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Abstract

Understanding how the human brain processes body movements is essential for clar-
ifying the mechanisms underlying social cognition and interaction. This study inves-
tigates the encoding of biomechanically possible and impossible body movements

in occipitotemporal cortex using ultra-high field 7T fMRI. By predicting the response
of single voxels to impossible/possible movements using a computational modelling
approach, our findings demonstrate that a combination of low-level, postural, bio-
mechanical, and categorical features significantly predicts neural responses in the
ventral visual cortex, particularly within the extrastriate body area (EBA), underscor-
ing the brain’s sensitivity to biomechanical plausibility.

Author summary

How does the human brain know whether a body movement is physically pos-
sible or not? To answer this, we used ultra-high-field 7T fMRI to record brain
activity while participants watched short videos of human-like avatars performing
either natural, biomechanically plausible actions or subtly “impossible” variants.
We then applied computational models to predict each voxel’s response. Across
the ventral occipitotemporal cortex, and especially within the extrastriate body
area (EBA), a mixture of low-level motion cues, postural keypoints, graded bio-
mechanical distances, and simple possible/impossible tags together explained
over 10% of the BOLD signal variance. Our findings highlight that body-selective
visual regions are sensitive to biomechanical plausibility.

Introduction

Human bodies convey essential information about others’ actions, intentions, and
emotions and provide critical cues in social communication [1—4]. Previous research
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using functional magnetic resonance imaging (fMRI) to investigate the neural basis of
body perception has primarily focused on localizing high-level visual category-
specific representations. Specific regions in the occipitotemporal and fusiform cortex
are selectively responsive to images of bodies, the extrastriate body area (EBA) and
the fusiform body area (FBA) [5,6]. Similar findings of distinct body sensitive patches
were found in monkeys in the ventral bank of the superior temporal sulcus (STS),
namely the middle STS body patch (MSB) and the anterior STS body patch (ASB),
with a putative homology between MSB and EBA, and ASB and FBA [7]. When
dynamic images or functional aspects of body perception like action and emotional
expression are also considered, body sensitivity was reported in other areas [8]. This
has raised interest in investigating the neural mechanisms underlying body sensitiv-
ity, notably in the specific computational mechanisms operating across these different
body sensitive areas.

Some studies argued that EBA is more involved in processing body parts and local
features and FBA devoted to holistic processing [9,10]. There is also some evidence
that EBA and FBA might process a combination of local and global body features
[11-14], depending on semantic attributes such as emotion and action [15-17],
and that EBA is sensitive to task demands [18]. Additionally, recent findings further
suggest that activity in the Default Mode Network (DMN) is sensitive to the contrast
between biological and non-biological motion based on the naturalness of kinematic
patterns. Specifically, the DMN’s stronger response to human-like motion, particularly
when it matches expected kinematics, suggests that it may modulate or support EBA
and FBA processing by enhancing sensitivity to motion patterns that carry social and
biological relevance [19].

However, despite these insights, there is no clear understanding of a functional
division of labour between different body-sensitive areas. A better understanding of
the computational processes within these body-selective areas should clarify their
specific contributions to body perception.

Over the past decade, (linearized) encoding [20,21] has been used to compare
different computational hypotheses of brain function. In these approaches, brain
activity (e.g., blood oxygen level-dependent (BOLD) signals in a voxel or brain region
during fMRI) is predicted based on stimulus features derived from computational
models. The accuracy of these predictions can then be compared to adjudicate
between competing models, or to determine the relative contribution (the variance
explained) of each model [22—28]. Encoding models predict neural responses based
on specific stimulus features and have been successfully applied to visual processing
in early visual cortex [20,21] as well as higher visual cortex [29,14,25,30]. An earlier
study used encoding models to human body-selective regions [14] and shed light on
the relevance of joint positions and their spatial configuration for the responses in the
EBA to still images. Like most prior research in the field, the use of still images, only
addressed postural aspects rather than movement, thus limiting our understanding of
how the brain processes more complex, dynamic information.

Here, we probed EBA’'s dependency on joints configuration by using biomechani-
cal manipulations of natural movements based on 3D motion capture (mocap) data.
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Creating videos that disrupt the natural spatial configuration of joints allowed us to investigate how EBA processes biome-
chanical plausibility. This approach is particularly important with moving bodies, as dynamic stimuli capture the temporal
and kinematic properties essential for understanding how the brain encodes real-world, biologically relevant movements.
We specifically tested the hypothesis that EBA is sensitive to biomechanical characteristics of body movements, building
on some earlier indications in the literature. For instance, participants exhibit automatic imitation effects even for impos-
sible movements, indicating the brain’s predisposition to process action dynamics despite biomechanical violations [31].
Recognition of human bodies is significantly affected by inversion, reflecting specialized perceptual mechanisms for
recognizing human shape in upright configurations [32]. More recent studies have shown that prior knowledge of biome-
chanical constraints biases visual memory, with participants misremembering extreme postures as less extreme, adjusting
their perceptions toward more biomechanically plausible positions [33]. Developmental evidence also points to an early
sensitivity to biomechanical constraints on human movement. 12-month-old infants as well as adults spend more time
looking at the elbows during impossible arm movements compared to possible ones [34], and newborns can differentiate
between biomechanically possible and impossible hand movements [35]. Investigating the neural correlates of humanly
impossible movements has further revealed that impossible finger movements elicit distinct neural responses compared to
possible ones in EBA [36]. The influence of biomechanics on processing of visual information related to the body may be
fundamental to how body representations are formed in the brain.

To investigate the computations underlying the neural responses to body movements in the occipitotemporal cortex, we
utilized ultra-high-field 7 Tesla fMRI and linearized encoding models, assessing macroscopic and mesoscopic (layer-
specific) responses related to biomechanical sensitivity. We aimed to identify how different cortical layers within the EBA
encode biomechanical information and distinguish between possible and impossible movements. We employed four dis-
tinct encoding models to probe these computations: the 3D Keypoints (kp3d) model, which represents three-dimensional
coordinates of body joints and captures precise postural information; the Similarity Distances (SimDist) model, which
quantifies biomechanical differences between possible (natural) and morphed (impossible) movements based on motion
capture data [37]; the categorical differences model, which provides a higher-level distinction by categorizing movements
as biomechanically possible or impossible; and a motion energy model, which implements a dense bank of spatiotemporal
Gabor filters to capture low-level dynamic cues across the visual field [38].

