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The endpoint trajectories of human movements fulfill characteristic power laws linking
velocity and curvature. The parameters of these power laws typically vary between
different segments of longer action sequences. These parameters might thus be exploited
for the unsupervised segmentation of actions into movement primitives. For the example
of sign language we investigate whether such segments can be identified by Bayesian
binning (BB), using a Gaussian observation model whose mean has a polynomial
time dependence. We show that this method yields good segmentation and correctly
models ground truth kinematics composed of consecutive segments derived from wrist
trajectories recorded from users of Israeli Sign Language (ISL). Importantly, polynomial
orders between 3 and 5 yield an optimal trade-off between complexity and accuracy
of the trajectory approximation, in accordance with the minimum acceleration and
minimum jerk models. Comparing the orders of the polynomials best approximating
natural kinematics against those needed to fit the power law ground truth data suggests
that kinematic properties not compatible with power laws are also not adequately
represented by low order polynomials and require higher order polynomials for a good
approximation.

Keywords: motor primitives, two-thirds power law, differential invariants, Bayesian binning, sign language,

minimum jerk model

1. INTRODUCTION
Complex motor behavior might be organized in terms of
sequences of temporal movement primitives that follow each
other sequentially in time. Determining such primitives from
kinematic data is an important problem for many technical appli-
cations, e.g., in robotics, computer vision and computer graphics.
At the same time, the characterization of possible temporal prim-
itives that underlie the planning and execution of complex motor
behavior remains a partially unresolved issue in motor control
(Flash and Hochner, 2005). While the appropriate characteriza-
tion of the temporal organization of complex motor behavior
might require ultimately hierarchical multi-level representations
(Flash and Hochner, 2005), many previous studies that investi-
gated the nature of such primitives have focused on the analysis
of movement kinematics. Specifically, it has been investigated how
the temporal and kinematic properties of the movement are influ-
enced by the path followed by the hand (see e.g., Polyakov et al.,
2009b).

One approach to the definition of temporal segments is based
on invariant properties that characterize movements within indi-
vidual segments. It was already established at the end of the
nineteenth century that for arm movements, curvature and speed
are correlated variables, speed typically obeying an inverse rela-
tion to curvature (Jack, 1895). Almost a 100 years later, this
rule was quantitatively formalized as the two-thirds power law.
Specifically, this rule dictates that for figure drawing movements
the speed along the motion path is proportional to the curvature

of this path raised to the minus one-third power (Lacquaniti et al.,
1983):

|v(t)| = ακ− 1
3 (t) (1)

where v is the Euclidean velocity, κ is the Euclidean curvature
(i.e. the reciprocal of the radius of osculating circle) and α is
the so called velocity gain factor, which is constant within each
individual segment.

Extensive research has investigated the conditions and origins
of the two-thirds power law. Equation (1) was first developed for
two-dimensional drawings but was also later applied to three-
dimensional drawing under isometric force conditions (Massey
et al., 1992) and to various movement modalities including eye
pursuit (Viviani and deSperati, 1997) and speech movements
(Tasko and Westbury, 2004; Perrier and Fuchs, 2008). Also, the
exponent of the two-thirds power law varies in children and
becomes more stable with age (Viviani and Schneider, 1991).
This principle not only applies to motion production but also to
motion perception as has been supported by studies of the per-
ception of handwriting and drawing movements (Soechting et al.,
1986; Viviani et al., 2000) and of the motion of abstract visual
stimuli (Viviani and Stucchi, 1992; Levit-Binnun et al., 2006).
Finally, a functional magnetic resonance imaging (fMRI) study
has supported a central representation of the perception of this
kinematic law (Dayan et al., 2007). Taken together, these studies
show that the 2/3 power law is most likely not the expression of
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bio-mechanical constraints but may reflect the involvement of the
central nervous system (for a review see Flash et al., 2012).

A recent study (Meirovitch, 2008) has investigated the wrist
trajectories in sign language with the goal of identifying the
motor control strategies for such spatially constrained move-
ments. Movement recordings from normal naive participants
revealed that a generalized form of the 2/3 power law (Equation
1) predicts the velocity profiles of the wrist trajectories. The exe-
cuted trajectories across a number of repetitions were fitted with
the model:

|v(t)| = ακβ(t) (2)

where v, κ and α are defined in the same way as for Equation (1)
and the parameter β ∈ [−1, 0] typically remains constant during
individual trajectory segments. This suggests that this parameter
might be used to segment longer action sequences into move-
ment primitives, identifying the segments with an approximately
constant β. The presence of the kinematic segments does not nec-
essarily imply segmented control by the brain [see Schaal and
Sternad (1999) and Flash and Hochner (2005)]. Therefore, an
attempt to unravel kinematic primitives would require to be con-
sistent with optimization models used in motor control such as
the minimization of jerk (time derivative of acceleration), vari-
ance, etc. [see section 1.1]. Here, we employ the segment-wise
constancy of β to generate ground-truth data for the testing of
motion segmentation algorithms. We use sign language trajec-
tories as a basis for our analysis and modify their velocity to
match a possible power law segmentation with fixed values of
the parameters α and β within each predefined segment. The
timing of each segment in the ground-truth parameterization
closely follows the timing of the natural sign language trajecto-
ries. Moreover, in simulating the discrete segmentation of the
ground-truth data, the algorithm optimizes for a smooth tran-
sition between adjacent segments by choosing suitable power
law parameters. The details of this procedure are described in
section 2.4.

