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MOTIVATION
Embodiment theories hypothesize that the percep-

tion of emotions from body movements involves an ac-
tivation of brain structures that are involved in motor
execution during social interaction [4, 5]. This predicts
that, for identical visual stimulation, bodily emotions
should be perceived as more expressive when the ob-
servers are involved in social motor behavior. We tested
this hypothesis, exploiting advanced VR technology, re-
quiring participants to judge the emotions of an avatar
that reacted to their own motor behavior.

BASIC CONCEPT
Based on motion capture data from four human ac-

tors, we learned generative models for the body mo-
tion during emotional pair interactions, exploiting a
framework based on Gaussian Process Latent Variable
Models (GP-LVM) [1] and have been proposed as a
powerful approach for high dimensional data mod-
eling through dimensionality reduction. It has been
shown that GP-LVMs are able to capture subtle emo-
tional style changes and convey the information to hu-
man observers during reconstruction [3].

GP-LVMs are a probabilistic representation of dual
PCA that map nonlinear a low-dimensional latent vari-
able x on the data y:

y = f(x) + ε, f(x) ∼ GP (mY (x), kY (x,x
′)),

where f(x) is drawn from a Gaussian process with
mean function mY (x) and kernel function kY (x,x

′).
We assume a zero mean function mY (x) = 0 and use
a non-linear radial basis function (RBF) kernel [2] for a
high dimensionality reduction and smooth trajectories
in latent space. Furthermore, the variance term for ε
can be absorbed into this kernel via the noise precision
γ3:

kY (x,x
′) = γ1 exp

(
−γ2

2
|x− x′|2

)
+ γ−13 δx,x′ ,

where γ1 is the output scale and γ2 the inverse width of
the RBF term. Let KY denote the N ×N kernel covari-
ance matrix, obtained by applying the kernel function
to each pair of data points.

MOTION GENERATION
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Figure 1: Style-GPDM
• constraining manifold in latent space by

parametrization using periodic functions in
kernel based regression,

• spase approximation of kernal to make method
real-time capable.

PRELIMINARY EXPERIMENTS
The first experiment investigated whether the Style-

GPDM can synthesize motions with recognizable emo-
tional styles.

perceived
emotion

intended emotion
Anger Neutral Fear

Anger 0.70769231 0.06153846 0.12051282
Neutral 0.09230769 0.89230769 0.13076923

Fear 0.20000000 0.04615385 0.74871795

Table 1: Classification Results (N = 26)

In a second experiment participants had to rate the
emotional style per actor, morphed in five steps. The re-
sulting psychometric functions were used to normalize
the emotional expressiveness levels between different
actors.

Figure 2: Perceived expressivity of morphs (top: angry, bot-
tom: fearful) for different actors
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Task for Participants:

• Tip the avatar on its shoulder
from behind.

• Rate the perceived emotion.
• Repeat the classification non-

interactively (replaying the
observed trajectories from
previous trials).

Experimental Setup:
• After the tipping the avatar

turned around in one of
three emotional styles:
fearful, angry in five inter-
polation steps.

• Balanced design with two
groups, one with open loop
and one with closed loop

first).
• One block for each emotional

style (fearful, angry).
• Stimuli presented in random

order.
• Experiment consisted of four

blocks with 90 trials (open
loop with training blocks
first).

RESULTS
Emotional expressiveness of the stimuli was rated

higher when the participants initiate the emotional re-
action of the avatar in the VR setup by their own behav-
ior, as compared to pure observation (F(1,17) = 8.701
and p < 0.01,N = 18). This effect was particularly
prominent for anger expressions.

Figure 3: Psychometric functions per emotion and actor for
active and passive mode.

CONCLUSION
Consistent with theories about embodied percep-

tion of emotion, the involvement in social motor tasks
seems to increase perceived expressiveness of bodily
emotions. For future work we will test the hypothesis
with other emotions, e.g. happy, sad.
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