Together, these four models span a hierarchy of hypotheses: from pure low-level motion filtering (motion energy),
through body pose encoding (kp3d), to graded biomechanical deviation (SimDist), up to a binary plausibility distinction
(categorical differences). By jointly fitting all feature spaces, we can assess how much each contributes uniquely to the
representation of dynamic body movements in occipitotemporal cortex as well as investigating its sensitivity to body
plausibility.

Materials and methods
Ethics Statement

All experimental procedure conformed to the Declaration of Helsinki and the study was approved by the Ethics Committee
of the faculty of Psychology and Neuroscience of Maastricht University. Before the experiment, all participants provided
written informed consent, indicating their voluntary agreement to participate in the study.

Participants

Twelve right-handed volunteers (five males; mean age 27.8 + 3.8 years) were recruited from the Maastricht University stu-
dent and staff cohorts. All participants reported normal or corrected-to-normal vision and no history of neurological or psy-
chiatric disorders. One participant was excluded from the main analysis for excessive head motion across multiple runs.
All subjects were naive to the task and the stimuli and received monetary compensation for their participation. Scanning
sessions took place at the neuroimaging facility Scannexus at Maastricht University (NL).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013694 December 8, 2025 3/20




N\ Computational
PLOS }. Biology

Main experiment stimuli

The stimulus set consisted of 120 videos of two avatars (1 male and 1 female). The videos were generated by animating
mocap data from the MoVi dataset [37], which includes recordings from 60 female and 30 male actors performing 21 daily
actions and sports movements. For this experiment, we animated six specific actions (kicking, pointing, waving, jumping,
jumping jacks, and walking sideways) performed by 17 actors (9 males). The movements of these 17 actors were then used
to animate the two avatars, ensuring that the presented stimuli maintained diversity in motion while being standardized in
appearance. This process resulted in 96 videos depicting natural body movements. Additionally, we modified the joint angles
of the limbs to create 96 biomechanically impossible videos. To refine the set for the fMRI experiment, we conducted a
behavioral validation, to select stimuli showing the greatest difference between possible and impossible movements. This
ultimately reduced the set to 120 videos (60 possible videos created from 17 actors performing 4 actions: kicking, jumping,
pointing, waving). More details are provided in the behavioral validation section below. Each video was edited to have a
length between 60 and 90 frames, corresponding to 2—3 seconds at 30 frames per second. Additionally, the avatars in each
video were aligned to be centered relative to the fixation cross, ensuring a consistent starting position across all videos.
During the experiment, the stimuli spanned a mean width and height of 1.84° x 4.32° of visual angle (Fig 1a).

Localizer stimuli

Stimuli for the localizer experiment consisted of videos depicting two object categories: bodies, objects. Additionally, also a scram-
bled version of each stimulus was included. (Fig 1b). The size of the stimuli was 3.5 * 7.5degrees for human bodies and objects.
For more details about the localizer stimuli we refer to [39]. None of the stimuli from the localizer were used in the main experiment.

Behavioural validation

The stimuli created from the mocap data comprised 96 videos of natural body movements (possible) and their corre-
sponding modified versions, for a total of 192 stimuli. These modified versions (impossible) were created by altering the
joint angles of the limbs to produce biomechanically impossible movements. We violated the anatomical constraints of the
elbows and knees, by mirroring those joints orientations for each time point of a trajectory. Accordingly, we modified

the shoulders and wrist joint angles, as well as ankles and hips, in order to preserve the end-effectors (hands and feet)
orientations to be as close as possible to the original (possible) ones for every time point.

Out of the total 192 videos, we selected 120 (60 possible and their impossible version) for the fMRI experiment
through a process of behavioral validation. This selection was based on identifying the stimuli that best demonstrated the
intended differences between possible and impossible movements, ensuring the most effective set for the experiment.
We asked 136 participants (25 males, mean age=21.45+2 years) to rate the stimuli using a questionnaire consisting
of two Likert-scale questions and one categorical question. Participants were presented with half (96) of the total stimuli
(192) once. For each participant, the stimuli were pseudo-randomized (96 stimuli randomly selected for each participant,
but evenly distributed so that each stimulus was rated by approximately the same number of participants: mean number
of responses =68 +2.24). After each presentation, participants were asked to answer a total of three questions about the
plausibility/realism of the body movement, action content and salience of specific body parts (see S1 Text).

MRI acquisition and experimental procedure

Participants viewed the stimuli while lying supine in the scanner. Stimuli were presented on a screen positioned behind
participant’s head at the end of the scanner bore (distance screen/eye =99 cm) which the participants could see via a mir-
ror attached to the head coil. The screen had a resolution of 1920x1200 pixels, and its angular size was 16° (horizontal)
x 10° (vertical). The experiment was coded in Matlab (v2021b The MathWorks Inc., Natick, MA, USA) using the Psycho-
physics Toolbox extensions [40,41,42].
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Fig 1. Stimuli and experimental procedure. (a) The videos were generated by animating mocap data from the MoVi dataset [37]. Sixty possible
videos were created from 17 actors performing 4 actions: kicking, jumping, pointing, waving. Additionally, we modified the joint angles of the elbows and
knees to create 60 biomechanically impossible videos. In panel (a) we show frame of possible videos and their equivalent impossible. (b) For each run
1/6 of the stimuli (20) where presented in a pseudo-randomized order following a fast event-related design. Each stimulus was repeated three times per
run. Each run was repeated two times across sessions resulting in a total of 120 stimuli repeated six times. To identify body sensitive region, the localizer
stimuli included videos of humans performing natural body movement, objects, and their scrambled version. We presented stimuli following a block-
design with each block repeated three times per run. (c) During the main experiment participants fixated on the cross and were presented with the stim-
uli depicting possible and impossible body movement for 1-2 TRs (depending on the length of each video) followed by a blank screen which appeared
for 2, 3 or 4 TRs. When the fixation cross turned to a circle, they had to press a button whether with the right index finger. TR=2300ms.