1.1. CONNECTION BETWEEN POLYNOMIALS AND POWER LAWS
In addition to these power laws (Equation 2), human move-
ments were shown to be well-captured by optimization models
that maximize the smoothness of the trajectories, mathematically
expressed by the minimization of integrated jerk or by higher-
order time derivatives of position, i.e., snap, crackle and so on
(Flash and Hogan, 1985; Todorov and Jordan, 1998). Other types
of movements (e.g. locomotion and arm reaching) were shown to
be well captured by minimum acceleration models (Ben-Itzhak
and Karniel, 2008; Mombaur et al., 2010). Mathematically, such
models predict that the trajectories will be well captured by
polynomials of orders 3, 5, and 7, corresponding to minimum
acceleration, jerk and snap models, respectively. In Richardson
and Flash (2002) it was mathematically shown that such poly-
nomial trajectories, which optimize mean squared derivative cost
functions

Cn =
∫ T

0

∣∣∣∣
∣∣∣∣dnr

dtn

∣∣∣∣
∣∣∣∣
2

dt, (3)

(where n = 3, 4 correspond to minimum jerk and snap, respec-
tively) follow generalized power laws whose exponents depend on
the cost function being optimized and on the geometrical shape of
the trajectory being traced. In addition, such predicted power laws
were shown to be consistent with the power law found empirically
in the experimental data.

In another study Polyakov et al. identified parabolic strokes
whose generation both obeys the 2/3 power law and yields
minimum-jerk trajectories (Polyakov et al., 2009b). Parabolas
are interesting because of their invariance with respect to affine
transformations and additionally their special role as geodesics
in equi-affine geometry which predicts the two-thirds power law
(Flash and Handzel, 2007).

For 3-dimensional geometrically complex trajectories, a power
law that depends on torsion which measures the rate of change of
the osculating plane, was analyzed for 3D drawing movements
(Maoz et al., 2009; Pollick et al., 2009) and although the link
between power laws and variational optimization principles was
studied for several figural forms (Polyakov et al., 2009b), such
links have not been examined for natural complex trajectories.
Here we provide the first detailed account for the computational
equivalence between the generalized power law and variational
models. To this end, we present a Bayesian approach for the tem-
poral segmentation of complex end-effector trajectories based on
a polynomial observation model and show that the resulting seg-
ments can be used to identify the power law structure of the
kinematic profiles.

1.2. UNSUPERVISED SEGMENTATION OF COMPLEX END-EFFECTOR
MOVEMENTS

Segmenting trajectories into power-law obeying pieces is difficult
for three reasons: first, the number of segments and their tempo-
ral boundaries are a-priori unknown. Second, estimating higher
derivatives from noisy trajectory data is prone to errors. Third,
segments obeying power laws with different βs (Equation 2) are
typically connected by short transition periods during which the
trajectory is not well described by a power law (Viviani and
Flash, 1995). We address the first two problems by choosing a
Bayesian approach, based on Bayesian Binning (BB). Estimating
the number of segments is a model complexity estimation prob-
lem, which we deal with using the “Occam’s razor” inherent in
Bayesian approaches: the larger parameter space of more complex
models (e.g., having more segments) implies that every indi-
vidual instantiation of such a model is a-priori less probable
than a more parsimonious model (Bishop, 2007). Thus, simpler
models are preferable, if they can explain the observable data
equally well. To handle the (possibly large amounts of) noise
in parameter estimates, Bayesian models infer a posterior dis-
tribution over parameters, instead of point estimates yielded by
maximum-likelihood fitting procedures. This posterior distribu-
tion allows to assess not only the expected value, but also the
uncertainty of the parameter of interest. We sidestep the third
problem—transition periods which do not obey power laws—
by using a dataset in which all transition periods are very short,
almost instantaneous, and a segment model which can also well
describe the point to point and transition movements (Flash and
Hogan, 1985; Polyakov et al., 2009a). As detailed above, both
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polynomials and power laws can be derived from the same opti-
mization principles, and power law trajectories can be well fitted
by time-dependent polynomials, but the kinematic profiles at
the boundaries of segments are better explained by polynomials.
Furthermore, the parameterization by polynomials avoids singu-
larities that arise in Equation (2) for straight curve segments with
zero curvature.

The rest of the paper is structured as follows. First we give a
concise description of the data recordings and ground truth gen-
eration in section 2, since these data have not been published
before. We develop BB for the segmentation of wrist trajectories
recorded with motion capture in section 2.5. There, we show how
to use BB with observations models having a polynomial time
dependence of the mean and segment-wise constant coefficients.
In section 3 we demonstrate the results achieved by BB and com-
pare them with the ground truth. Finally, we give an outlook for
further investigations in section 4.

2. MATERIALS AND METHODS
To generate a form of ground truth data that complies with the
kinematic law (Equation 2), we corrected the speed parameter-
ization of the original, recorded trajectories in a way that made
them exactly compatible with the kinematic law.

Our experiments were based on data adapted from Meirovitch
(2008). A short description of the experiments is given below. In
section 2.4 we give a more detailed description of the segmenta-
tion mechanism which we used to synthesize the “ground truth”
segmentation. While the employed synthesis method may appear
complicated, we chose it to generate a ground truth with a high
degree of biological realism.

2.1. SUBJECTS AND SIGNS
Subjects were two natural users of Israeli Sign Language (ISL): S00
(male, 45), a native signer who acquired ISL during his childhood
through exposure to his parents, and S01 (male, 44) who acquired
ISL in childhood.

Each subject was asked to sign two words, either “cake
(baked)” or “chandelier.” The English equivalents of these ISL
signs were shown in English on a screen in front of the subject
prior to execution. Each sign was repeated 20 times.

