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Abstract
The modelling of the collective behavior of
many characters is an important problem in
crowd animation. Such behaviors can be
described by solutions of large-scale nonlinear
dynamical systems, built from multiple inter-
acting components. The design of stability
properties of such multi-component systems
has been rarely studied in computer animation.
We propose an approach for the solution of
this problem that is based on Contraction
Theory, a novel method for the stability
analysis of complex nonlinear dynamical
systems. This novel approach was applied
to derive bounds that guarantee the global
asymptotic stability and convergence rates for
navigating crowds of characters with simulta-
neous control of step frequency and length.

Keywords: computer animation, conver-
gence, stability, coordination, crowd animation

1 Introduction

Dynamical systems are frequently applied in
crowd animation for the simulation of au-
tonomous and collective behavior of many char-
acters [1]. Some of this work has been inspired
by observations in biology, showing that coordi-

nated behavior of large groups of agents, such as
flocks of birds, can be modelled as emergent be-
havior arising from the dynamical coupling be-
tween interacting agents, without requiring an
external central mechanism ensuring coordina-
tion [2, 3]. Such models can be analyzed by ap-
plication of methods from nonlinear dynamics
[4]. However, this analysis is complicated be-
cause the underlying nonlinear agent dynamics
is typically highly nonlinear, making a system-
atic treatment of stability properties often infea-
sible. Consequently, the convergence and stabil-
ity properties of such dynamical systems have
been rarely addressed in the context of computer
animation. This paper introduces Contraction
Theory [5] as novel framework for the analysis
and design of the convergence properties of nav-
igating avatars during self-organized order for-
mation.

2 System architecture

Our investigation of the collective dynamics of
crowds was based on a learning-based anima-
tion system [6]. Based on motion capture data
we learned spatio-temporal components of sets
of different gait types; applying an algorithm
for translation-invariant blind source separation
[7]. The obtained source components were gen-
erated by nonlinear dynamical systems. We



Figure 1: The crowd coordination task setup.
Every avatar i is characterized by its
position zi(t), the phase φi(t) and the
instantaneous eigenfrequency ωi(t) =
φ̇i(t) of Andronov-Hopf oscillator,
and the step-size scaling parameter
µi(t).

learned the mapping between the stable solu-
tion of a nonlinear oscillator and the required
source functions by application of kernel meth-
ods. Each character is modelled by a sin-
gle Andronov-Hopf oscillator whose solution is
mapped onto three source signals. These signals
were superimposed with different linear weights
and phase delays in order to generate the joint
angle trajectories. By blending of the mixing
weights and the phase delays, intermediate gait
styles were generated. This allowed us to sim-
ulate specifically walking along paths with dif-
ferent curvatures and changes in step length. In-
teractive behavior of multiple characters can be
modelled by making the states of the oscillators
and the mixing weights dependent on the behav-
ior of the other characters. Such coupling results
in a highly nonlinear complex system dynamics.

3 Control dynamics

For the simulations presented in this abstract we
controlled the following variables: 1) phase of
the step cycle, 2) step length, and 3) heading di-
rection. The control of heading direction was
accomplished with a standard approach from
robotics [6]. It ensured that the characters were
locomoting on parallel straight lines, see Fig. 1.
The influence of this direction control was ne-
glected in the analysis of the system dynamics
as presented in this paper, corresponding to the
assumption that the characters deviate only by
a negligible amount from the prescribed parallel
paths.

Each character was modelled by a Hopf oscil-
lator with constant equilibrium amplitude (r∗i =
1). Control acted on the phases φi of these oscil-
lators. The position zi of a character along the
parallel paths (see Fig. 1) fulfills the differen-
tial equation żi(t) = φ̇ig(φi), where the positive
function g determines the propagation speed of
the character depending on the phase in the gait
cycle. This nonlinear function was determined
from the kinematics of the character.