https://doi.org/10.1371/journal.pcbi.1013694.g001

Each participant underwent two MRI sessions, we collected a total of twelve functional runs (six runs per session)
and one set of anatomical images. Images were acquired in a 7T MR scanner (Siemens Magnetom) using a 32-
channel (NOVA) head coil. Anatomical (T1-weighted) images were collected using MP2RAGE MP2RAGE: 0.7 mm
isotropic, repetition time (TR) = 5000 ms, echo time (TE) = 2.47 ms, matrix size =320 x 320, number of slices =240.
The functional dataset (T2*-weighted) covered the occipitotemporal cortex and was acquired using a Multi-Band
accelerated 2D-EPI BOLD sequence, multiband acceleration factor=2, voxel size =0.8 mm isotropic, TR=2300ms,
TE =27 ms, number of slices =58 without gaps; matrix size =224 x 224; number of volumes =300, GRAPPA factor=3.
In addition to functional images, phase images were simultaneously acquired along with five noise volumes appended
at the end of each run.

During the main experiment, stimuli were presented on the screen for 2—-3 seconds (depending on the length of each
video) with an inter stimulus interval that was pseudo-randomised to be 2, 3 or 4 TRs. Participants were asked to fixate at
all times on a white cross at the centre of the screen (Fig 1c).
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To control for attention, participants were asked to detect a shape change at the fixation cross (cross to circle) and
respond via button press with the index finger of the right hand. Within each run, 20 stimuli (10 possible and 10 impossi-
ble) were presented and repeated 3 times. Three target trials were added for a total of 63 trials per run. The two sessions
were identical therefore each of the 120 videos was repeated 6 times (3 repetitions x 2 sessions) across the 12 runs.
Additionally, three blank trials were added in each run lengthening the baseline period.

Across sessions, we collected 2—3 runs of localizer depending on available scanning time. Each localizer run contained
10 videos per category presented following a block design. Each block lasted 25 seconds (10 videos x 1 sec+1.5sec
intertrial interval) and was followed by a jittered fixation period of 11 seconds on average. Each category block was
repeated 3 times per run. During the localizer participants performed the same task as in the main experiment.

Preprocessing for the functional images was performed using BrainVoyager software (v22.2, Brain Innovation B.V.,
Maastricht, the Netherlands), Matlab (v2021b) and ANTs [43]. To lower thermal noise, we performed NOise reduction with
Distribution Corrected (NORDIC) using both magnitude and phase images [44]. EPI Distortion was corrected using the
Correction based on Opposite Phase Encoding (COPE) plugin in BrainVoyager, where the amount of distortion is esti-
mated based on volumes acquired with opposite phase-encoding (PE) with respect to the PE direction of the main exper-
iment volumes [45], after which subsequent corrections is applied to the functional volumes. Other preprocessing steps
included scan slice time correction using cubic spline, 3D motion correction using trilinear/sinc interpolation and high-pass
filtering (GLM Fourier) cut off 3 cycles per run. During the 3D motion correction process, all runs were aligned to the first
volume of the first run using the scanner’s intersession auto-align function, ensuring consistent spatial alignment across
sessions. Anatomical images were resampled at 0.4mm isotropic resolution using sinc interpolation. To ensure a correct
functional-anatomical and functional-functional alignment, the first volume of the first run was coregistered to the anatomi-
cal data in native space using boundary based registration [46]. Functional images were exported in nifti format for further
processing in ANTs. To reduce non-linear intersession distortions, functional images were corrected using the antsRegis-
tration command in ANTs using as target image the first volume of the first run and as moving image the first volume of all
the other runs. Volume Time Courses (VTCs) were created for each run in the normalized space (sinc interpolation). Prior
to the encoding analysis (and following an initial general linear model [GLM] analysis aimed at identifying regions of inter-
est based on the response to the localizer blocks), we performed an additional denoising step of the functional time series
by regressing out the stimulus onset (convolved with a canonical hemodynamic response function [HRF]) and the motion
parameters. This step was crucial for minimizing the influence of external confounds, such as the timing of stimulus pre-
sentation and participant head motion, on the neural data. By removing these factors, we ensured that the model’s training
focused exclusively on learning patterns directly associated with the features of the encoding models. However, this
approach, while effective in isolating feature-driven neural responses, can lead to smaller accuracies as it also removes
some of the variance explained by the stimulation paradigm itself. Despite this trade-off, this method provides a cleaner
and more specific evaluation of the encoding models’ ability to capture the relevant neural patterns.

Segmentation of white matter (WM) and gray matter (GM) boundaries as well as cortical layers estimation was per-
formed using a custom pipeline. First, the UNI image and T1 image obtained from MP2RAGE were exported to nifti. We
performed gaussian noise reduction using the Denoiselmage command in ANTs [47], and bias field correction in SPM12
as described on layer fMRI blog (https://layerfmri.com/2017/12/21/bias-field-correction/). After preprocessing of anatomical
images, cortical reconstruction and volumetric segmentation was performed using Basic SAMSEG (cross-sectional pro-
cessing) command of the Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/), using the UNI images as
T1w contrast and the T1 map of the MP2RAGE (which has flipped intensities between white and gray matter, resembling
a T2w image) as T2w contrast. Lastly, cortical thickness and layers extraction were performed using surf_laynii.sh script
(https://github.com/srikash/surf_laynii/blob/main/surf_laynii) which enables layering in LAYNII [48] using the Freesurfer
segmentations output. Three layers were then calculated in LAYNII using the equi-volume approach. All analyses were
performed in the individual subject space, but for visualization purposes we projected single-subject statistical or encoding
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maps onto a group cortex-based aligned surface and then averaged the results across subjects [49]. By matching the fold-
ing geometry rather than relying solely on volume landmarks, this approach reduces anatomical variability and enhances
statistical sensitivity [50] (see section on Statistical Analysis for more details).