2.2. DATA RECORDING AND PREPROCESSING
Hand movements were recorded using the Polhemus LIBERTY
240/16 motion capture system which recorded the location of a
sensor fixed to the subject’s wrist at an accuracy of 0.08 cm at a
frequency of 240 Hz.

The trajectories were preprocessed with a 50-samples 6 Hz low
pass FIR filter (normalized gain of −6 dB at 6 Hz), and their
velocity profiles and Euclidean curvature were calculated for each
sample n (Calabi et al., 1998).

2.3. FITTING OF POWER LAW AND QUANTIFICATION OF COMPLIANCE
We used correlation coefficients to compare the actual trajectories
with the predictions based on the best-fitting power law within
individual trajectory segments. Within each segment, the law was
fitted using non-linear regression (Coleman and Li, 1994, 1996;
Maoz, 2007), where the predicted speed value is denoted as v̂(n)

and where α̂ and β̂ are the fitted parameter values for this segment.
The predicted speed is given by the relationship:

v̂(n) = α̂κβ̂(n) (4)

A measure for the quality of the fit is given by the compliance

R2
s (α̂, β̂) = 1 −

∑
i ≤ n ≤ j

(
v(n) − v̂(n)

)2

∑
i ≤ n ≤ j

(
v(n) − vaverage

)2
(5)

where s is the segment for which regression is carried out and
vaverage is the average speed within the segment.

2.4. POWER LAW SEGMENTATION
To generate a data set as ground truth that fully complies with
the power law (Equation 2) the speed of the original trajectories
was reparameterized (by time warping) to make the individual
trajectory segments exactly compatible with the best fitting kine-
matic law. The purpose of the time-warping is the generation of
a ground truth dataset that fully complies with the power law
against which the automatic (polynomial) segmentation can be
compared. Our paradigm enables the treatment of several mini-
mization principles (e.g., acceleration, jerk, snap, crackle etc.) in
parallel by choosing the model via Bayesian model comparison.

The idea employed in the ground truth synthesis is based on
randomizing some parameters of the segmentation while opti-
mizing others. At the first step the algorithm iterates through
possible segmentations in which the temporal breakpoints and
the exponents of the power laws are randomized. To respect the
smoothness characteristic of natural movement, the gain-factors
of the respective segments are then calculated from the curvatures
at the boundaries of the segments, and the trajectory is then time-
warped. The segments that comprise the ground truth dataset
have durations comparable to the respective segments in the nat-
ural trajectories, comparable maximal speed, and their speed
is continuous at the boundaries. An example of a synthesized
ground truth trajectory is shown in Figure 1.

In the following, we give some additional technical details: To
avoid singularities we excluded from the data basis the initial and
terminal parts of the movement, where the speed was below a
prescribed ratio of the maximal speed (<15% × maximal speed).

First, each trajectory was randomly partitioned into N = 3
consecutive time intervals, [ti, ti + 1]N

i = 1, where the first inter-
val begins at t1, and the last interval terminates at the end
of the recorded movement, at time tN + 1, such that the dura-
tion of each segment, ti + 1 − ti, was not too short (>300 ms).
We proceeded to synthesize the power law parameters for each
of the random partitions. At the first step, we uniformly ran-
domized β = {β1, . . . , βN} ∈ [−1, 0]N such that |βi + 1 − βi| >

0.1 and those β N-tuples that were biologically implausible were
rejected according to criteria that are described below.

The α parameter, α = {α1, . . . , αN}, was determined based on
the randomized β value and the empirical speed and curvature.
The first value, α1, was determined from the empirical speed
using Equation (2) according to:

α1 = v(0)κ(0)−β1,
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FIGURE 1 | The trajectories of an ISL “Cake” repetition before (a) and

after (d) time-warping. (A) The samples of the raw data are colored
according to time. (B) The time-warped trajectory, where the three colors
designate power law segments. Log–Log plots of curvature and velocity are
depicted on the right side: (b) raw data and (c,e) time-warping, colored
according to time and segments, respectively. It can be seen that the spatial
representation, i.e., path, of the raw and time-warped trajectories are
identical. Also, although both raw and time-warped log–log curves are

characterized by linear segments, the time warping is based on a simpler
power law representation which is characterized by three highly fitting
(R2 > 0.97) segments with beta values ranging from about −0.19 to −0.6.
The transitions between long straight segments in the log–log representation
are made either by a very brief transitional period which does not comply
with the power laws of the adjacent segments [e.g., the portion between the
blue and green segments in (e)] or in the temporal point of intersection of the
piecewise linear sections [e.g., green to red segment in (e)].

The αi+1 value was determined enforcing the constraint that the
speed should be continuous at the segment boundaries, resulting
in the relationship:

v(ti + 1) = αi + 1κ(ti + 1)
βi + 1 = αiκ(ti + 1)

βi .

Using spline interpolation we reparameterized the trajectories
within each time interval, [ti, ti + 1], defining a new effective time

parameter, τ, that was defined up to a constant by:

ds = αiκ(t)βidτ

where ds is the Euclidean arc-length parameterization of the
trajectory. This relationship results in the differential equation:

dτ

dt
= 1

αi
v(t)κ(t)−βi
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that links the original and the warped time axis of the
trajectory.

Finally, those trajectories that induced biologically improbable
high speed ratios, were rejected. For those synthesized trajectories
that were not rejected, we recalculated, using non-linear regres-
sion (see section 2.3), the actual α̂ and β̂ N-tuples for the accepted
[ti, ti + 1] time intervals and those were stored for further analyses.
It is important to note that our reparameterization method did
not change the durations of the original behavioral time intervals
given by τi + 1 − τi = ti + 1 − ti.