I) Control of step frequency: A simple form
of speed control is based on making the fre-
quency of the oscillators φ̇i dependent on the
behavior of the other characters. Let ω0 be the
equilibrium frequency of the oscillators without
interaction, then a simple controller is defined
by the differential equation

φ̇i(t) = ω0−md

N∑
j=1

Kij [G(φi(t))−G(φj(t))− dij ]

(1)
with G(φi) =

∫ φi

0 g(φ)dφ = zi. The constants
dij define the stable pairwise relative distances
in formed order for each pair (i, j) of characters.
The elements of the link adjacency matrix K are
Kij = 1 if characters i and j are coupled and
zero otherwise. In addition, we assume Kii =
0. The constant md > 0 defines the coupling
strength.

With the Laplacian Ld of the coupling graph,
which is defined by Ld

ij = −Kij for i 6= j

and Ld
ii =

∑N
j=1 Kij , and constants ci =

−
∑N

j=1 Kijdij the last equation system can be
written in vector form:

φ̇ = ω01−md(LdG(φ) + c) (2)

II) Control of step length: Step length was
varied by morphing between gaits with short and
long steps. A detailed analysis shows that the in-
fluence of step length on the propagation speed
is well captured by simple linear rescaling. Us-
ing the same notations as in equation (1), this
motivates the definition of the following dynam-
ics that models the influence of step length con-
trol on the propagation speed:

ż(t) = φ̇(t)g(φ(t))(1−mz(Lzz(t) + c)) (3)

In this equation Lz signifies the Laplacian of the
relevant coupling graph, and mz the strength of
the coupling. For uncoupled characters (mz =



0) this equation is consistent with the the defini-
tion of propagation speed that was given before.

III) Control of step phase: By defining sepa-
rate controls for step length and step frequency it
becomes possible to dissociate the control of po-
sition and step phase of the characters. Specif-
ically, it is interesting to introduce a controller
that results in phase synchronization between
different characters. This can be achieved by ad-
dition of a simple linear coupling term to equa-
tion (1)

φ̇ = ω01−md(LdG(φ) + c)− kLφφ(t) (4)

with k > 0 and the Laplacian Lφ.
The following mathematical results are de-

rived for subsystems of the complete system dy-
namics that is given by equations (3) and (4). In
addition, simulations are presented with the full
system dynamics.

4 Contraction Theory

Dynamical systems describing the behavior of
autonomous characters are essentially nonlinear.
In contrast to the linear dynamical systems, a
major difficulty of the analysis of stability prop-
erties of nonlinear is that the stability properties
of parts usually do not transfer to composite sys-
tems. Contraction theory [5] provides a general
method for the analysis of essentially nonlinear
systems, which permits such a transfer, mak-
ing it suitable for the analysis of complex sys-
tems with many components. Contraction the-
ory characterizes the system stability by the be-
havior of the differences between solutions with
different initial conditions. If these differences
vanish exponentially over time, and its solution
converges towards a single trajectory, indepen-
dent from the initial states, the system is called
globally asymptotically stable. For a general
dynamical system of the form ẋ = f(x, t) as-
sume that x(t) is one solution of the system
and x̃(t) = x(t) + δx(t) a neighboring one
with a different initial condition. The function
δx(t) is also called virtual displacement. With
the Jacobian of the system J(x, t) = ∂f(x,t)

∂x
it can be shown [5] that that any nonzero vir-
tual displacement decays exponentially to zero
over time if the symmetric part of the Jacobian
Js = (J+JT )/2 is uniformly negative definite,
i.e. has negative eigenvalues for all relevant state

vectors x. In this case, it can be shown that the
norm of the virtual displacement decays at least
exponentially to zero, according to the inequal-
ity: ||δx(t)|| ≤ ||δx(0)|| e

R t
0 λmax(Js(x,s)) ds.

This decay occurs with a convergence rate (in-
verse timescale) that is bounded from below by
the quantity ρc = − supx,t λmax(Js(x, t)). This
has the consequence that all trajectories con-
verge to a single solution exponentially in time
[5]. An important extension is partial contrac-
tion theory that allows to prove that the solution
converge exponentially to an invariant subspace
of the dynamics. (See [8] for further details).

