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Abstract. Shape-selective neurons in inferotemporal cortex show adap-
tation if the same shape stimulus is shown repeatedly. Recent electro-
physiological experiments have provided critical data that constrain pos-
sible underlying neural mechanisms. We propose a neural model that ac-
counts in a unifying manner for a number of these critical observations.
The reproduction of the experimental phenomenology seems to require
a combination of input fatigue and firing rate fatigue mechanisms, and
the adaptive processes need to be largely independent of the duration of
the adapting stimulus. The proposed model realizes these constraints by
combining a set of physiologically-inspired mechanisms.
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1 Introduction

Shape-selective neurons in inferotemporal cortex (area IT) show adaptation for
repeated stimulus presentation [1]. This phenomenon has been of strong inter-
est in neuroscience and functional imaging [2], since it might be contributing
to high-level after-effects [3], might be related to the observation of repetition
suppression effects in functional imaging [4], and efficient coding [5]. Various the-
ories about the origin of adaptation effects have been proposed [6] and different
models for such adaptation effects have been put developed [7, 8, 4, 9]. However,
the precise underlying neural processes remain largely unknown. Recent electro-
physiological experiments provide strong constraints for the possible underlying
neural mechanisms and their computational properties. Based on a collection
of such experiments, we propose a neural model that accounts simultaneously
for all of them, exploring a variety of possible neural adaptation mechanisms.
We found that accounting for this data requires a combination of adaptation
processes that act on different resolution levels in feature space. Our solution
combines input fatigue and firing-rate fatigue [10]. In addition, we assume that
the relevant adaptation processes act largely independently of the duration of the
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adapting stimulus, while they are sensitive to the number of its repetitions. The
proposed neural model combines a synaptic gain-control mechanism and a sat-
urating firing-rate-dependent adaptation mechanism that shifts the threshold of
the neurons in order to account for the data. We assume that the shape-selective
neurons are recurrently connected and embedded in a neural field, resulting in
a competition between different views and recognized shapes.

In the following, we briefly describe the model and the assumed adaptation
mechanisms. Subsequently, we present simulations of a set of critical experiments
that provide strong constraints for the underlying mechanisms, followed by a
discussion.

2 Neural model

Consistent with earlier work, we model IT neurons by radial basis function units
that are selective for a learned shapes. We assume that these neurons are em-
bedded within in a recurrent neural network, which can be approximated in the
mean-field limit by a dynamic neural field that results in competition between
neurons different recognized shapes and views. In other work such recurrent
models have been successfully exploited in order to account for object and ac-
tion recognition (e.g. [11–13]). This recurrent network of shape-selective neurons
is augmented by adaptation mechanisms. We have tested a variety of possible
mechanisms and report here only a combination that accounts for the critical
data sets discussed below. In addition, the model contains a mechanism for
spike-rate adaptation that is important to reproduce the signal shape of the
post-stimulus time histograms (PSTHs) of IT neurons. The following sections
give a more detailed description of the different model components.

2.1 Recurent network (field) of shape-selective neurons

We assume that the individual shape-selective IT neurons obtain their input
form a previous layer that encodes input features. We model this layer in an
idealized way as two-dimensional neural field that represents input features with
a well-defined metric for feature similarity. The dimensionality of this space could
be chosen differently, as long as there is a defined similarity metric between the
feature vectors. Let v(y, t) define the activity of the neurons in this input layer.
We assume that this activity is always non-negative.

Consistent with electrophysiological data, we assume that the shape-selective
IT neurons encode shapes in a view-specific manner, and we specify by the vector
x = [φ, θ] the encoded shape and view. In our implementation we assumed a two-
dimensional space for this representation, one dimension encoding view angle φ,
and the other the location θ along a one-dimensional shape continuum. The
dimensionality of the shape space is not critical for the model, and one could
assume higher-dimensional shape spaces if necessary. The embedding of neurons
in such metric shape spaces simplifies the treatment of pattern similarity, which
is a critical variable that was manipulated in the experiments. We assume that
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u(x, t) is the average activity of the neuron (ensembles) whose shape and view
selectivity is given by the vector x.

The shape-selective neurons are modeled by radial basis function (RBF) units
that receive their inputs through a linear weight kernel m(x,y) from the input
layer. This kernel specifies the strength of the synaptic connections from the
input layer to the shape-selective IT neurons. We assume that, without adap-
tation, this kernel has a Gaussian characteristics, thus defining Gaussian RBFs.
One of the assumed adaptation processes acts on the values of this weight kernel.
This makes this kernel time-dependent.

The recurrent network of shape-selective neurons is modeled by a dynamic
neural field of [14] that receives input from the input layer through the synaptic
weight kernel m. The recurrent interactions in the field are specified by the
interaction kernel w, resulting in the dynamical equation:

τ
d

dt
u(x, t) = −u(x, t) +

∫
w(x − x′)H(u(x′, t)) dx′ − h

+

∫
m(x,y, t)v(y, t)) dy︸ ︷︷ ︸

s(x,t)

(1)

−F (a(x, t)) + kcc(x, t)

In this equation H(x) is the Heaviside function, thus H(x) = 1 for x > 0 and
H(x) = 0 otherwise. The positive constants τ and h define the time scale and
the resting potential of the field.

