Neurophysiologically-inspired computational model of the visual recognition of social behavior and intent

Type of Publication:
In Collection
FENS Forum, Paris

AIMS: Humans recognize social interactions and intentions from videos of moving abstract stimuli, including simple geometric figures (Heider & Simmel, 1944). The neural machinery supporting such social interaction perception is completely unclear. Here, we present a physiologically plausible neural model of social interaction recognition that identifies social interactions in videos of simple geometric figures and fully articulating animal avatars, moving in naturalistic environments. METHODS: We generated the trajectories for both geometric and animal avatars using an algorithm based on a dynamical model of human navigation (Hovaidi-Ardestani, et al., 2018, Warren, 2006). Our neural recognition model combines a Deep Neural Network, realizing a shape-recognition pathway (VGG16), with a top-level neural network that integrates RBFs, motion energy detectors, and dynamic neural fields. The model implements robust tracking of interacting agents based on interaction-specific visual features (relative position, speed, acceleration, and orientation). RESULTS: A simple neural classifier, trained to predict social interaction categories from the features extracted by our neural recognition model, makes predictions that resemble those observed in previous psychophysical experiments on social interaction recognition from abstract (Salatiello, et al. 2021) and naturalistic videos. CONCLUSION: The model demonstrates that recognition of social interactions can be achieved by simple physiologically plausible neural mechanisms and makes testable predictions about single-cell and population activity patterns in relevant brain areas. Acknowledgments: ERC 2019-SyG-RELEVANCE-856495, HFSP RGP0036/2016, BMBF FKZ 01GQ1704, SSTeP-KiZ BMG: ZMWI1-2520DAT700, and NVIDIA Corporation.