
A tutorial on Fourier-based Anechoic

Demixing Algorithm (FADA)

Enrico Chiovetto1

1- Section for Computational Sensomotorics, Department of

Cognitive Neurology, Hertie Institute for Clinical Brain Research,

Centre for Integrative Neuroscience, University Clinic Tübingen,

Tübingen, Germany.

enrico.chiovetto@uni.tuebingen.de
enrico.chiovetto@gmail.com

September 2016

mailto:enrico.chiovetto@uni.tuebingen.de
mailto:enrico.chiovetto@gmail.

Introduction

In this document we provide help and support for the use of the FADA toolbox for the
unsupervised identification of motor primitives [1,2,3,4]. Theoretical derivation of the
algorithm and its validation can be found in [5]. The toolbox is completely written in Matlab
(Natick, MA) and can be utilised with Matlab version equal or higher than Matlab R2009b. The
software is freeware. Below a complete list of the functions composing the toolbox is reported.
For each function, a quick description is also given. In the last part of the document the reader
can find a more detailed explanation on the use of the main functions of the toolbox to identify
spatial, temporal, spatio-temporal (time-varying) and space-by-time primitives.

Complete list of functions:

Main functions

fada_spat.m: the function factorizes data according to a spatial organization.

fada_temp.m: the function factorizes data according to a temporal organization.

fada_tv.m: the function factorizes data according to a spatio-temporal organization.

fada_NM3F.m: the function factorizes data according to a space-by-time organization.

Additional functions

fadaSingleRun.m: this function runs only once the FADA algorithm as described in [], in the section

Implementation of the unifying algorithm. Specifically, this function is valid for spatial, temporal and

spatio-temporal factorizations.

fadaSingleRunNM3F.m : this function runs only once the FADA algorithm as described in [], in the

section Implementation of the unifying algorithm. Such a function was written for data factorization into

space-by-time organization.

weightsDelayEstimation.m: this function computes combination coefficients and delays for any type of

primitives. When synchronous models are taken into consideration, a matrix of delays equal to zeros is

returned.

FunModS.m: this function is minimized to update the absolute values of the Fourier coefficients of the

primitives. Designed for spatial, temporal and spatio-temporal primitives.

FunModSNM3F.m: it has the same role of FunModS.m but for space-by-time factorizations.

FunPhaseS.m: this function is minimized to update the phases of the Fourier coefficients of the

primitives. Designed for spatial, temporal and spatio-temporal primitives.

FunPhaseSNM3F.m: it has the same role of FunPhaseS.m but for space-by-time factorizations.

nonlinconModS.m: function implementing the non-negative constraints to fulfil when updating the

absolute values of the Fourier coefficients of the primitives. It works for spatial, temporal and spatio-

temporal primitives.

nonlinconModSNM3F.m: as nonlinconModS.m but for the identification of space-by-time primitives.

nonlinconPhaseS.m: function implementing the non-negative constraints to fulfil when updating the

phases of the Fourier coefficients of the primitives. It works for spatial, temporal and spatio-temporal

primitives.

nonlinconPhaseSNM3F.m: as nonlinconModS.m but for the identification of space-by-time primitives.

exp_vector.m: function computing a vector of exponentials.

syn_mix.m: this function mixes together spatial or temporal primitives after scaling them and, if needed,

shifting them in time.

tv_syn_mix.m: function mixing together spatio-temporal (time-varying) primitives.

HarmonicFourierSeries.m: given a data matrix X (size ns-by-T, where ns is the number of signals and T is

the number of time samples) is computes the first N+1 Fourier coefficients of each signal.

NNMF.m: this function performs non-negative matrix factorization on the input matrix X.

setNumA.m: this function finds the minimum number of harmonics (Fourier coefficients) needed to

approximate the temporal signals given in the data matrix X (size ns-by-T, where ns is the number of

signals and T is the number of time samples) given a minimum level of similarity between actual and

reconstructed data at least equal to sim_lev (ranging between 0 and 1).

squeezeOne.m: remove singleton dimensions. It is a reviewed version of squeeze.m.