Voxel selection for encoding analysis

The functional time series of the localizer runs collected in each participant were analysed using a fixed-effect GLM with 5
predictors (4 conditions in the localizer: Body Objects and their scrambled version and 1 modelling the catch trials). Motion
parameters were included in the design matrix as nuisance regressors. The estimated regressor coefficients representing
the response to the localizer blocks were used for voxel selection. A voxel was selected for the encoding analysis if sig-
nificantly active (q(FDR)<0.05) in response to the Body and Objects categories. Note that this selection is unbiased to the
response to the stimuli presented in the experimental section of each run.

Functional ROI definition

Using the functional localizer we also defined body selective regions at the single subject level. Specifically, the EBA
was defined using the contrast [Body + Body Scrambled]> [Objects + Objects Scrambled] [51] with a statistical threshold
of q(FDR) < 0.05. All subsequent ROI-level analyses were conducted by identifying the intersection between the voxels
assigned to the EBA and those selected for the encoding analysis.

Encoding models

In order to understand what determines the response to body images we tested several hypotheses, represented by
different computational models, using fMRI encoding [52,20,21,26]. We compared the performance (accuracy in predicting
left out data) of four encoding models.

The first model represented body stimuli using the position of joints in three dimensions (kp3d) using 71 keypoints
(main skeleton joints like hips, knees, shoulders, elbows, hands and facial features like eyeballs, neck and jaw) extracted
from the MoVi dataset. This model represents the stimuli as a collection of points in space forming a human skeleton. To
focus on joints that significantly influence perception while minimizing variability from less relevant keypoints, we excluded
constant (or almost constant) keypoints ending up with a subset that included 56 keypoints (shoulders, elbows, wrists,
hips, knees, and ankles, hands, fingers and facial features from both sides of the body).

The second model quantifies the similarity distances (SimDist) between morphed movements (impossible) and normal
movements (possible) by analyzing motion capture data extracted during stimulus creation. For each video, both the
modified and original motion data were loaded. Initially, all 71 joints defined in the MoVi skeleton were considered. How-
ever, to focus on joints with meaningful movement and reduce variability from less relevant joints (such as fingers and
toes), joints without rotation data (i.e., joints with empty rotation indices) were excluded, reducing the original set to 56
keypoints (the same as in the previous paragraph). For each selected joint at each time frame, we converted the original
Euler angles representing the joint rotation to axis-angle representation. This process yielded a set of three-dimensional
vectors in Euclidian space representing the rotation of each joint over time. To measure the similarity between test move-
ments (both modified and original) and the manifold of normal (original) movements, a Gaussian kernel-based approach
was employed. This method quantifies the proximity of motion data in the high-dimensional joint angle space, allowing
for a robust assessment of movement similarity (see S1 Text). Keypoints for which the computed similarity distances to
the normative manifold were not finite (e.g., containing NaN or Inf values) were identified and excluded to maintain data
quality, reducing the original 56 keypoints to 29. Similarity distances for all joints were then concatenated to form fea-
ture vectors representing each movement’s similarity across all considered joints. This model encoded biomechanical
differences because it evaluates the kinematic properties of human joint movements by measuring their distances to
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a manifold of normal actions, thereby allowing for the differentiation between biomechanically plausible (possible) and
implausible (impossible) movements, with the latter exhibiting higher distances due to their deviation from typical human
motion patterns. Accordingly, the SimDist models tests the hypothesis that occipitotemporal regions do not exclusively
tag a pose as possible versus impossible (the categorical model; see below) but rather scale their responses with the
magnitude of biomechanical deviation from a normative movement manifold, allowing to ask whether a brain region
codes “how impossible” a configuration is, not just that it is impossible (for the mathematical formulation see S1 Text).
The third model encodes categorical differences between possible and impossible stimuli by incorporating two features
that explicitly indicate the (im)possibility of each stimulus. Unlike the other models, this approach does not account for
variations within each category, focusing instead on the binary classification of stimuli as either possible or impossible.
This model is considered more abstract (or higher-order) compared to the kp3d and SimDist models, as it goes beyond
image computable approaches (like keypoints) and instead recapitulates a conceptual distinctions. The last model is a
motion energy model whose features were computed following the approach of [38] to capture low-level spatiotemporal
information from each body-movement video. In brief, each stimulus video was first converted to its luminance channel
(CIE L*A*B). We then convolved every frame with a fixed bank of spatiotemporal Gabor filters tuned to a range of ori-
entations (0°, 45°, 90°, 135°), spatial frequencies (0.5-8 cycles/° in logarithmic steps), temporal frequencies (1-16 Hz),
and motion directions (two opposite directions per orientation). Filters were implemented in quadrature pairs so that, for
each channel, motion energy was computed as the sum of squares of the two phase-offset outputs. This produced 3,703
motion-energy channels per video, each reflecting the strength of local oriented motion at a particular scale, speed,

and direction. To stabilize the dynamic range, the raw energy values were log-transformed, and then averaged over all
frames of the video.

Banded ridge regression and model estimates

In the context of fMRI, the linearized encoding framework typically uses L2-regularized (ridge) regression to extract
information from brain activity [53]. This method is effective for improving the performance of models with nearly collinear
features and helps minimize overfitting. When dealing with multiple encoding models, ridge regression can either estimate
parameters for a combined feature space or for each model separately. However, using a single regularization parameter
for all models may not be optimal due to varying feature space requirements. To address this, banded ridge regression
optimizes separate regularization parameters for each feature space, enhancing model performance by reducing spurious
correlations and ignoring non-predictive features. [23,25]. In the present work we used banded ridge regression to fit the
three encoding models, combined in a joint encoding model, and performed a decomposition of the variance explained by
each of the models following established procedures [23,14].