2.2 Firing-rate fatigue adaptation

The first adaptation mechanism is based on firing rate fatigue, i.e. an increase of
the neuron thresholds after they have been continuously firing. This adaptation
process is modeled by an adaptation variable a(x, t) that increases the effective
threshold of the neurons. The dynamics of this variable is determined by a dif-
ferential equation that is applied separately to each neuron (point in the neural
field):

τa
d

dt
a(x, t) = −a(x, t) +H(u(x, t)) (2)

The time constant τa of the adaptation process was chosen to be 1200 ms.
The adaptation variable couples into the field dynamics through a saturating
nonlinear function F (a) = ka min(a, amax), with ka > 0 and amax > 0. This
nonlinearity bounds the adaptation effects for longer adaptor durations and turns
out to be essential in order to account for the result of the experiment with
variable adaptor durations (see below).

2.3 Input fatigue adaptation

A second adaptation process is acting on the synaptic strength of the input
signals of the field, which is specified by the function m. An alternative interpre-
tation is that this process captures adaptive changes in previous hierarchy layers
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of the shape recognition pathway. We assume that the strength of the synaptic
connection between neurons at position y in the input layer and position x in
the IT layer is decaying, when the input layer neuron has been activated. In
addition, extensive simulation work shows that it has to be assumed that the
main effect of the input fatigue adaptation emerges when the input signals de-
cays after a sufficiently long activation period. A highly simplified mathematical
model for this is a process that depends on the thresholded negative derivative
of the input neuron activation. In our model we captured this by assuming a
second adaptation variable b that follows the dynamical equation:

τb
d

dt
b(y, t) = −b(y, t) +

[
− ∂

∂t
v(y, t))

]
+

(3)

Here v(y, t)) signifies the activity of the input neuron at position y (with the
linear threshold function [a]+ = max(a, 0)). As the time constant τb of this adap-
tation process we chosed 1440 ms. We assume that the adaptation variable b
modulates the strength of the synaptic input weights of the neurons by reducing
their gain according to the relationship:

m(x,y, t) = m(x,y) ·
(

1

b(y, t)/cb + 1

)
(4)

The function m(x,y) was chosen as two-dimensional gaussian filter kernel. The
positive constant cb determines a threshold level for the input fatigue adaptation
process.

2.4 Spike rate adaptation

In order to reproduce the signal shape of the Peristimulus Time Histogram
(PSTH) of typical IT neurons, we added another very fast transient process
that models spike rate adaptation. This process acts on a much faster timescale
than the other discussed adaptive processes. The effect of spike rate adaptation
is that the neurons show a short overshoot of activity after stimulus onset that
quickly decays. This phenomenon was modeled by adding a transient component
to the effective input signal of the IT neurons that decays with a very fast time
constant τc, which was about 9.6 ms. The spike rate adaptation is modeled by
third adaptation state variable c(x, t) that obeys the dynamic equation

τc
d

dt
c(x, t) = −c(c, t) +

[
∂

∂t
s(x, t))

]
+

, (5)

where s(x, t) is the effective input signal of the IT neuron at position x in the
neural field. (See also equation (2).) The spike rate adaptation process has only
a small effect on the simulation results related to adaptation but is important
to reproduce the shapes of the neural responses.
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3 Simulation results

The model provides a unifying account for several critical experiments that are
discussed in the following in comparison with the simulation results.

Figure 1 A shows a comparison between the PSTHs from a single stimulus
repetition from a typical IT neuron [15] (right panel) in comparison with the
simulation result (left panel). Due to the spike rate adaptation process, the
model reproduces the signal overshoots after stimulus onset that is present for
many IT neurons.

Figure 1 B shows a simulation of the responses for many repetitions of the
same shape stimulus, which is optimally stimulating the tested model neuron.
The timing parameters match the ones by [1]. Consistent with the experiment
the adaptation effect saturates largely after 5 stimulus repetitions. In the real
experimental data there occurs a further slight decay that even continues after
more than 10 stimulus repetitions. This effect is not captured by our model.

Figure 1 C shows the simulation of an experiment (not yet published) that
varied the duration of the adaptor stimulus (showing a shape that stimulated
the neuron maximally). For testing stimuli with a fixed duration of 300 ms were
shown after a fixed inter-stimulus interval. Quite unexpectedly, the duration of
the adaptor stimulus almost did not affect the observed adaptation effects (equal
response to test stimulus in all three condition) for a wide range of adaptor
durations. The same behavior was observed for real IT neurons in the monkey
(Unpublished data). This experimental result is highly constraining for models
and could not be reproduced by many model variants, e.g. ones that included
adaptation mechanisms that responded to the tonic behavior of the adaptor
stimuli without saturation. It can be reproduced by adaptation mechanisms that
are dependent on the decay of neural activity.