Use of the main functions

fada_spat.m

Identification of spatial primitives (model 1 in [5])

Syntax

[S, W, Rec, p] = fada_spat(X,T,NumS,NumA,Spos,Cpos)

[S, W, Rec, p] = fada_spat(X,T,NumS,NumA,Spos,Cpos,NumRuns)
[S, W, Rec, p] = fada_spat(X,T,NumS,NumA,Spos,Cpos,NumRuns,indep)

Definition

The function computes spatial primitives S and combination coefficients W. For this function
the primitives are synchronous and cannot be time-shifted.

Description

Inputs: X = Matrix of the original data

 X is obtained by transposing the matrix with time signals

 of the same trial piled vertically and signals of different

 trials concatenated horizontally. X will thus have size

 (NumT x T) x (NumM). NumT is the number of trials, NumM

 the number of degrees of freedom recorded in each trial,

 for instance the number of muscles.

 In this case the signals of each trial do not need to be

 standardized in time.

 NumM = Number of degrees of freedom
 NumS = Number of primitives to learn
 NumA = Number of Fourier harmonics to approximate the original
 signals
 Spos = positivity of the synergies 0 = unconstrained
 1 = positive
 Cpos = positivity of the combination coefficients
 0 = unconstrained
 1 = positive
 NumRuns = number of runs
 indep = independence of the sources 'ica' = independent sources
 'unc' = uncorrelated sources
 'lsq' = Least-square approx..

 Outputs:
 S = identified primitives
 W = identified combination coefficients
 Rec = reconstructed data
 p = variance accounted for

By default NumRuns is set to 5 and indep to 'lsq'. The minimum and maximum number of

iterations of can be set in fadaSingleRun.m by modifying miniter and maxiter. Default

values are respectively 10 and 50.

Example 1:

This example shows how to use fada_spat to extract unconstrained spatial primitives and

weights from the data matrix Mix. Such a matrix is obtained by linear combination of four

spatial, synchronous primitives (matrix Primitives) scaled by a mixing matrix Weights.

load Sim_unconstrained_synchronous_mixture.mat;% load the data

T = 10; % number of degrees of freedom

NumS = 4; % number of primitives

NumA = 5; % number of harmonics

Spos = 0; % prior on the primitives

Cpos = 0; % prior on the weights

NumRuns=5; % Number of runs

% extraction of spatial primitives with unconstrained values. 5 harmonics, 5

runs, least-square approximation.

[S, W, Rec, p] = fada_spat(Mix,T,NumS,NumA,Spos,Cpos,NumRuns,'lsq');

fada_temp.m (models 2 and 3 in [5])

Identification of temporal primitives

Syntax

[S, W, Tau, Rec, p] = fada_temp(X,T,NumS,NumA,Spos,Cpos,del)

[S, W, Tau, Rec, p] = fada_temp(X,T,NumS,NumA,Spos,Cpos,del,NumRuns)

[S, W, Tau, Rec, p] = fada_temp(X,T,NumS,NumA,Spos,Cpos,del,NumRuns,indep)

Definition

The function computes temporal primitives S, combination coefficients W and temporal delays
Tau.

Description

Inputs: X = Matrix of the original data.

 When one-dimensional temporal motor primitives are to

 be idenfied X has to be a matrix with time signals piled

 vertically. X will thus have size (NumT x NumM) x T. NumT

 is the number of trials, NumM the number of degrees of

 freedom recorded in each trial, for instance the number

 of muscles. All signals need to be standardized in time

 in a pre-processing phase.
 T = Number of time samples per signal
 NumS = Number of primitives to learn
 NumA = Number of Fourier harmonics to approximate the original
 signals
 Spos = positivity of the synergies 0 = unconstrained
 1 = positive
 Cpos = positivity of the combination coefficients
 0 = unconstrained
 1 = positive

 del = modelling of the delays 0 = non-shiftable primitives
 1 = time shiftable primitives
 NumRuns = number of runs
 indep = independence of the sources 'ica' = independent sources
 'unc' = uncorrelated sources
 'lsq' = Least-square approx.

 Outputs:
 S = identified primitives
 W = identified combination coefficients

 Tau = identified delays of the primitives
 Rec = reconstructed data
 p = variance accounted for

By default NumRuns is set to 5 and indep to 'lsq'. The minimum and maximum number of

iteration of can be set in fadaSingleRun.m by modifying miniter and maxiter. Default

values are respectively 10 and 50.