2.5. BAYESIAN BINNING FOR SIGN LANGUAGE SEGMENTATION
In the following, we present an unsupervised segmentation algo-
rithm that is based on BB. Briefly, BB is an approach to modeling
data with a totally ordered structure, such as time series, by func-
tions which are piecewise defined. The total order allows for
an efficient iteration over all possible segment configurations in
polynomial time.

BB was originally developed for modeling of (typically very
noisy) neural spike train data (Endres et al., 2008; Endres and
Oram, 2009) and their information-theoretic evaluation (Endres
and Földiák, 2005). It was later generalized for regression of piece-
wise constant functions (Hutter, 2007). Concurrently, a closely
related Bayesian formalism for dealing with multiple change point
problems was introduced by Fearnhead (2006).

To apply BB to wrist trajectories we augment it by an observa-
tion model for the trajectory segments which is Gaussian with a
full covariance matrix and a polynomial time dependence of the
mean. This model was originally developed by two of the authors
for segmenting joint angle trajectories of human actors in a “nat-
ural” fashion (i.e., in agreement with human intuition) (Endres
et al., 2011a,b). To make this paper self-contained, the following
sections describe the prior over bin boundaries (section 2.5.1) and
the observation model (section 2.5.5). The algorithmic details of
evaluating posterior expectations are only outlined schematically,
they are elaborated in Endres and Földiák (2005). A full deriva-
tion of the polynomial observation model, including the exact
posterior updates can be found in Endres et al. (2011a).

The results of this segmentation algorithm are validated using
the ground-truth data basis from section 2.4 that consists of
trajectories whose segments exactly comply with the previously
described power law. We show (section 3) that BB results in good
segmentation of data fulfilling this kinematic law. Furthermore,
we argue that BB generalizes the segmentation approaches pre-
sented in Barbič et al. (2004) and Polyakov et al. (2009b) [see
section 4].

2.5.1. The bin boundary prior
Our objective is to model a time series D in the time interval
[tmin = t1, tmax = tN + 1]. We discretize [tmin, tmax] into T con-
tiguous intervals of duration �t = (tmax − tmin)/T, such that
interval j is [j · �t, (j + 1) · �t] (see Figure 2). Choose �t small
enough to capture all relevant features of the data1. We model the
generative process of D by M + 1 contiguous, non-overlapping
segments, indexed by m and having inclusive upper boundaries
qm ∈ {qm}. The segment m therefore contains the time interval
Tm = (�t qm−1, �t qm]. Let Dm be that part of the data which
falls into segment m. We assume that the probability of D given
{qm} factorizes as

P(D|{qm}, M) =
M∏

m = 0

P(Dm|qm−1, qm, M) (6)

with q−1 = −1, qM = T − 1.

2.5.2. Prior on {qm}
Since we have no preferences for any segment boundary configu-
ration other than they be totally ordered, the segment configura-
tion prior becomes

P({qm}|M) =
(

T − 1
M

)−1

(7)

1E.g., choose �t in the order of 1/sampling rate.

FIGURE 2 | Segmentation of a time series of length T into M+1

contiguous, non-overlapping segments with (inclusive) upper segment

boundaries qm ∈ {qm}. The observation model in each segment m is given by

P(Dm|qm−1, qm), where Dm is that part of the data which is in segment m.
Importantly, the model assumes that the data are independent across
segments given the {qm}and M.
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where
(

T−1
M

)
is the number of configurations in which M ordered

segment boundaries can be distributed across T − 1 places (seg-
ment boundary M always occupies position T − 1, hence there
are only T − 1 positions left). While this prior expresses no pref-
erences for boundary positions, it is important for complexity
control: as long as T � M (which is typically the case), this prior
will decrease exponentially in M, thereby punishing models with
larger number of segments.

2.5.3. Prior on M

We have no preference for any model complexity (i.e., number of
segment boundaries), so we let

P(M) = 1

T
(8)

since the number of segment boundaries M must be 0 ≤ M ≤
T − 1.

2.5.4. Posterior of {qm}
For temporal segmentation, the most relevant posterior is that of
the {qm} for a given M:

P({qm}|D, M) = P(D|{qm})P({qm}|M)

P(D|M)
(9)

For the denominator, we need to compute P(D|M):

P(D|M) =
q1 − 1∑
q0 = 0

q2 − 1∑
q1 = 1

. . .

T − 1∑
qM−1 = M − 1

P(D|{qm}, M) (10)

which appears to be O(TM) since it involves M sums of length
O(T). However, using the form of P(D|{qm}, M) (Equation 6)
and distributivity of multiplication over addition allows us to
“push sums” past all factors which do not depend on the sum-
mation variable:

P(D|M) =
q1 − 1∑
q0 = 0

q2 − 1∑
q1 = 1

. . .

T − 1∑
qM−1 = M − 1

M∏
m = 0

P(Dm|qm−1, qm)

=
q1 − 1∑
q0 = 0

P(D0|q−1, q0)

q2 − 1∑
q1 = 1

P(D1|q0, q1) . . .

. . .

T − 1∑
qM − 1 = M − 1

P(DM|qm − 1, qM) (11)

Each sum of length O(T) needs to be evaluated O(T) times for
the possible values of the upper summation boundary. As there
are M sums, this calculation has complexity O(MT2), rather
than the naïve O(TM). This is an instance of the sum-product
algorithm (Kschischang et al., 2001). As explained in Endres
and Földiák (2005), the expectations of functions of the model
parameters (e.g., segment boundary position, segment width or
probability of a segment boundary at a given point in time)
can be evaluated similarly, if the function depends only on the
parameters of one segment.

