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Introduction

Goal of our work

➢ Investigation if and how basic aspects of social ad animacy perception can be accomplished by 
simple and physiologically plausible  neural mechanisms, exploiting a hierarchical (deep) 

model of the visual pathway. 

▪ Humans reliably attribute social interpretations to highly impoverished stimuli, such as interacting
geometrical shapes (Heider and Simmel, 1944).

▪ Perception of animacy from such simple figures is dependent on a number of critical stimulus parameters
(Tremoulet, Feldman 2000, 2006; Henrik et al., 2014).

▪ The perception of basic interactive actions, such as ’chasing’ or ’fighting’ has been addressed in several
studies (Gao and Scholl 2013; Scholl and Tremoulet 2000; McAleer and Pollick 2000, Blythe et al. ,1999); a set of six types
of interactive movements has been repeatedly used in these studies.

▪ This perception of interaction has been explained by high-level cognitive processes, such as probabilistic
reasoning and inference.(Baker et al., 2009)

▪ Building on classical biologically-inspired models for object and action perception (Riesenhuber and Poggio,

1999; Giese and Poggio, 2003), we propose a learning-based hierarchical neural network model that analyses
such stimuli based shape and motion features directly from video sequences.

▪ The model has a simple feed-forward architecture and comprises two processing streams for form and

object motion in the retinal frame of reference.
▪ The model contains only simple physiologically plausible operations.
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C) Neural Network
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D) LDA
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E) Nonlinear LDA
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E) KNN
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Classifier Accuracy

Linear SVM 99.0%

Gaussian kernel SVM 96.3%

LDA 94.7%

KNN 94.7%

Nonlinear LDA 94.3%

Neural Network 94.0%

A) CHasing
C) FIghting

D) FLirting E) GUarding

Results
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Model architecture

E) PLaying

B) FOllowing

Model

Perception of animacy from the motion of a single object (Tremoulet, Feldman 2000)
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Sample trajectories from different intention categories

(Agent 1: blue, agent 2: red. Color saturation indicates time, the color fading with time.)

Consistent with the psychophysical results, the activity of the output ’agency neuron’ increases with size 
of velocity and direction changes (testing trajectories where the agent followed a line and then suddenly ‘       
changed direction or speed).

Reproduction of increased animacy perception, compared to a moving circle (that does not have a
body axis),  if object has a body axis that is aligned with its velocity vector. 
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Confusion matrices for the six tested classifiers 

TP: true positive rate, FN: false negative rate. 50 videos per class.

▪ Highest confusion rates between ’flirting’ and 
’chasing’; sometimes also ’playing’ and 
’guarding’.

▪ For all classifier types accuracy is at least 94 %, 
best classification result is obtained with 
linear support vector machine, reaching an 
accuracy of 99 %. 

▪ All original videos from McAleer and Pollick
(2008) were classified correctly, though they 
were not part of the training set.
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▪ Hierarchical neural network with two pathways that analyze form and motion features.
▪ Two top levels that compute perceived animacy and classify perceived interaction. 
▪ The choice of features for the computation of agency judgements was driven by results in 

the psychophysical literature. 
▪ Critical features: absolute velocity and acceleration of agents, relative distance, velocity, 

and acceleration (McAleer and Pollick 2008).

▪ Testing multiple types of classifiers at the top level. 
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✓ While our model is quite simple-minded and does not use any sophisticated 
computations it was able to reproduce several important characteristics of human 
perception of agency and of social interactions from strongly impoverished displays.

✓ The performance of form and motion recognition has to be improved by embedding 
deeper hierarchies in the two pathways that are trained with a richer set of image 

data.
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▪ Dynamics of heading direction (Fajen and Warren 2003):

▪ Dynamics of forward speed:

▪ Parameters fitted to movies by McAleer & Pollick (2008).

𝜏  𝑣𝑖 = −𝑣𝑖 + 𝐹𝑖 𝑑 + 𝑐𝑖 ε𝑖(𝑡)

 Ф𝑖 = 𝑏  Ф𝑖 - 𝑘𝑔 Ф𝑖 − ψ𝑔,𝑖 𝑒−𝑐1𝑑𝑔,𝑖 + 𝑐 

+𝑘𝑜 σ𝑛= 
𝑁𝑜𝑏𝑠𝑡(Ф𝑖 − ψ𝑜,𝑛𝑖)(𝑒

−𝑐3|Ф𝑖 −ψ𝑜,𝑛𝑖|) 𝑒−𝑐4𝑑𝑜,𝑛𝑖

Social interaction classification

Accuracy of different classifiers