Example 1:

This example shows how to use fada_temp to factorize a non-negative data matrix Mix into an

anechoic organization []. Such a matrix is obtained by linear combination of four temporal

primitives (Primitives) scaled by a mixing matrix Weights and shifted in time according to the

delays in the matrix Delays.

load Sim_non-negative_anechoic_mixture.mat % load the data
T = 100; % number of time samples
NumS = 4; % number of primitives
NumA = 25; % number of harmonics
Spos = 1; % non-negativity prior on the primitives
Cpos = 1; % non-negativity prior on the weights
Del = 1; % no delay

NumRuns=5; % number of runs

% extraction of temporal non-negative primitives shifted in time. 5

harmonics, 5 runs, least-square approximation.

[S, W, Tau, Rec, p] = fada_temp(Mix,T,NumS,NumA,Spos,Cpos,Del,NumRuns,'lsq');

fada_tv.m (model 4 in [5])

identification of spatio-temporal primitives.

Syntax

[S, W, Tau, Rec, p] = fada_tv(X,T,NumS,NumA,Spos,Cpos,del)
[S, W, Tau, Rec, p] = fada_tv(X,T,NumS,NumA,Spos,Cpos,del,NumRuns)
[S, W, Tau, Rec, p] = fada_tv(X,T,NumS,NumA,Spos,Cpos,del,NumRuns,indep)

Definition

The function performs Fourier-based demixing of the input data and extracts time-varying,
spatio-temporal primitives and corresponding weights and delays.

Description

Inputs: X = Matrix of the original data.

 X has to be a matrix with time signals of the

 same trial piled vertically and signals of different

 trials concatenated horizontally. X will thus have size

 (NumM) x (NumT x T). NumT is the number of trials, NumM

 the number of degrees of freedom recorded in each trial,

 for instance the number of muscles). All signals need to

 be standardized in time in a pre-processing phase.

 T = Number of time samples per signal

 NumS = Number of primitives to learn

 NumA = Number of Fourier armonics to approximate the original

 signals

 Spos = positivity of the synergies 0 = unconstrained

 1 = positive

 Cpos = positivity of the combination coefficients

 0 = unconstrained

 1 = positive

 del = modelling of the delays 0 = non-shiftable synergies

 1 = time shiftable synergies

 NumRuns = number of runs

 indep = independence of the sources 'ica' = independent sources

 'unc' = uncorrelated sources

 'lsq' = Least-square approx.

 Outputs:

 S = identified synergies

 W = identified combination coefficients

 Tau = identified delays

 Rec = reconstructed data

 p = variance accounted for

By default NumRuns is set to 5 and indep to 'lsq'. The minimum and maximum number of

iteration of can be set in fadaSingleRun.m by modifying miniter and maxiter. Default

values are respectively 10 and 50.

Example 1:

This example shows how to use fada_tv to factorize non-negative data matrix Mix according to

a spatio-temporal organization. Such a matrix is obtained by linear combination of four

spatio-temporal primitives (Primitives) scaled by a mixing matrix Weights and time-shifted

according to the delays in the matrix Delays.

load Sim_non-negative_spatio_temporal_mixture.mat % load the data
T = 100; % number of time samples
NumS = 4; % number of primitives
NumA = 25; % number of harmonics
Spos = 1; % non-negativity prior on the primitives
Cpos = 1; % non-negativity prior on the weights
Del = 1; % no delay
% extraction of spatio-temporal, non-negative primitives shifted in time. 5

harmonics, 5 runs, least-square approximation (default).

[S, W, Tau, Rec, p] = fada_tv(Mix,T,NumS,NumA,Spos,Cpos,Del);

fada_NM3F.m (model 5 in [5])

Identification of spatial and temporal primitives, according to a space-by-time organization.

Syntax

[St, Ss, W, Tau, Rec, p] = fada_NM3F(X,T,NumS,NumW,NumA,del)
[St, Ss, W, Tau, Rec, p] = fada_NM3F(X,T,NumS,NumW,NumA,del,NumRuns)

Definition

The function computes temporal primitives S, spatial primitives Ss, combination coefficients W
and time delays Tau. All the parameters provided by the function are non-negative.

Description

Inputs: X = Matrix of the original data.