Model training and testing were performed in cross-validation (3-folds: training on 8 runs [80 stimuli repeated 6 times]
and testing on 4 runs [40 repeated 6 times]). For each fold, the training data were additionally split in training set and
validation set (4-folds: train on 6 runs [60 stimuli repeated 6 times] and test on 2 runs [20 stimuli repeated 6 times]). Within
the training set a combination of random search and gradient descent [23] was used to optimize the model fit to the data
(regularization strength and model parameters). Ultimately, the best model over the 4 validation folds was selected to be
tested on the independent test data (4 runs). Within each fold, the models’ representations of the training stimuli were
normalized (each feature was standardized to zero mean and unit variance withing the training set). The feature matrices
representing the stimuli were then combined with the information of the stimuli onset during the experimental runs. This
resulted in an experimental design matrix (nrTRs x NrFeatures) in which each stimulus was described by its represen-
tation by each of the models. To account for the hemodynamic response, we delayed each feature of the experimental
design matrix (5 delays spanning 11.5 seconds). The same procedure was applied to the test data, with the only differ-
ence that when standardizing the model matrices, the mean and standard deviation obtained from the training data were
used.
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We used banded ridge regression to determine the relationship between the features of the encoding models (stimulus
representations) and the fMRI response at each voxel. The encoding was limited to voxels that significantly responded to
the localizer stimuli (p(FDR)<0.05) in each individual volunteer’s data. For each cross-validation, we assessed the accu-
racy of the model in predicting fMRI time series by computing the correlation between the predicted fMRI response to
novel stimuli (4 runs, 40 stimuli) and the actual responses. The accuracies obtained across the three folds were Z-
transformed and then averaged. To obtain the contribution of each of the models to the overall accuracy we computed the
partial correlation between the measured time series and the prediction obtained when considering each of the models
individually [23].

Statistical analysis

Group-inference was performed via non-parametric testing (see below) on cortex-based aligned maps (CBA) [49]. CBA
begins by converting each subject’s reconstructed folded cortex into a spherical surface, carrying over sulcal and gyral
curvature on the sphere. An iterative registration non-rigidly warps each individual’s curvature map against a group-aver-
age template, thereby bringing homologous sulci and gyri into precise correspondence across participants [50,49].

We projected each subject’s native-space encoding maps onto their own aligned surface via direct sphere-to-sphere
mapping, preserving the fine-grained topography of EBA. Statistical significance of the resulting group-averaged CBA-
aligned maps was assessed using a subject-wise sign-flipping permutation test (2''=2048 permutations) on the surface,
with FDR correction (q<0.05) to control for multiple comparisons. In parallel, we extracted each participant’'s mean R?
within their individually defined EBA ROI for the inner, middle, and superficial layers, and assessed systematic differences
across depths using paired-samples t-tests. Finally, to compare the variance explained by our four models within EBA, we
conducted a three-way repeated-measures ANOVA and followed up significant main effects with paired-sample t-tests.

Results
Consistent behavioral categorization of possible and impossible stimuli

The analysis of the questionnaire responses showed that all stimuli were accurately categorized. In the “possible” condi-
tion, each stimulus received the highest rating, confirming correct classification. Results for the “impossible” videos showed
more variability while consistently scoring below 4 on the 1-7 Likert scale. Notably, 95% (57 out of 60) of these stimuli had a
median rating between 1 and 2, with the remaining three videos rated between 2 and 3 (see S1 Text for more information).

Localizer stimuli reveal activation in ventral visual cortex and EBA for voxel selection

In each subject, voxels that significantly responded to the localizer conditions (Body + Objects) with a false discovery rate
(FDR) of less than 0.05 were selected for the encoding analysis. While selection took place at the individual level, in Fig 2
we report group-level maps obtained by averaging each subject’s thresholded (q<0.05 FDR) single-subject maps, illus-
trating the approximate brain regions chosen for our subsequent encoding analyses across participants. All group maps
are displayed on the group-aligned (cortex-based aligned, CBA) surface. The localizer conditions consistently activated
regions in the occipitotemporal cortex, specifically in the superior, middle, and inferior occipital gyri (SOG/MOG/IOG), fusi-
form gyrus (FG), lingual gyrus (LG)

middle temporal gyrus (MTG), inferior temporal sulcus (ITS), lateral occipital sulcus (LOS), and superior temporal sul-
cus (STS). These clusters overlap with areas identified in our previous study [14]. By subtracting the responses to object
stimuli from the responses to body stimuli, we defined the extrastriate body area (EBA) in each individual and computed
probabilistic maps of the overlap of EBA across individuals in cortex based aligned space. The EBA spanned the MOG,
MTG, and ITS (Fig 2) with the probabilistic maps showing an overlap between 20 (white in the Fig 2) and 100% (Green) of
subjects.
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Fig 2. Voxels selection and EBA definition. Voxels that were significantly (q(FDR)<0.05) responding to localizer stimuli [Body + Objects]>0 were
selected for the encoding analysis. Although the analysis was performed at single-subject level, for visualization purposes we show the average t-map
(in red-yellow) obtained by averaging the thresholded single-subjects maps projected on a group cortex-based aligned mesh. EBA was defined within
the localizer via the contrast [Body + Body Scramble]> [Objects + Objects Scramble]. Shown in white-green is a probabilistic map indicating the overlap
between individually defined EBAs (q(FDR)<0.05).

https://doi.org/10.1371/journal.pcbi.1013694.9002

The joint encoding model significantly predicts responses to novel stimuli in ventral visual cortex

The main effect of the responses in the localizer (objects +bodies) was used to select voxels for the encoding in the
individual subjects’ data. In these voxels, the response elicited by body stimuli in the main experiment, independent of the
localizer, was modelled using banded ridge regression. The group performance of the joint encoding model (kp3d, cate-
gorical, SimDist, MotEn) is shown in Fig 3a. Statistical significance at the group level was assessed via a permutation test,
with correction for multiple comparisons using FDR (q<0.05). The joint encoding model significantly predicted responses
to novel stimuli throughout the ventral visual cortex (SOG, MOG, IOG, ITG, MTG, FG, LOS)