2.5.5. Observation models P(D|{qm}) for wrist trajectories
For the wrist trajectories, we employed a multivariate Gaussian
observation model with polynomial time-dependence of the
mean, because we would like to explore the relationship between
power-laws and polynomials. With this choice, we can specify a
conjugate prior on the parameters, which allows for an evaluation
of expectations and marginal probabilities within each segment
in closed form. A prior is conjugate to an observation model, if
the resulting posterior has the same functional form as the prior
(Bishop, 2007). In that case, posterior updates reduce to param-
eter updates of the prior, instead of having to compute a (often
intractable) multi-dimensional integral. Thus, we can efficiently
compute the marginal probability of the data given the number
of bin boundaries (Equation 11), as explained above.

The exponential family conjugate prior on the mean μ and the
precision matrix P (inverse covariance) is given by an extended
Gauss–Wishart density (see e.g., Bishop, 2007). Let �Xt ∈ D be a
L = 3-dimensional vector of wrist positions at time t ∈ Tm, and
S be the chosen polynomial order. Let tm = �t qm−1 be the start
time of segment m. Then

p(�Xt |t ∈ Tm) = N (�X(t); �μm, P−1
m ) (12)

p(Pm|νm, Vm) = W(Pm; νm, Vm) (13)

�μm =
S∑

i = 0

�ai,m(t − tm)i (14)

The �am = (�ai,m) are the polynomial coefficients in segment m.
Note that this vector has (S + 1) · L components. N (�X, �μ, � =
P−1) is a multivariate Gaussian density in �X with means �μ and
covariance matrix �. W(P; ν, V) is a Wishart density in P with
ν degrees of freedom and scale matrix V. To construct a prior
which is conjugate to the likelihood (Equation 12), we choose a
vector �αm = (�αi,m) with (S + 1) · L components, which are the
biases on �am. Furthermore, we introduce a symmetric, positive
(semi-)definite (S + 1) × (S + 1) matrix Bm, which contains the
concentration parameters on �am. The prior on �am given Pm is
then a multivariate Gaussian density

p(�am|�αm, Bm, Pm) = N (�am; �αm, Q−1
m ) (15)

where the (S + 1)L × (S + 1)L matrix Qm is given by the
Kronecker-product of Bm and Pm (i.e., block-wise multiplication
of the entries Bm,i,j of Bm with Pm):

Qm = Bm ⊗ Pm =
⎛
⎜⎝

Bm,0,0Pm · · · Bm,0,SPm
...

. . .
...

Bm,S,0Pm · · · Bm,S,SPm

⎞
⎟⎠ (16)

It is shown in Endres et al. (2011a) that the product of the
Gaussian (Equation 15) with the Wishart (Equation 13) does con-
stitute a conjugate prior on the likelihood given by Equation (12).
Since the prior is conjugate, we can evaluate the marginal likeli-
hood of the data in each segment, and BB can be applied with this
observation model.
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3. RESULTS
3.1. TRAJECTORY FITTING AND POLYNOMIAL ORDER

DETERMINATION
To illustrate that BB is a suitable tool for the computation of
compact and accurate ISL trajectory representations, we gener-
ated ISL-like trajectories with a 3rd order polynomial segment
structure and evaluated if BB was able to recover this polyno-
mial order and the segment boundaries. These trajectories were
computed by fitting the original data (black lines in Figure 3A)
with 3rd order polynomials using BB and evaluating the poste-
rior expected trajectories (red lines in Figure 3A), which we will
refer to as “fitted trajectories.” The dotted vertical lines in this
plot are the most probable segmentation points determined by
BB, of which it suggests M = 7 boundary points with almost cer-
tainty. We determined this number by finding the maximum of
Equation (11) with respect to M.

We then tested whether BB would be able to recover the poly-
nomial order of such fitted trajectories. To this end, we ran BB on
the fitted trajectories and evaluated the posterior distribution of
the segment order. The result, averaged across the whole dataset,
is shown in Figure 3B. The correct polynomial order, here 3, is
recovered with near certainty.

The fitted trajectories follow the original trajectories very
accurately. Figure 3D shows the variance explained (EV) by poly-
nomial orders between 0 and 7. Even for 0th order fits, EV > 0.95,
obtained with on average M = 13 bin boundaries. EV > 0.99 for
orders greater than 1, and it stays in that range for all tested orders
up to 7, where an average M = 2 are needed to fit the data.

For a quantitative evaluation of the match between the seg-
mentation points of the fitted trajectories, and the BB segmenta-
tion points computed on these fitted trajectories, we conducted
a hit rate analysis similar to Endres et al. (2011a). The results
are plotted in Figure 3C. We obtained this plot in the following
way: after computing the most probable number of segmentation
point with Equation (11), say Mopt, we found the Mopt maxima
of the posterior distribution of the segmentation point locations.
This yielded the “predicted segmentation points” (PSP). Denote
with PSP3 the segmentation points of the fitted trajectory, and
with PSP′

k the segmentation points of a k-th order BB model
computed from the fitted trajectory. A PSP′

k counted as a hit if
it was within an accuracy window of 90 ms of a PSP3, and if no
other PSP′

k had been matched to that PSP3 already. All remain-
ing PSP′

k comprised the false positives. PSP3s without a matching
PSP′

k were counted as misses. The hit rate is then computed in the
usual way:

hit rate = hits

hits + misses

which implies that the hit rate ≤1. Moreover, the miss rate
(or false negative rate) is just given by miss rate = 1 − hit rate.
Computing a false positive rate for a standard ROC analysis

false positive rate = false positives

false positives + true negatives

is somewhat problematic, since it requires the evaluation of the
“true negatives,” i.e., the number of instances where neither

