) and naturalistic videos. CONCLUSION: The model demonstrates that recognition of social interactions can be achieved by simple physiologically plausible neural mechanisms and makes testable predictions about single-cell and population activity patterns in relevant brain areas. Acknowledgments: ERC 2019-SyG-RELEVANCE-856495, HFSP RGP0036/2016, BMBF FKZ 01GQ1704, SSTeP-KiZ BMG: ZMWI1-2520DAT700, and NVIDIA Corporation.

Type of Publication: In Collection
Publisher: FENS Forum, Paris
Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A., Stettler, M., Vogels, R. & Giese, M. A (2022). Physiologically-inspired neural model for social interaction recognition from abstract and naturalistic videos . VSS Annual Meeting 2022.
Physiologically-inspired neural model for social interaction recognition from abstract and naturalistic videos
Type of Publication: In Collection
Chiovetto, E., Salatiello, A., D'Avella, A. & Giese, M. A. (2022). Toward a unifying framework for the modeling and identification of motor primitives. Frontiers in computational neuroscience, 16 926345.
Toward a unifying framework for the modeling and identification of motor primitives
Abstract:

A large body of evidence suggests that human and animal movements, despite their apparent complexity and flexibility, are remarkably structured. Quantitative analyses of various classes of motor behaviors consistently identify spatial and temporal features that are invariant across movements. Such invariant features have been observed at different levels of organization in the motor system, including the electromyographic, kinematic, and kinetic levels, and are thought to reflect fixed modules-named motor primitives-that the brain uses to simplify the construction of movement. However, motor primitives across space, time, and organization levels are often described with ad-hoc mathematical models that tend to be domain-specific. This, in turn, generates the need to use model-specific algorithms for the identification of both the motor primitives and additional model parameters. The lack of a comprehensive framework complicates the comparison and interpretation of the results obtained across different domains and studies. In this work, we take the first steps toward addressing these issues, by introducing a unifying framework for the modeling and identification of qualitatively different classes of motor primitives. Specifically, we show that a single model, the anechoic mixture model, subsumes many popular classes of motor primitive models. Moreover, we exploit the flexibility of the anechoic mixture model to develop a new class of identification algorithms based on the Fourier-based Anechoic Demixing Algorithm (FADA). We validate our framework by identifying eight qualitatively different classes of motor primitives from both simulated and experimental data. We show that, compared to established model-specific algorithms for the identification of motor primitives, our flexible framework reaches overall comparable and sometimes superior reconstruction performance. The identification framework is publicly released as a MATLAB toolbox (FADA-T, https://tinyurl.com/compsens) to facilitate the identification and comparison of different motor primitive models.

Type of Publication: Article
Journal: Frontiers in computational neuroscience
Volume: 16 926345
Year: 2022
Full text: PDF
Giese, M. A., Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A. & Stettler, M. (2021). Neurophysiologically-inspired model for social interactions recognition from abstract and naturalistic stimuli. VSS 2021.
Neurophysiologically-inspired model for social interactions recognition from abstract and naturalistic stimuli
Research Areas: Uncategorized
Type of Publication: Article
Salatiello, A. & Giese, M. A. (2021). Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses.. Proceedings of the 2021 IEEE International Joint Conference on Neural Networks, 1-8.
Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses.
Abstract:

State-of-the-art motorized hand prostheses are endowed with actuators able to provide independent and proportional control of as many as six degrees of freedom (DOFs). The control signals are derived from residual electromyographic (EMG) activity, recorded concurrently from relevant forearm muscles. Nevertheless, the functional mapping between forearm EMG activity and hand kinematics is only known with limited accuracy. Therefore, no robust method exists for the reliable computation of control signals for the independent and proportional actuation of more than two DOFs. A common approach to deal with this limitation is to preprogram the prostheses for the execution of a restricted number of behaviors (e.g., pinching, grasping, and wrist rotation) that are activated by the detection of specific EMG activation patterns. However, this approach severely limits the range of activities users can perform with the prostheses during their daily living. In this work, we introduce a novel method, based on a long short-term memory (LSTM) network, to map forearm EMG activity onto hand kinematics online. Critically, unlike previous research efforts that tend to focus on simple and highly controlled motor tasks, we tested our method on a dataset of daily living activities (ADLs): the KIN-MUS UJI dataset. To the best of our knowledge, ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset. Remarkably, we show that our network is able to generalize to novel untrained ADLs. Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.

Research Areas: Uncategorized
Type of Publication: Article
Giese, M. A., Mukovskiy, A., Hovaidi-Ardestani, M., Salatiello, A. & Stettler, M (2021). Neurophysiologically-inspired model for social interactions recognition from abstract and naturalistic stimuli. VSS 2021, May 21-26 .
Neurophysiologically-inspired model for social interactions recognition from abstract and naturalistic stimuli
Type of Publication: In Collection
Mukovskiy, A., Ardestani, M. H., Salatiello, A., Stettler, M. & Giese, M. A (2021). Physiologically-inspired neural model for social interactions recognition from abstract and naturalistic stimuli. Göttingen Meeting of the German Neuroscience Society 2021, Germany .
Physiologically-inspired neural model for social interactions recognition from abstract and naturalistic stimuli
Type of Publication: In Collection
Salatiello, A. & Giese, M. A. (2021). Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses. arXiv preprint.
Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle Activity for Enhanced Myoelectric Control of Hand Prostheses
Abstract:

State-of-the-art motorized hand prostheses are endowed with actuators able to provide independent and proportional control of as many as six degrees of freedom (DOFs). The control signals are derived from residual electromyographic (EMG) activity, recorded concurrently from relevant forearm muscles. Nevertheless, the functional mapping between forearm EMG activity and hand kinematics is only known with limited accuracy. Therefore, no robust method exists for the reliable computation of control signals for the independent and proportional actuation of more than two DOFs. A common approach to deal with this limitation is to pre-program the prostheses for the execution of a restricted number of behaviors (e.g., pinching, grasping, and wrist rotation) that are activated by the detection of specific EMG activation patterns. However, this approach severely limits the range of activities users can perform with the prostheses during their daily living. In this work, we introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics. Critically, unlike previous work, which often focuses on simple and highly controlled motor tasks, we tested our method on a dataset of activities of daily living (ADLs): the KIN-MUS UJI dataset. To the best of our knowledge, ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset. Remarkably, we show that our network is able to generalize to novel untrained ADLs. Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.

Research Areas: Uncategorized
Type of Publication: Article
Salatiello, A., Hovaidi-Ardestani, M. & Giese, M. A. (2021). A Dynamical Generative Model of Social Interactions. Frontiers in Neurorobotics, 15, 62.
A Dynamical Generative Model of Social Interactions
Abstract:

The ability to make accurate social inferences makes humans able to navigate and act in their social environment effortlessly. Converging evidence shows that motion is one of the most informative cues in shaping the perception of social interactions. However, the scarcity of parameterized generative models for the generation of highly-controlled stimuli has slowed down both the identification of the most critical motion features and the understanding of the computational mechanisms underlying their extraction and processing from rich visual inputs. In this work, we introduce a novel generative model for the automatic generation of an arbitrarily large number of videos of socially interacting agents for comprehensive studies of social perception. The proposed framework, validated with three psychophysical experiments, allows generating as many as 15 distinct interaction classes. The model builds on classical dynamical system models of biological navigation and is able to generate visual stimuli that are parametrically controlled and representative of a heterogeneous set of social interaction classes. The proposed method represents thus an important tool for experiments aimed at unveiling the computational mechanisms mediating the perception of social interactions. The ability to generate highly-controlled stimuli makes the model valuable not only to conduct behavioral and neuroimaging studies, but also to develop and validate neural models of social inference, and machine vision systems for the automatic recognition of social interactions. In fact, contrasting human and model responses to a heterogeneous set of highly-controlled stimuli can help to identify critical computational steps in the processing of social interaction stimuli.

Authors: Salatiello, Alessandro; Hovaidi-Ardestani, M. Giese, Martin A.
Research Areas: Uncategorized
Type of Publication: Article
Mukovskiy, A., Ardestani, M. H., Salatiello, A., Stettler, M. & Giese, M. A. (2021). Physiologically-inspired neural model for social interactions recognition from abstract and naturalistic stimuli.. Göttingen Meeting of the German Neuroscience Society.
Physiologically-inspired neural model for social interactions recognition from abstract and naturalistic stimuli.
Research Areas: Uncategorized
Type of Publication: Article
Salatiello, A. & Giese, M. A. (2021). Unsupervised identification of space-, time-, and action-dependent latent factors underlying muscle activity during reaching. 30th Annual Computational Neuroscience Meeting.
Unsupervised identification of space-, time-, and action-dependent latent factors underlying muscle activity during reaching
Research Areas: Uncategorized
Type of Publication: Article
Salatiello, A. & Giese, M. A. (2020). Recurrent Neural Network Learning of Performance and Intrinsic Population Dynamics from Sparse Neural Data. Artificial Neural Networks and Machine Learning – ICANN 2020 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part I. Springer, Berlin(874-886).
Recurrent Neural Network Learning of Performance and Intrinsic Population Dynamics from Sparse Neural Data
Research Areas: Uncategorized
Type of Publication: Article
Salatiello, A. & Giese, M. A (2020). Recurrent Neural Network Learning of Performance and Intrinsic Population Dynamics from Sparse Neural Data. ICANN2020, arXiv:2005.02211v1 [q-bio.NC] .
Recurrent Neural Network Learning of Performance and Intrinsic Population Dynamics from Sparse Neural Data
Research Areas: Uncategorized
Type of Publication: In Collection
Full text: PDF
Salatiello, A. & Giese, M. A (2019). Learning of generative neural network models for EMG data constrained by cortical activation dynamics(B). CNS Conference 2019, 13-17 July, Barcelona, Spain .
Learning of generative neural network models for EMG data constrained by cortical activation dynamics(B)
Type of Publication: In Collection
Full text: PDF
Salatiello, A. & Giese, M. A (2019). Learning of Generative Neural Network Models for EMG Data Constrained by Cortical Activation Dynamics (A). 29th Meeting of the Society for the Neural Control of Movement; Toyama, Japan .
Learning of Generative Neural Network Models for EMG Data Constrained by Cortical Activation Dynamics (A)
Research Areas: Uncategorized
Type of Publication: In Collection
Full text: PDF
Salatiello, A. & Giese, M. A (2019). Learning Central Pattern Generator models for rhythmic activation patterns. In Proceedings : Göttingen Meeting of the German Neuroscience Society 2019, Germany, T23-10C .
Learning Central Pattern Generator models for rhythmic activation patterns
Research Areas: Uncategorized
Type of Publication: In Collection
Full text: PDF
View less

Information

All images and videos displayed on this webpage are protected by copyright law. These copyrights are owned by Computational Sensomotorics.

If you wish to use any of the content featured on this webpage for purposes other than personal viewing, please contact us for permission.

Social Media