Spatial differences in model contributions were visualized with a single composite HSV map (Fig 3b), in which hue
encodes the relative residual contributions of the three higher-level feature models (red =kp3d; green = categorical;
blue =SimDist) after factoring out motion energy, saturation (colorfulness) reflects the total residual strength (1—motion-
energy fraction), and brightness indicates overall prediction reliability (r). Overall, vertices are rendered in vivid magenta
and purple tones reflecting that kp3d and SimDist on average jointly dominate the remaining variance. Nonetheless, ven-
tral occipital regions show light blue/green tints (often pale) where categorical structure contributes more strongly, either
alone or in combination with the SimDist model. More faded colors mark vertices where motion energy explains most of
the variance, and brighter pixels highlight regions of highest model reliability. For completeness, in Fig 5 we show the
amount of variance explained by the motion energy model which appear to sit between 30—40% (a) as well as its comple-
ment (b).
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Fig 3. Group-level encoding results and residual variance partition (Joint model — MotEn). (a) Group Prediction accuracy for the joint model
(kp3d, categorical, SimDist, MotEn). Statistical significance was assessed via permutation test (subject wise sign-flipping, 2"N=2048 times with N=11),
and correction for multiple comparison was performed using FDR (q<0.05). (b) Composite HSV map visualizing the residual variance partition among
three feature models 3D keypoints (kp3d, red), categorical (cat, green), and similarity distances (SimDist, blue)—after factoring out motion energy. Here,
hue encodes the relative proportions of the remaining variance explained by each feature model (pure red=kp3d, pure green=cat, pure blue =SimDist,
and intermediate hues their mixtures), saturation (colorfulness) reflects the residual strength depicted as the radius in the hue circle S = 1 — motion
energy variance (S ; =23%, S_, =93%) so that regions where motion energy leaves more variance appear more vivid, and value (brightness) corre-
sponds to prediction reliability (Pearson’s r) on the same scale as in panel (a). For clarity, we overlay the outline of EBA as defined in the probabilistic
map depicted in Fig 2 by selecting vertices shared by at least 40% of the subjects.

https://doi.org/10.1371/journal.pcbi.1013694.g003

EBA encodes low-level, postural, biomechanical and categorical information

Within the EBA, the joint encoding model accounted for approximately 10—-12% of the variance of the BOLD signal
(Fig 4, top panel). When considering the layer-wise R? within EBA (Fig 4 bottom left panels), only the right-hemisphere
inner>middle contrast reached significance (t(10)=—4.01, q=0.007, dz=1.21), while the inner>superficial comparison
narrowly missed the FDR cutoff (t(10)=—2.46, q=0.051, dz=0.74); no depth contrasts were significant in the left hemi-
sphere. To test for differences in variance explained across hemisphere, layers and models (Fig 4 bottom right panels) we
ran a three-way repeated-measures ANOVA which showed a significant main effect of models (F(3,30)=15.59, p<.001,
n2p= .609) indicating that the four feature-spaces differ substantially in the proportion of variance they explain. No other
significant main effects or interactions were found. The main effect of models was further unpacked with paired-sample
t-tests corrected for multiple comparison using FDR (alpha=0.05).

In the right hemisphere, pairwise model comparisons showed that SimDist explained significantly more variance than
Keypoints (1(10)=—2.65, q=0.036, dz=0.80) and Categorical (t(10)=-5.15, q=0.001, dz=1.55), and that Motion Energy
outperformed both Keypoints (t(10)=—4.99, q=0.001, dz=1.50) and Categorical (t(10)=-7.11, g<0.001, dz=2.14). In
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Fig 4. Joint model performance and variance partitioning in EBA across cortical depths. Variance partitioning in the extrastriate body area (EBA)
across 11 subjects, comparing left (LH) and right hemispheres (RH) across three cortical layers (Left to right ¢ inner, middle, superficial). The top panel
shows the group average R? values in the EBA, indicating overall joint model performance across hemispheres. The bottom left panels display the vari-
ance explained (R?) in the LH and RH EBA across layers. The bottom right panel illustrates the percentage of R? explained by each model across layers.
To check for differences in variance explained between models, we ran a three-way repeated-measures ANOVA which showed a significant main effect
of models (F(3,30)=15.59, p<.001, n =.609).

https://doi.org/10.1371/journal.pcbi.1013694.9004

the left hemisphere, Motion Energy explained more variance than Keypoints (t(10)=—2.91, q=0.031, dz=0.88), SimDist
outperformed Categorical (t(10)=—5.00, q=0.002, dz=1.51), and Motion Energy again exceeded Categorical (t(10)=—9.00,
g<0.001, dz=2.71).

These results confirm that both the biomechanical similarity-distance model and especially the motion-energy model
capture substantially more variance in EBA than the simpler Keypoints and Categorical descriptors. The full tables depict-
ing the results from the statistical analysis can be found in Tables A and B in S1 Text.

Discussion

The present study investigated how dynamic body stimuli, specifically biomechanically possible and impossible move-
ments, are encoded in occipitotemporal cortex. Specifically, we compared the predictive performance of encoding models
based on 3D keypoints, similarity distances, categorical differences and motion energy (kp3d, SimDist, categorical, MotEn).
At the group level, we observed that a combination of the four models significantly predicted fMRI BOLD responses in the
ventral visual cortex after applying permutation testing and correcting for multiple comparisons. The variance partitioning
across the different models of body posture in EBA across cortical layers revealed significant differences between models.
In the both hemispheres, the MotEn accounted for approximately 35—-40% of the joint model prediction, the SimDist 30%,
kp3d 20% and categorical 10-15%, with this pattern observed consistently across cortical depths (see Fig 4).
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Low-level and high-level features in the occipitotemporal cortex

Our findings reveal that a combination of low and high-level features contribute to the dynamic perception of body move-
ment in occipitotemporal cortex. Low-level spatiotemporal filters (MotEn) explain roughly 30—40% of the variance. Once
these motion energy signals are factored out, the remaining activity is best predicted by postural (kp3d) and biomechani-
cal (SimDist) descriptors, either alone or in combination (red, blue, and magenta—purple patches in Fig 3b). These results
align with the notion that early visual areas process low-level features such as orientation, spatial frequency, and basic
nance of kp3d/SimDist with few patches where the categorical model becomes more important either alone or in
combination with the SimDist model (green, cyan patches in Fig 3b). This shift aligns with previous literature showing that
higher-order areas integrate lower-level features into more abstract representations [29,56,57,58].