 X has to be a matrix with time signals of the

 same trial piled vertically and signals of different

 trials concatenated horizontally. X will thus have size

 (NumM) x (NumT x T). NumT is the number of trials, NumM

 the number of degrees of freedom recorded in each trial,

 for instance the number of muscles.

 All signals need to be standardized in time in a

 pre-processing phase.

 T = Number of time samples per signal

 NumS = Number of temporal primitives

 NumW = Number of spatial primitives

 NumA = Number of Fourier harmonics to approximate the original

 signals

 del = modelling of the delays 0 = non-shiftable primitives

 1 = time shiftable primitives

 NumRuns = number of runs

 Outputs:

 St = identified temporal primitives

 Ss = identified spatial primitives (size NumM x NumW)

 W = identified combination coefficients

 Tau = identified delays

 Rec = reconstructed data

 p = variance accounted for

By default NumRuns is set to 5 and indep to 'lsq'. The minimum and maximum number of

iteration of can be set in fadaSingleRun.m by modifying miniter and maxiter. Default

values are respectively 10 and 50.

Example 1:

This example shows how to use fada_NM3F to factorize a non-negative data matrix NMF_mix.

Such a matrix is obtained by linear combination of four temporal primitives (Primitives) scaled

by a mixing matrix Weights.

load Sim_space_by_time_mixture.mat % load the data
T = 100; % number of time samples
NumS = 2; % number of temporal primitives
NumW = 3; % number of spatial primitives
NumA = 25; % number of harmonics
Del = 1; % no delay
NumRuns = 5; % number of runs

% factorization of data matrix Mix into a space-by-time organization. 5 runs,
% least-square approximation (default)

[S, Ss, W, Tau, Rec, p] = fada_NM3F(Mix,T,NumS,NumW,NumA,Del,NumRuns);

Additional functions

weightsDelayEstimation.m

Identification of weights and delays.

Syntax

[outW,outD,outRec] = WeightsDelayEstimation(data,prim,W,D,delay_box,Cpos,del)

Definition

weightsDelayEstimation computes the weights and delays given the primitives. Weights and
delays are optimized so as to minimize the difference between original and reconstructed data.
Within the function, the variable maxiter indicates the number of times the loop to update
the weights and delays is executed (step 2 of page 10 in [5]). By default maxiter = 250.

Description

Inputs:

 data = Matrix of the original data. It has size NumM x T,where

 NumM is the number of degrees of freedom recorded in each

 trial, for instance the number of muscles. T the number

 of time samples).

 prim = Given primitives

 W = Initial values of the weights

 D = Initial values of the delays

 delay_box = column array containing the upper bound of the delays.

 lower bounds are all set to zero. The vector has NumS

 elements, where NumS is the number of primitives.

 Cpos = positivity of the combination coefficients

 0 = unconstrained

 1 = positive

 del = modelling of the delays 0 = non-shiftable primitives

 1 = time shiftable primitives

Outputs:

 outW = updated combination coefficients

 outD = updated delays

 outRec = reconstructed data

Terms of use

Copyright (C) Enrico Chiovetto, 2014, enrico.chiovetto@uni-tuebingen.de.

The fada toolbox is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even primitives MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

If you use this software for your research, please refer to [5].

References

1. Bizzi E., Cheung V. C. K., d'Avella A., Saltiel P., Tresch M. (2008). Combining modules for

movement. Brain Res. Rev. 57, 125–133 10.1016/j.brainresrev.2007.08.004 .

2. Flash, T., and Hochner, B. (2005). Motor primitives in vertebrates and invertebrates.

Curr. Opin. Neurobiol. 15, 660–666. doi: 10.1016/j.conb.2005.10.011.

3. Tresch M.C., Jarc A. (2009). The case for and against muscle synergies. Curr Opin Neurobiol

19:601–607.

4. Chiovetto E., Berret B., Delis I., Panzeri S., Pozzo T. (2013). Investigating reduction of

dimensionality during single-joint elbow movements: a case study on muscle synergies. Front.

Comput. Neurosci. 7:11 10.3389/fncom.2013.00011.

5. Chiovetto E, d'Avella A and Giese MA. (2016). A Unifying Framework for the Identification of

Motor Primitives. arXiv preprint arXiv:1603.06879.

