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Introduction 

 Shape and action perception are associated with high-level 

adaptation effects. 

 Repeated presentation of same stimulus results in after-

effects where alternative percepts are preferentially 

perceived (Leopold et al. 2001; Jordan et al. 2006; Troje al. 2006).  

 Adaptation effects have been extensively exploited in fMRI 

repetition suppression paradigms (e.g. Grill-Spector et a. 1999; Jastorff 

et al. 2009; Grossman et al., 2010).  

 Adaptation of single cell responses in area IT for repetition of 

shape stimuli (decay of activation by 10-20%) (e.g. Sawamura et 

al. 2006; de Baene  & Vogels, 2011).  

 Ambiguous fMRI adaptation results for repetition suppres-

sion for action recognition for human mirror neuron system 
(e.g. Dinstein et al. 2008; Lingnau & Caramazza, 2009). 

 No or weak adaptation effects observed in single-cell studies 

on mirror neurons in area F5 (premotor cortex) and STS 

neurons (Caggiano et al.2013; Kilner et al. 2014; Kuravi et al. 2016). 

 Detailed physiological data available for adaptation effects in 

area IT that helps to narrow down possible neural mecha-

nisms of adaptation for shape recognition.  

 Much less data available for adaptation in action-selective 

neurons.  
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Questions / goals 

 Development of a neural model that accounts for critical 

experiments on the adaptation effects for shape-selective 

neurons in area IT. 

 Identification of critical computational mechanisms. 

 Investigation of possible reasons why adaptation in 

action-selective neurons might be so much weaker.  

Model 

 Hierarchical physiologically-inspired model for object (or action) 

recognition (Fukushima, 1980; Riesenhuber & Poggio, 1999; Giese & Poggio, 2003); 

focus on recognition layer. 

 Lateral interaction between shape-selective neurons ; results in 

mutual inhibition or sequence selectivity (Wang et al. 2000; Giese & Poggio, 

2003). 

 Modelled by two-dimensional neural field (Amari, 1977):  

  

 
 

 

 

 Extension by four necessary adaptation mechanisms: 
  

a) Firing rate (FR) fatigue: Spike rate-dependent adaptation:  

 

 

    Saturating function F(a) limits the amount of adaptation. 
 

b) Input fatigue (IF): Gain of synaptic inputs of field neurons 

adapts dependent on negative flanks of input signal v(x, t): 
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x = [f, q] 

q: shape no. 

f: view 

H: step threshold 

Hierarchical model for 

object recognition 

(Riesenhuber & Poggio, 1999) 

a: adaptation level 

b: adaptation level 

(Multiplicative gain control 

of synaptic gain m) 
c: adaptation level 

s: effective input signal 

Simulation results 
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Model 

Spike sum for adaptor and test stimulus  
 IT neuron activity during testing is 

independent of the duration of the 

adaptor stimulus.  

 Spike sum during adaptor depends on 

adaptor duration; spike sum during test 

stimulus (200 ms) is not dependent on 

adaptor duration.  

 Highly constraining result for the model-

ling; not reproduced by many standard 

adaptation models. 

 Model reproduces effect by bounding 

firing rate adaptation through nonlinearity 

F(a), and assuming that IF process that 

depends on negative stimulus flank. 

 Both mechanisms necessary; models 

without this fail to reproduce data. 
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Simplified models 
(No saturation of FR fatigue) 

(IF dependent on input, not neg. flank) 
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Typical IT neuron 
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Model 
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Simplified model 
(No SR adaptation) 

 Reproduction of the shape of the PSTH of typical IT 

neurons.  

 The fast overshoot after stimulus onset requires SR 

adaptation; otherwise, signal shape not reproduced. 

 No infleunce of this model component on accuracy of 

modelling of the other results. 

Responses: many stimulus repetitions 

Model 
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 Response decays until after about 9 stimulus repetitions. 

 Constraint for time scale of major adaptation mechanism.  

 Can be reproduced with many different models; no strong 

constraint for computational mechanisms.  

Adaptation to effective and ineffective stimuli  
                    Data                                         Model            

 Adaptation and testing with effective and 

ineffective stimuli.  

 Interaction: Ineffective adaptors lead to 

stronger adaptation effects for ineffective 

test stimulus than effective adaptor.  

 This effect cannot be reproduced with 

models without IF adaptation.  

 Full reproduction of data requires both, IF 

and FR fatigue. 
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            Simplified models 
(No FR fatigue)                  (No IF) 
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E I Test stimulus: 

 To test reasons for weak adaptation in action-selective 

neurons we transferred adaptation mechanisms from IT 

model to action recognition model.  

 Model with only FR fatigue reproduces the weak exp. 

observed adaptation effects. 

 Model even with weak with IF leads to strong adaptation 

effetcs opposite to experimental results.  
0 1000 2000 3000 4000

0

2

4

6
Sum activity as function of time

t [ms]

s
u

m
 a

c
ti

v
it

y

Only FR  

fatigue 

Prediction of adaptation effects for action-selective neurons  

0 1000 2000 3000 4000
0

2

4

6
Sum activity as function of time

t [ms]

s
u

m
 a

c
ti

v
it

y Input  fatigue (50 %) 

Input fatigue (100 %) 

Conclusions 
 Set of highly constraining experiments on adaptation of neurons in area IT reproduced by a single physiologically-inspired 

neural model. 

 Both, firing rate fatigue and input fatigue are necessary to account for results.  

 Model reproduces the independence of adaptation effects from adaptor duration (critical: saturation of adaptation, 

dependence of IF on falling input flanks  rebound bursting activity?).  

 Transfer to action recognition model reproduces weak adaptation effects only for model without input fatigue.  

 Different dominance of adaptation mechanisms for action and shape-selective areas?  

 

 

c) Spike rate adaptation: required to model shape of the PSTH  

    of neurons in area IT; depends on pos. flanks of effective input: 

 

 
 

 All components are required for the detailed reproduction of adaptation effects of neurons in area IT (see Results). 
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