Encoding of body stimuli in EBA

Within the EBA, our joint encoding model (kp3d + SimDist + categorical + MotEn) accounted for about 10-12% of the BOLD
response variance (Fig 4, top). When we partitioned that joint prediction, low-level motion-energy filters (MotEn) explained
roughly 30—40% of the variance (Fig 5a), with the remaining 60—70% of the joint-predicted signal broken down into biome-
chanical similarity (SimDist=30%), 3D postural keypoints (kp3d =20%), and categorical distinctions (= 10-15%). In other
words, MotEn, SimDist, and kp3d together capture about 85-90% of the joint model’s explanatory power, leaving the final
10-15% to semantic category information.

While low-level motion energy signals account for roughly 30—40% of the variance in EBA (Fig 5a), the remaining
activity shows a clear spatial gradient in feature contributions. In the superior portion of EBA, encompassing the middle
and superior occipital gyri (MOG/SOG), biomechanical similarity (SimDist) dominates the representation together with the
kp3d model (purple-magenta patches in Figs 3b and 4). After controlling for low-level motion energy, high-level categorical
distinctions become more prominent in the anterior ventral visual cortex, particularly across alTG and aLOS (cyan-green
patches in Figs 3b and 4), suggesting an integration of postural cues with more abstract representations. This may involve
linking specific body configurations to semantic information such as the type of action being performed or the emotional
state conveyed by the body movement [59,60].

Our results aligns with findings that identify distinct body-selective areas within the occipitotemporal cortex [61]. Recent
results by Li et al. [62] using data-driven methods identified four adjacent body-selective nodes within the occipitotemporal
cortex further support this notion. Specifically, the predominance of kp3d and SimDist in superior subregions may reflect
their role in detailed sensory processing, as they show stronger connectivity with regions involved in processing fine-
grained visual details [62]. Our findings thus reinforce the notion that EBA is functionally heterogeneous consistent with
the finding of specialized subregions dedicated to different aspects of body and action perception [62].

Furthermore, our results are consistent with previous findings showing that EBA is more functionally and structurally
connected to dorsal stream regions compared to other body-related areas, such as FBA and the lateral occipital complex
(LOC) [63]. This connectivity supports EBA’s role in bridging perceptual and motor functions, particularly in specifying
goal-directed postural configurations for motor planning. EBA’'s connectivity with parietal regions, such as the superior
parietal lobule and postcentral gyrus, may enable it to access somatosensory information, which is essential for planning
and executing actions based on body information. This suggestion is consistent with the earlier findings from Astafiev et
al. [64] reporting that the EBA responds to goal directed movements of the observers’ body parts. Additionally, another
study used real-action fMRI and multivoxel pattern analysis to show that hand-selective clusters in lateral occipitotemporal
and intraparietal regions automatically distinguish typical from atypical tool grasps, even without an explicit grasping task
[65]. They demonstrate that body-selective visual areas encode not only static form but also sensorimotor affordances
during real interactions, underscoring the dual perceptual-motor role of these regions. Consistent with this view, another
study showed that the lateral occipitotemporal cortex (LOTC) encodes abstract, object-independent representations of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013694 December 8, 2025 13/20




30.00 -

Predictive Power
(%)

1 - motion energy

Joint model = kp3d + cat + SimDist + motion energy

Fig 5. Motion-energy prediction and residual joint model performance. (a) Prediction power (%) of the motion-energy model alone, plotted on
an inflated right hemisphere and thresholded at 30%—80% variance explained (see colorbar). (b) Residual prediction power, defined as the variance
explained by the full joint model (kp3d + categorical + SimDist + motion energy) minus that explained by motion energy alone (i.e., 1 — motion-energy
fraction). For clarity, we overlay the outline of EBA as defined in the probabilistic map depicted in Fig 2 by selecting vertices shared by at least 40% of
the subjects.

https://doi.org/10.1371/journal.pcbi.1013694.9005

actions that generalize across perceptual features and task demands. This finding suggests that LOTC contributes to
conceptual action understanding beyond low-level visual motion processing. [66].

Layer-specific encoding in EBA

Layer-specific analysis in EBA revealed a subtle depth gradient in overall fit: in the right-hemisphere joint-model perfor-
mance rose from inner to middle (t(10)=—4.01, g=0.007, dz=1.21), while the inner to superficial comparison narrowly
missed the FDR cutoff (1(10)=—2.46, g=0.051, dz=0.74), whereas the left hemisphere showed no significant depth
dependence. Importantly, however, variance partitioning of that joint prediction remained remarkably uniform across all
layers and both hemispheres: motion energy consistently explained ~35-40% of the variance, biomechanical similarity
(SimDist) ~30%, 3D keypoints (kp3d) ~20%, and categorical distinctions ~10-15%, with no systematic laminar shifts (no
significant main effect of layers). This depth-invariant profile may indicate that EBA’'s microcircuits implement a distrib-
uted integration of low-level spatiotemporal features and higher-level postural, biomechanical, and semantic signals in
parallel, rather than segregating them into distinct laminar streams [67,68,69]. Recent findings corroborate this notion as
higher-level visual areas (V5/hMT+), closely adjacent to the EBA, also exhibits depth-invariant columnar tuning, indi-
cating that microcircuits combine multiple feature representations simultaneously across all layers of the cortical ribbon
[70]. Functionally, this uniform integration across depths enables downstream areas to flexibly draw on precise kinematic
information for trajectory decoding or on semantic action categories for emotion recognition, in line with unified models of
biological motion processing [71]. EBA’s laminar invariance in feature integration may reflect the complex requirements
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of dynamic body perception, which depend on the smooth fusion of motion dynamics, posture configuration, and inter-
pretive meaning.