FIGURE 3 | (A) Fitting a sign language trajectory (black lines) with a 3rd
order polynomial segment model (red lines). Dotted vertical lines: most
probable segmentation points determined by Bayesian binning. The fit
closely models the original trajectory. Explained variance averaged across
the whole dataset is >99%, see (D). (B) Posterior probability of segment
order, computed by using the 3rd order fitted trajectories computed with
BB [red lines in panel (A)] as data. The correct polynomial (3, indicated by
red vertical line) order is recovered with near certainty. (C) Hit rate analysis
for polynomial segment orders between 0 and 7, using the 3rd order fitted
trajectories as data. Dashed line: line of no discrimination. At order 3, hit
rate is maximal with no false positives. Error bars (standard errors of the
means of hit rate and false positive rate) are smaller than the symbols.
(D) Explained variance of the original trajectories as a function of the
polynomial order of the BB fit. Error bars are ±1 standard deviation,
computed across the whole dataset. All polynomial orders are able to fit
the data well. For details, see text.

BB model predicts a segmentation event. This number depends
on the chosen discretization: the false positive rate can be
reduced almost arbitrarily by increasing the temporal resolution,
since both PSP′

k and PSP3 are (almost) point events. We there-
fore chose to evaluate the false positives per second, which is
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largely independent of the temporal resolution. As a reference,
we computed a “line of no discrimination” (dashed line in
Figure 3C) assuming a homogeneous Poisson process with rate
parameter λ as a generator of uninformative segmentation events.
Each setting of λ corresponds to one point on the line of no dis-
crimination. If a given model’s performance is above that line,
then it can be said to provide an informative signal about the fitted
trajectory segmentation points.

All polynomial orders provide an informative signal, with the
3rd order model performing optimally: it combines a very high
hit rate with almost no false positives.

We performed the above analyses with fitted trajectories of
orders between 1 and 7, see Appendix A1. The results are very
similar to the 3rd order results presented here: the posterior dis-
tribution of the segment order peaks strongly at the order of the
fitted trajectories. Moreover, the hit rates of the fitted order are
near one, with almost no false positives.

3.2. POWER LAW GROUND TRUTH EVALUATION
We applied BB to the generated power law ground truth trajec-
tories to determine whether the segments predicted by BB would
match the imposed power law segments [see section 2.4]. Prior
hyperparameters were �αm = �0, Bm = δ(i, j) × 0.1, prior covari-
ance was diagonal with the data variances as diagonal entries. We
chose T = 100 time discretization points, and experimented with
polynomial orders between 0 (constant trajectories per segment)
and 7.

As shown in Figure 4, top panel, the posterior expectation of
the trajectories follows the actual trajectory closely for all orders.
However, the 0th order observation model requires a large num-
ber of segments to do so. With increasing order, the number
of necessary segments decreases. Shown in Figure 4, lower pan-
els, are the segmentation densities, i.e., the posterior probability

FIGURE 4 | Top panel: Trajectory of X coordinate (black line) and posterior
expected trajectories for observation models of 0th (red), 3rd (blue), and 6th
(cyan) order. All observation models provide a good fit. Vertical dotted black
lines indicate ground truth segmentation points in all panels. Lower panels:
Segmentation densities (i.e., probability density of segmentation
boundaries) for these observation models. The 3rd order model puts
boundaries close to the ground truth, with no false positives in this
example.

densities of finding a segment boundary at a given point in time.
Black dotted vertical lines indicate ground truth segmentation
boundaries in all panels. The 0th order model generates many,
uncertain segmentation boundaries, resulting in a large num-
ber of false positives with respect to the ground truth. The 6th
order model generates too few segments, but its segment bound-
aries coincide with the ground truth. The 3rd order model puts
boundaries close to the ground truth, without false positives in
this example.

For a more quantitative performance evaluation, we con-
ducted a hit rate analysis as described above. The results are
plotted in Figure 5. Here, power law ground truth segmentation
points (vertical dotted lines in Figure 4) are compared against
segmentation points predicted by BB models of polynomial
orders between 0 and 7. The BB segmentation points were
obtained as described in section 3.1. As can be seen in Figure 5,
most polynomial orders provide an informative signal about
the ground truth. However, the lower orders generate signifi-
cantly more false positives per second than the higher ones. For
orders >3, the hit rate decreases without a matching decrease in
the false positives. This can be seen more clearly in the hit rate
per false positives per second (HPFPPS) plot in Figure 6, bottom
panel. Let

HPFPPS = hit rate

false positives per second
(17)

The larger HPFPPS, the fewer false positives are incurred per
hit, hence a large HPFPPS is desirable. In the ground truth
data, it peaks at polynomial segment order 3. This peaking is

FIGURE 5 | Hit rate analyses for each sign (“cake” and “chandelier”)

and subject (“S00” and “S01”), for all polynomial orders between 0

and 7. A predicted segmentation point counted as a “hit” if it occurred
within an accuracy window of 90 ms around a ground truth segmentation
point. The lines of no discrimination (black dashed) were computed
assuming a homogeneous Poisson process as a generator of uninformative
segmentation events. Error bars are ±1 standard errors of the means. For
details, see text.
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significant (Kruskal–Wallis, p < 10−7 for both testing order 3
vs. rest and testing all orders against each other). A polynomial
order of ≈3 therefore seems a reasonable choice for these data.
This observation is confirmed by the posterior distribution of the
polynomial orders (Figure 6, top panel), which peaks at order 3
for the ground truth data.