Finally, figure 1 D shows a simulation of another highly constraining exper-
imental result by [10]. The neurons were stimulated with an effective stimulus
(shape 1), that is a shape that elicited a maximum response in the neuron, and
with an ineffective stimulus (shape 2), which elicited still a selective response,
but a relatively weak one. Presented as an adaptor, obviously, the effective stim-
ulus elicits a higher response than the ineffective stimulus, in the real data as
well as for the model. If testing is done with an effective stimulus, evidently,
the adaptation effect is larger for an effective adaptor stimulus than for an in-
effective adaptor. An interesting situation emerges, however, when the model is
tested with ineffective stimuli, and adapted with the effective or the ineffective
stimulus. In this case, a statistical interaction occurs where the adaptation effect
for an ineffective adaptor stimulus is larger than the one induced by an effective
adaptor.

Consistent with the analysis in[10], simulations with many different versions
of the model confirm that this type of interaction cannot be obtained with models
that do not contain an input fatigue mechanism. The key for obtaining the strong
adaptation effect for ineffective test stimuli by adaptation with ineffective stimuli
is that the adaptation occurs highly locally in the pattern space of the input neu-



6 Giese, Kuravi, and Vogels

A

A

0 1000 2000 3000 4000 5000
-5
0
5

10
15
20

Sum activity as function of time

t [ms]

su
m

 a
ct

iv
ity

0 200 400 600 800 1000 1200
0

5

10

15
Model: activity as function of time

t [ms]

su
m

ac
tiv

ity

Real data (one monkey)

Ac
tiv

ity
[s

pi
ke

s
/ s

]

t [ms]

B

C

300 ms 1500 ms 3000 ms
0

1000

2000

3000

4000

5000

Adaptor duration

Sp
ik

e 
su

m

Spike sum: response to adaptor

300 ms 1500 ms 3000 ms
0

100

200

300

400

500

Adaptor duration

Sp
ik

e 
su

m

Spike sum: response to test stimulus

D

1 2
0

0.5

1

1.5

2

2.5

shape

ac
tiv

ity

Activity for adaptor and test stimulus

adaptor
test (eff. adaptor 1)
test (ineff. adaptor 2)

Spiking activity (monkey)

shape

Fig. 1. Simulation results: A Simulated PSTH (left) in comparison with PSTH from
typical IT neuron for single simulus repetition [15]. B Simulated decay of stimulus
responses for many repetitions of the same stimulus in comparison with real data
(inset) from [1]. C Total responses strength (number of spikes integrated over time)
for adaptors with different durations (300, 1500, and 1500 ms) (left), and following
test stimuli with a fixed duration (300 ms). A similar behavior was observed in real
data from area IT (unpublished). D Responses for adaptor stimulus (line) for effective
and ineffective stimulus, and responses for test stimuli after adaptation either with
an effective or an ineffective adaptor stimulus. Model responses (left) compared to
corresponding physiological data from [10].
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rons. For firing rate fatigue the spatial precision of the induced adaptation effect
is bounded by the spatial low-pass characteristics of the feed-forward kernel m
and the lateral interaction kernel w. The width of the activation peak in the
field determines the shape tuning, and thus the difference between the responses
to the effective and the ineffective adaptor. Adapting a neuron with an ineffec-
tive stimulus will thus induce smaller activity than adaptation with an effective
stimulus, resulting in a lower adaptation, which also remains visible when the
neuron is tested with an inefficient stimulus. In contrast, if adaptation happens
at the input or synaptic level, if one assumes that the tuning in the input level
is highly localized in the y parameter-space, adaptation and testing with a in-
efficient stimulus leads to a strong adaptation effect since both, adaptation and
test stimulus activate the same neurons in the input layer. At the same time,
small adaptation emerges at the input level if adaptation and test stimulus are
different, which explains the interaction effect. Detailed simulations show that
both, input fatigue and firing rate fatigue are necessary to reproduce the results
from [10].

4 Conclusions

We have presented a phenomenological model that reproduces simultaneously
a number of critical experimental results on adaptation effects in neurons in
area IT. Testing many different variants of the model, we found that an account
for these results necessitates and input fatigue as well as a firing rate fatigue
process. A second constraint from the data is the absence of an influence of the
adaptor duration on the strength of the adaptation effect. In order to reproduce
this result, we assumed a fast nonlinear saturation of the firing rate fatigue, and
a dependence of the input fatigue on the decays of the synaptic input signals.
With many other tested mechanisms, including models with transient-dependent
firing-rate fatigue or saturating input fatigue mechanisms, we were not able to
reproduce the data.

Since the model is qualitative and makes a lot of ad hoc assumptions future
work will have to verify the proposed mechanisms, ideally by deriving predictions
from the model that can be tested physiologically by causal manipulations of
the proposed levels (input synapses, output firing rates, recurrent interactions
between shape-selective IT neurons). In addition, the model has to be linked
closer to specific biophysical mechanisms and details, such as dynamic processes
dependent on specific channel types.
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