Role of biomechanical plausibility

The substantial predictive power of the SimDist model from early to high-level visual cortex underscores the visual system’s
sensitivity to biomechanical plausibility from the initial stages of processing. This model compares movements to a set of nat-
ural human motions. By analysing how closely a movement aligns with the typical range of human joint motions, the model
allows to identify how much a movement adheres to or violates the physical limits of human anatomy. Its significant contribu-
tion to the variance explained by the joint-encoding model in EBA (~30%), implies that this body selective region is capable
of distinguishing between possible and impossible body movements and also “how impossible” these movement are.

This graded “how impossible?” signal offers a mid-level representational bridge between pose representation and
abstract categorical judgments. It not only complements earlier reports that EBA responds to violations of body structure
[36] but also resonates with broader theories of embodied cognition, for instance mirror neuron theory of action under-
standing [72], which posit that perception is grounded in sensorimotor experience. Our findings suggest that the visual
system may simulate and test every observed movement against an internal model of human biomechanics [73,71]. This
embodied—predictive framework aligns with mirror neuron accounts, where shared motor representations support action
understanding [74,75], and with predictive coding framework, where the brain continuously updates predictions about
incoming sensory input based on prior knowledge and expectations [76,77]. Specifically, when observing human bodies,
the brain may use biomechanical constraints as a basis for these predictions, allowing it to rapidly assess whether a given
movement aligns with human motion primitives. By filtering subtle deviations in joint-angle trajectories, the brain may

Limitations and future directions

Our scanning parameters focused primarily on occipitotemporal and frontal regions, excluding areas such as motor and
premotor cortices. These regions are known to play a crucial role in the recognition of both static and dynamic bodily
actions [80,81], responding to biomechanically possible and impossible stimuli [36] and contributing to the distinction
between actions that can be performed and those that cannot [78]. Incorporating these regions in future studies will help
clarify their role in the perception and discrimination of biomechanical plausibility, offering a more comprehensive view of
the neural mechanisms underlying action recognition. Additionally, our stimulus creation was limited to manipulations of
the elbows and knees to generate impossible movements. Future research might include a broader range of movements
and joint manipulations to evaluate the generality of encoding mechanisms across different biomechanical contexts.
Also, the relatively small sample size (n=11) is common in laminar fMRI studies, but may limit the generalizability of our
findings. Replication with larger samples is needed to confirm the observed effects and strengthen the reliability of these
results. Finally, further exploration of hemispheric differences, along with the potential influence of attention and task
demands on encoding, would enrich our understanding of the factors shaping these neural processes.

Conclusions

In summary, this study investigated whether occipitotemporal cortex, particularly the body sensitive area EBA, encodes
biomechanically possible and impossible body movements. By comparing four encoding models—3D keypoints, similarity
distances, categorical differences and motion energy—we found that a combination of these models significantly predicted
neural responses in the ventral visual cortex. Notably, the study underscores the brain’s sensitivity to biomechanical plau-
sibility, with the biomechanical (SimDist) model explaining a significant portion of the variance from early stages of visual
processing.
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Within EBA, the representation holds consistently across inner, middle, and superficial layers in both hemispheres,
hinting towards a depth-invariant microcircuit that integrates spatiotemporal, postural, biomechanical, and semantic
information.

Supporting information

S1 Text. Table A. Pairwise contrasts between encoding models in EBA. We report for each hemisphere and for each
pairwise contrast between encoding models, the paired-sample t-statistic (df=10), the uncorrected p-value, Cohen’s

dz effect size (computed as t/YN with N=11), and the retrospective power at a=0.05 (two-sided). Positive dz values
indicate that the first model in the contrast explained more variance than the second, whereas negative dz values indi-
cate the opposite. Table B. Paired-sample t-tests comparing R? values across cortical depths in EBA for each hemi-
sphere (df=10). For each contrast, we report the uncorrected p-values, g-values (FDR), Cohen’s dz effect size, and the
retrospective power at a=0.05 (two-sided). Negative dz values indicate that the first depth (e.g., inner) had lower R?
than the second (e.g., middle or superficial). Power estimates = 0.80 denote adequate sensitivity to detect the observed
effects, whereas lower values suggest that non-significant or modest effects may require larger samples or more sensi-
tive methods for reliable detection. Fig A. Single-subject prediction accuracy maps. Each panel shows a subject’s corti-
cal surface map of Pearson’s r values, obtained by correlating the joint-encoding model’s predicted BOLD time courses
(combining motion-energy, 3D keypoints, SimDist, and categorical predictors) with held-out fMRI responses. Model
training and testing were performed using 3-fold cross-validation: for each fold, the model was trained on 8 runs (80
stimuli x 6 repetitions) and tested on the remaining 4 runs (40 stimuli x 6 repetitions). Within each training set, data were
further split using 4-fold cross-validation (train on 6 runs [60 stimuli x 6 repetitions], validate on 2 runs [20 stimulix 6
repetitions]). Fig B. Single-subject prediction accuracy map. Same conventions as Fig A. Fig C. HSV map of resid-

ual variance partitioning for single-subject results. Hue encodes the relative proportions of variance explained by the
three higher-level feature models—3D keypoints (kp3d, red), categorical differences (cat, green), and biomechanical
similarity (SimDist, blue)—after factoring out the variance captured by low-level motion energy. Saturation reflects the
magnitude of this residual variance (S =1-motion-energy fraction), with more saturated colors indicating vertices where
higher-level models contribute more strongly. Brightness corresponds to prediction reliability at each vertex (vertex-wise
Pearson’s rrr) on the same scale used in the joint-model accuracy maps. Fig D. HSV composite map of residual vari-
ance partitioning. Same conventions as Fig C.
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