3.3. POLYNOMIAL ORDER OF ISL TRAJECTORIES
Interestingly, the best polynomial order for the real ISL data
peaks at 4, with P(3 ≤ order ≤ 5) > 0.95 (see Figure 7). The
order of 5 corresponds to trajectories that comply with the min-
imum jerk principle (Flash and Hogan, 1985), which has been
largely established as describing the structure of many types of

FIGURE 6 | Polynomial order evaluation of power law ground truth

data. Top panel: Marginal posterior probabilities of observation models
with polynomial orders between 0 and 7. Posteriors were averaged across
signs and subjects. Order 3 is most probable. Bottom panel: Hit rate per
false positives per second (HPFPPS) as a function of the polynomial order
of the segments. The higher HPFPPS, the fewer false positives are incurred
for each hit. Hence, a high HPFPPS is preferable. In the power law ground
truth data of Figure 5, this quantity is maximized for order 3. Error bars are
±1 standard errors of the means.

natural movements (Todorov, 2004). This shows that the power
law temporal structure in the real data requires higher order
polynomials, suggesting that the co-articulation between consec-
utive power law segments is better represented by polynomial
orders > 3. In other words, BB combined with a segment-wise
polynomial trajectory model results in biologically reasonable
segments that could be indicative of individual optimally con-
trolled submovements. We elaborate this point further in the
discussion (section 4).

3.4. INTERPRETATION OF SEGMENTS
We worked on single signs, so the segments discovered by BB
are units on a sub-semantic level. Even within movements, like a
drawing of a letter or an ellipse, there are often multiple segments
that are described by different mixtures of several non-euclidian
geometries (Bennequin et al., 2009; Polyakov et al., 2009a; Pham
and Bennequin, 2012). Our approach aimed at estimating such
invariants. Consequently, a hit rate analysis for the real data can-
not be done meaningfully, because we segmented single signs and
because there is no accepted method for the sequential decom-
position of trajectories based on power laws. To find out the
relevant segments is exactly the scientific problem in motor con-
trol research which is addressed by our Bayesian approach. We
therefore created ground truth data with known segments against
which the Bayesian decomposition was successfully compared.
Whether these segments are related to the temporal aspects of
“phonemes” of sign language (Sandler and Lillo-Martin, 2006)
(phonemes are defined as the smallest, contrastive units in a
spoken language) remains to be investigated.

4. DISCUSSION
We presented two novel contributions in this paper: firstly, we
demonstrated the applicability of BB with piecewise polynomial
observation models to motion capture data with a segment-wise

FIGURE 7 | Marginal posterior probabilities of observation models

with polynomial orders between 0 and 7, computed on the real ISL

trajectories. Posteriors were averaged across signs and subjects. 4th order
is preferred.
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power law structure. Secondly, we found that ISL wrist trajectories
are best described by observation models with polynomial orders
between 3 and 5.

This is compatible with established principles in motor con-
trol, like the minimum jerk and minimum acceleration princi-
ples. The study in Richardson and Flash (2002) suggested three
main insights. First, among all optimization criteria whose mean
squared derivative (MSD) cost functions are

Cn =
∫ T

0

∣∣∣∣
∣∣∣∣dnr

dtn

∣∣∣∣
∣∣∣∣
2

dt,

the optimal trajectories that correspond to n = 3 (minimum jerk)
provide the best kinematic fit to point-to-point reaching move-
ments. Second, for periodic movements, the cost functions corre-
sponding to n = 3 (minimum jerk—fifth order polynomials) and
n = 4 (minimum snap—seventh order polynomials) provide rea-
sonable predictions while optimal trajectories corresponding to
the limit case n → ∞ converge to the 2/3 power law. Third, ear-
lier studies (e.g., Viviani and Cenzato, 1985) have suggested based
on the two-thirds power law that complex movements should
be segmented at inflection points, however, this segmentation
criterion is also predicted by a path-constrained minimum jerk
criterion and thus may not necessarily be a result of segmented
control by the brain. It should be noted that inflection points
are special cases in equi-affine geometry since at these points the
equi-affine arclength vanishes faster than the Euclidean arclength
[ dσ

ds → 0, see Flash and Handzel (2007); Bennequin et al. (2009)]
from which one deduces that that the 2/3 power law breaks down
at inflection points. Hence any kinematic model that is compat-
ible with the 2/3 power law will give similar segments to those
hypothesized according to the law and this explains the observa-
tions in Richardson and Flash (2002) and of Todorov and Jordan
(Todorov and Jordan, 1998)—whereby both studies were using
a constrained minimum jerk (as it was named by Todorov and
Jordan). However, it was not a-priori clear whether this agreement
will hold for different complex geometries and for different opti-
mization principles. Our results indicate that the two approaches
lead to compatible segmentations in a general sense. The unsu-
pervised BB approach shows that for highly complex motor tasks,
optimal MSD segments are temporally aligned with the general-
ized power law segments. It should be noted that MSD criteria are
drawn from first principles and thus provide a predictive model
while the two thirds power law was mainly studied as a descrip-
tive model (Lacquaniti et al., 1983; Viviani and Cenzato, 1985).
Nevertheless, it was found that the 2/3 power law is theoreti-
cally founded in equi-affine geometry (Pollick and Sapiro, 1996;
Flash and Handzel, 2007; Bennequin et al., 2009). From this we
hypothesize that the power law modulation is a possible outcome
of an optimization procedure that takes into account different
MSD criteria such as minimum acceleration, minimum jerk and
minimum snap models.

