Clinical Movement Control and Rehabilitation

Researchers:

Description

Applying advanced computational methods, we analyze the body movements of patients with neurological movement disorders. Goals of this work are to identify and to quantify disorder-specific or lesion-specific changes in movement patterns, including especially complex whole-body movements like gait or interactive tasks, and the diagnosis of preclinical symptoms of movement disorders. Our work addresses movement deficits associated with various neurological disorders, including cerebellar ataxia, Parkinson's disease, and apraxia. Another focus of this work is the investigation of motor adaptation and training effects in normal participants and during motor rehabilitation training for neurological patients.

  

Current Projects

Real-life gait assessment in degenerative cerebellar ataxia: Towards ecologically valid biomarkers

Real-life gait assessment in degenerative cerebellar ataxia: Towards ecologically valid biomarkers

In order to establish ecologically valid biomarkers evaluating treatment-responses really in the patients’ everyday life, we develop multi-variate measures of ataxic gait using wearable sensors, which demonstrate high sensitivity to small differences in disease severity in real-life walking.
Detecting and Quantifying Ataxia-Related Motor Impairments in Rodents Using Markerless Motion Tracking With Deep Neural Networks

Detecting and Quantifying Ataxia-Related Motor Impairments in Rodents Using Markerless Motion Tracking With Deep Neural Networks

Animal models of adult-onset neurodegenerative diseases have significantly enhanced the understanding of the molecular (patho-)mechanisms and have offered enormous potential for therapeutic target evaluation in many neurodegenerative diseases.
Smart sensor technology in telepsychotherapy for children and adolescents  SStep-KiZ

Smart sensor technology in telepsychotherapy for children and adolescents SStep-KiZ

Through the use of sensors that can be worn in everyday life and an intelligent analysis of multi-modal sensor data, SSTeP-KiZ aims to significantly improve the treatment options for mentally ill children and adolescents with obsessive-compulsive disorders.
Learning Hierarchical Models for Motor Control

Learning Hierarchical Models for Motor Control

There is strong evidence that the animal Motor Control System is hierarchically organized into highly-interacting specialized subnetworks. In our lab, we combine methods from System Identification Theory and Machine Learning to automatically identify such modules.
Motor learning and the functional role of the cerebellum

Motor learning and the functional role of the cerebellum

The cerebellum plays an essential role in motor learning. Combining psychophysics and neuropsychological studies in patients we investigate different types of motor learning mechanisms and the role of the cerebellum.
  

Finished Projects

Design and development of a mobile robot supporting the rehabilitation of free walking

Design and development of a mobile robot supporting the rehabilitation of free walking

Current walking rehabilitation is mainly restricted to treadmill walking in order to train basic rhythmic walking patterns. Together with the Fraunhofer IPA (Stuttgart) we designed a new robot platform to train walking in complex situations (turning, standing up, etc.).
The influence of focal cerebellar lesions on the coordination in walking

The influence of focal cerebellar lesions on the coordination in walking

In this study we examined patients with focal cerebellar lesions in order to investigate the influence of different regions of the cerebellum on the performance in a working memory task (n-back task), as well as on gait variability and gait stability during dual task walking.
Quantification of subtle motor changes in preclinical stages of neurodegenerative diseases

Quantification of subtle motor changes in preclinical stages of neurodegenerative diseases

Movement disorders such as cerebellar ataxia or Parkinon’s disease result in subtle degradations of motor behavior already long time before the become clinically manifest. Using motion capture technology and machine learning, we try to identify such subtle preclinical motor symptoms.
Cerebellar involvement in the facilitation of action perception by concurrent motor activity

Cerebellar involvement in the facilitation of action perception by concurrent motor activity

The execution of motor behavior influences concurrent visual action observation, and especially the perception of biological motion. Exploiting Virtual Reality technology, we have studied how the cerebellum contributes to action-perception coupling, comparing cerebellar patients with controls.
Development of exergames for the motor training in cerebellar ataxia

Development of exergames for the motor training in cerebellar ataxia

Computer games provide a possibility to enhance physiotherapeutic training and to increase the motivation of patients in such training. We develop own games that are optimally adapted to the needs of different patient groups, and specifically cerebellar ataxia patients.
Rehabilitation training exploiting physiotherapy, computer games and biofeedback

Rehabilitation training exploiting physiotherapy, computer games and biofeedback

The symptoms o movement disorders, such as cerebellar ataxia or Parkinon’s disease, can be partially improved y motor training. We have shown that (opposed to the classical view) physiotherapy results in substantial and enduring benefits for patients with cerebellar ataxia, if such training is continuously administered. We exploit biofeedback and computer games to improve such training.
Cost-efficient system for movement quantification in neurology

Cost-efficient system for movement quantification in neurology

The Microsoft Kinect sensor for computer games allows robust body motion tracking for relatively low cost. We use this technology for the analysis of patient movements and develop cheap systems for the quantification of movement deficits that can be deployed at home or simultaneously at multiple places for multi-center studies.
  

Publications

Vogel, A. P., Magee, M., Torres-Vega, R., Medrano-Montero, J., Cyngler, M. P., Kruse, M. et al. (2020). Features of speech and swallowing dysfunction in pre-ataxic spinocerebellar ataxia type 2. Neurology, 95(2):e194-e205. [More] 
Steiner, K. M., Thier, W., Batsikadze, G., Ludolph, N., Ilg, W. & Timmann, D. (2020). Lack of effects of a single session of cerebellar transcranial direct current stimulation (tDCS) in a dynamic balance task. Journal of Neurology, 267, pages1206–1208(2020). [More] 
Salatiello, A. & Giese, M. A (2019). Learning of generative neural network models for EMG data constrained by cortical activation dynamics(B). CNS Conference 2019, 13-17 July, Barcelona, Spain . [More] 
Fleszar, Z., Mellone, S., Giese, M. A., Tacconi, C., Becker, C., Schöls, L. et al. (2019). Real-time use of audio-biofeedback can improve postural sway in patients with degenerative ataxia. Ann Clin Transl Neurol, 6(2), 285-294. [More] 
Ludolph, N., Giese, M. A., Mueller, O. M., Goericke, S. L., Ernst, T., Timmann, D. et al (2016). Cerebellar regions involved in fine motor control and learning to control dynamic objects. NCM 2016, Montego Bay, Jamaica . [More]