5 Stability analysis for different
navigation scenarios

In the following we list several stability results
that were obtained by applying contraction the-
ory to scenarios corresponding to system dy-
namics with different degrees of complexity.

1) Control of step phase without position
control: The simplest case is a control of the
phase on the walkers without simultaneous posi-
tion control, resulting in a synchronization of the
characters. The underlying dynamics is given
by (4) with md = 0. Sufficient conditions for
global stability of this system were derived in
[8] and are given by k > 1/λ+

L , where λ+
L

is the smallest non-zero eigenvalue of symmet-
ric part of the Laplacian (Lφ)s ≥ 0. Differ-
ent topologies of the coupling graphs result in
different stability conditions, since for example
λ+
L = 2(1 − cos(2π/N)) for symmetric ring

coupling, while λ+
L = N for all-to-all coupling.

(N is the number of characters.)
2) Speed control by variation of step fre-

quency: The dynamics of this system is given
by equations (2) and (3) for mz = 0. The Jaco-
bian of this system is given by J = −mdLdDg,
where (Dg)ii = g(φi) > 0 is strictly posi-
tive diagonal matrix. The conditions for global
stability are: Js = −mdB < 0, introducing
B = LdDg + Dg(Ld)T . Using diagonal sta-
bility theory [9], it can be proven that the sys-
tem is contracting and globally stable for any
(Ld)s ≥ 0 and md > 0, and especially for posi-
tive coupling coefficients Kij > 0.

In order to suppress oscillatory fluctuations of
the positions of the characters the above dynam-



ics can be extended by a low-pass filtering of the
characters positions: ż(t) = −αz(t)+G(φ(t)).
By introduction of a linear coordinate transfor-
mation, bounds for the positive filter constant
α can be derived that guarantee globally sta-
ble behavior of the system. The sufficient sta-
bility condition is md

α B > 0, which is true
for g(φ) > 0, md > 0, α > 0, and for
(Ld)s ≥ 0, and α2/md > 1

2λmax(B). This
results in a lower bound for the filter coefficient
α >

√
md max g(φ)λmax(Ld

s).
An illustration of these stability bounds if

given by the [Movie 1]; showing convergent be-
havior when the contraction condition Ld

s ≥ 0 is
satisfied, while [Movie 2]. shows the divergent
behavior when this condition is violated.

3) Stepsize control combined with a control
of step phase: The dynamics is given by equa-
tions (3) and (4) with md = 0. It can be shown
that the dynamics for z(t) is partially contract-
ing for any external input φ(t) if Lz ≥ 0. This
defines a case of a hierarchical system [5], where
the effective relaxation time is determined by
equation (4). This subsystem is partially con-
tracting, if (Lφ)s ≥ 0. In this case, the ef-
fective relaxation time for phase synchroniza-
tion is given by 1/τrelax

φ = kλ+
Lφ , where λ+

Lφ is
the smallest non-zero eigenvalue of (Lφ)s. This
implies that the relaxation time for the distance
control is determined by the maximum of τ relax

φ

and τ relax
z , where 1/τrelax

z = mz min(g(φ))λ+
Lz .

Demonstrations of this control dynamics sat-
isfying the contraction conditions are shown in
[Movie 3], without control of step phase, and in
[Movie 4], with control of step phase.

4) Advanced scenarios: A simulation of a
system with stable dynamics with both types of
speed control (via stepsize and step frequency)
and step phase control is shown in [Movie 5].
Using the same dynamics, a larger crowd sim-
ulated with the open-source animation engine
Horde3d is shown in [Movie 6]. In this sce-
nario, dynamic obstacle avoidance and control
of heading direction were activated in an ini-
tial time interval for unsorting of a formation
of characters. In a second time interval naviga-
tion is deactivated, and speed and position con-
trol according to the discussed principles takes
over. The development of stability bounds and
estimates of relaxation times for such advanced

scenarios is the goal of ongoing and future ex-
tensions of the proposed approach.
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