Another implication is related to the distribution of polyno-
mial orders found in the power law ground truth kinematics vs.
that of the original kinematics. The kinematics in the ground
truth dataset was implemented by introducing a perfect power
law segmentation that respects the timing in the original data in

a segment-wise manner and maintains continuity at the bound-
aries of segments. The original kinematics may differ from the
ground truth in the parameters of the natural power law reg-
ularities and the transitions between segments which may be
comprised of both co-articulatory movement and movement
kinematics not adhering to the power law. The latter is more
probably capturing the differences between the two datasets. We
therefore hypothesize that the differences in the distribution of
the polynomial orders found by BB for these two datasets is
related to transitional movements that are less compatible with
the generalized power law and require a description involving
higher order polynomials. The interpretation of this result in
terms of the MSD approach suggests that the minimum acceler-
ation model (C2) does not provide an equally good explanation
for the complex co-articulatory movements in between and at
the boundaries of power law segments for which jerk and snap
minimizations are required.

Three methods for motion capture data segmentation are
compared in Barbič et al. (2004): segment-wise PCA, probabilis-
tic PCA (pPCA) and finite Gaussian mixture models. The pPCA
methods is found to deliver the best performance compared to
manual segmentation. Our 0th order polynomial segment model,
due to its full covariance matrix, essentially describes each seg-
ment by a different (p)PCA decomposition. This decomposition
could be extracted from the posterior covariance matrices. Hence,
the 0th order model is approximately equivalent to the best
method of Barbič et al. (2004). Segment positions are decided via
a Mahalanobis distance criterion in Barbič et al. (2004), which
is related, but not equivalent to the marginal log-likelihood of
our Gaussian observation model used by BB 2. As illustrated in
Figure 5, our higher-order models offer a significant performance
advantage over a pPCA model with constant means on the ISL
data.

The authors of Polyakov et al. (2009a) found that mon-
key scribbling trajectories could be fitted well with parabolic
pieces. Such pieces can be generated by our 2nd order segment
model. We showed that higher polynomial orders are favored on
both an ISL-inspired ground truth and real (human) ISL data.
However, the segmentation criteria in that paper appears rather
different from ours: while we use a marginal likelihood based
criterion which follows from the polynomial observation model,
the authors of Polyakov et al. (2009b) first extracted from the
recorded data portions corresponding to active movement and
others of rest. The extracted movement portions were segmented
into strokes at curvature extrema. This is just one example of
a wide range of segmentation approaches based on kinematic
descriptors, another example is the work of Fod (2002) which uses
speed features.

Hidden Markov Models (HMM) have been used extensively
for both action segmentation and recognition, see e.g., Kulic
et al. (2009) for a template based approach, or the switching
HMM approach of Green (2003) where actions are segmented

2Due to the conjugate prior on the polynomial observation model, we can
integrate over the likelihood before taking the logarithm, see Endres et al.
(2011a) for details. The resulting marginal log-likelihood is monotonically
related to a Mahalanobis distance.
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into “dynemes,” a kind of dynamical primitives. While dynamical
primitives are in principle more invariant, and hence variation
tolerant (e.g., against time-warping) than polynomial segments,
they are also much harder to learn: in Green (2003), the dynemes
had to be defined manually. For American Sign Language recogni-
tion, Vogler and Metaxas (1998) used a semi-supervised training
scheme, which was extended to deal with two-hand signing using
parallel HMMs in Vogler and Metaxas (1999, 2001). In that
work, labeled and pre-segmented data were used to bootstrap
the training process. In contrast, we segmented sign language
based on kinematic regularities which, in order to be inde-
pendent of representation or a linguistic formalism (Sandler
and Lillo-Martin, 2006), must be unsupervised. Furthermore,
unsupervised segmentation facilitates working with large
datasets.

We conclude that BB combined with polynomial observa-
tion models represents a biologically well-inspired way for the
unsupervised extraction of movement primitives from natural
action streams. It remains to be investigated whether our
approach is applicable to data obtained with other recording

modalities, e.g., EMG, and if it yields interpretable results on
forces/torques instead of positions. Instead of a polynomial obser-
vation model for (wrist) positions, one could also construct an
observation model for velocities and curvatures. This would lead
to a more direct power law segmentation than the approach
presented here, and will be of interest for future work.
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A. APPENDIX
A.1. Polynomial Order Determination for Ground Truth Orders �= 3

In response to a reviewer request, we repeated the analysis in sec-
tion 3.1 for polynomial ground truth orders other than 3. The
resulting order posteriors and hit rate analyses are depicted in

Figure A1. For all tested ground truth orders, the BB order pos-
terior peaks at the ground truth order, i.e., this order can be
recovered with high probability. Furthermore, hit rate is near one
with almost no false positives for the ground truth order only, i.e.,
correct segment boundaries can also be determined by BB.

FIGURE A1 | Order posteriors and hit rate analyses for polynomial

segment orders between 0 and 7, using fitted trajectories of several

orders as ground truth. Vertical red lines in the order posteriors indicate
ground truth order. Dashed lines in the hit rate analyses: line of no
discrimination. Results for ground truth order 3 were depicted above in

Figure 3C. Order posteriors are maximal at the respective ground truth
orders, i.e., the correct order is recovered by BB with high probability. Hit
rates are near one, with almost no false positives if and only if the ground
truth order and BB order match. Error bars (standard errors of the means
of hit rate and false positive rate) are mostly smaller than the symbols.
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