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Abstract— We present a learning-based method for the real-
time synthesis of trajectories for character animation. The
method is based on the approximation of complex move-
ments by a small set of spatial movement primitives, or
synergies. Applying kernel methods, such learned primitives
are associated with nonlinear dynamical systems that, similar
to central pattern generators in biological systems, produce
highly complex trajectories in real-time by self-organization of
behaviour. It is demonstrated that the novel method is suitable
for the simulation of highly realistic human movements in
interactive character animation. Different simple applications
are discussed, including crowd-animation, navigation combined
with the dynamic variation of movements styles, and the
animation of a folk dance.

I. INTRODUCTION

Generating realistic complex body movements is a core
problem in computer graphics and robotics. This problem
is particularly difficult for systems with many degrees of
freedom, like for full-body animation and in humanoid
robots. In addition, many applications in robotics and com-
puter games require methods that are real-time capable and
permit an online synthesis of character behaviour. In the
computer graphics, motion capture has become the stan-
dard approach for the modeling of naturalistic movements.
Usually, recorded trajectories are retargeted to kinematic
or physical models [1], typically requiring tedious editing
of recorded data in order to adapt it to the constraints of
the animation. Different approaches have been developed to
automatically select segments of motion capture data from
large data bases and to concatenate them to longer sequences
that fulfil specific constraints that are specified by the an-
imator [2], [3], [4]. Other approaches, based on physical
or dynamical models [5], [6], focused on the simulation of
scenes with many interactive agents or crowds, navigating
autonomously or showing collective behaviours, where the
underlying character models are often simplified, resulting
in a manageable complexity of the system dynamics and
dynamics simulation, but lacking subtle details of realistic
human body movements. Some approaches have managed
to simulate highly realistic human behaviour using dynamic
models combined with sophisticated hierarchical control
architectures [7]. However, the design of such systems is
complex and the adjustment of their parameters requires
much expertise of the animator. In this context, it seems
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an interesting challenge to develop simple dynamical ar-
chitectures for generating complex human movements that
integrate the information learned from motion capture data,
and which avoid a detailed simulation of all details of
the human body dynamics, however resulting in real-time
animation with a high degree of realism.

The proposed novel method combines a compact
parameterization of movements recorded by motion capture
with a dynamical systems approach for the self-organization
of interactive behaviour. Using unsupervised learning meth-
ods, we approximate classes of full-body movements by
combinations of a very small number of hidden source
signals. The proposed method provides significantly more
compact representations than standard approaches for dimen-
sion reduction, like PCA or ICA. In a second step, applying
supervised learning, these source signals are associated with
the stable solutions of low-dimensional nonlinear dynamical
systems whose stability properties can be systematically
designed. By coupling of these dynamical systems the coor-
dination between the degrees of freedom within individual
characters is maintained, and coordinated behaviour between
multiple characters can be simulated.

The proposed approach is biologically inspired and ex-
ploits the concept of synergies, which plays a central role
in the field of motor control. Synergies specify lower-
dimensional control units that typically encompass only a
subset of the available degrees of freedom. A decomposition
in such low-dimensional sub-units has been proposed as way
to solve the ’degrees-of-freedom problem’, which arises in
the synthesis and control of movements in effector systems
with many degrees of freedom [8], [9]. Recent studies
in motor control have successfully applied unsupervised
learning methods to extract low-dimensional spatio-temporal
components from trajectories or EMG signals, which have
been interpreted as correlates of synergies [10], [11].

However, for an accurate resynthesis of the trajectories
standard methods for dimension reduction, like PCA or ICA,
require typically 8-12 components for an accurate approxi-
mations of human full-body movements [12]. It is shown in
the following that by choice of an appropriate mixture model
much more compact representations of human movements
can be learned. These representations can be associated with
relatively simple dynamical systems for real-time animation
with well-defined stability properties. Like ’central pattern
generators’ in biological systems, these dynamical systems
consist of simple basic units that are dynamically coupled
and that generate complex coordinated behaviour by self-
organization.



The contributions of this paper are as follows: (1) Novel
method for the learning of highly compact models for the
accurate approximations of human full-body movements;
(2) method for the mapping of the learned components
(synergies) onto dynamical systems with controlled stability
properties that are easy to design; (3) demonstration of the
potential of this method for a few selected problems from
character animation.

In the following we first describe the novel method for
the learning of trajectory models (Section II). We then
discuss the mapping onto the stable solutions of nonlinear
dynamical systems (Section III), and how the model can be
augmented by a dynamic model for navigation (Section IV).
Some exemplary applications of the method are presented
in Section V. Implications of the framework and future
extensions are discussed in Section VI.

II. SYNERGY-BASED TRAJECTORY MODEL

A. Motion Capture

Motion data were recorded using a VICON 612 Motion
Capture System with 8 cameras and 41 reflecting markers
with a sample frequency of 120 Hz. The animations pre-
sented in this paper are based on a data set of gaits that
includes neutral and emotional straight walking (sad, happy,
angry, and fearful), and neutral walking in a circle (with
a rotation of 45 deg left and right per double step). The
recorded position trajectories were fitted with a hierarchical
kinematical model (skeleton) with 17 joints. The rotations
between adjacent segments were parameterized as quater-
nions. The angles given in an axis angle representation served
as basis for the modeling by unsupervised learning.

B. Extraction of learned Synergies

Joint angle trajectories, after substracting the means, were
approximated by a weighted mixture of source signals. As
shown elsewhere [13], an especially compact model for gait
trajectories can be obtained by fitting an anechoic mixture
model given by the equation:

xi(t) =
∑

j

wijsj (t− τij) (1)

The functions sj denote hidden source signals and the param-
eters wij are the mixing weights. Opposed to common blind
source separation techniques, e.g., PCA or ICA, this mixing
model allows for time shifts τij of the sources before the
linear superposition. Time shifts (delays), source signals and
mixing weights are determined by a blind source separation
algorithm described in the following.

Classical applications in acoustics for anechoic demixing
assume frequently an underdetermined mixing model of the
form (1). These are models where the sources outnumber the
signals. A new algorithm for the solution of overdetermined
problems, i.e., if the number of sources is smaller than the
number of signals, can be derived based on the Wigner-
Ville transform [14]. The Wigner-Ville spectrum (WVS) of a

random process x is defined by the partial Fourier transform
of the symmetric autocorrelation function of x:

Wx(t, ω) :=
∫

E

{
x(t +

τ

2
) x(t− τ

2
)
}

e−2πiωτdτ (2)

Applying this integral transform to equation (1) results in the
equation

Wx(t, ω) :=
∑

j

wij
2 Wsj (t− τij , ω) (3)

under the assumption that the sources are statistically inde-
pendent. As two dimensional representation of one dimen-
sional signals, this equation is redundant and can be solved
by computing a set of projections onto lower dimensional
spaces that specify the same information as the original
problem. In short, all parameters in the model (1) can be
estimated using the following two steps:

1) Solve:

|x̃i(ω)|2 =
X

j

|wij |2 |s̃j(ω)|2 (4)

where x̃i and s̃j specify the normal Fourier transform
of xi and sj . This equation can be solved using
nonnegative matrix factorization (NMF) or a positive
ICA algorithm to obtain the power spectra of the
sources.

2) Use the results form the previous step to solve the
following equation numerically in order to obtain the
phase spectra and delays of the sources:

|x̃i(ω)|2 ∂

∂ω
arg {x̃i(ω)} =X

n

|wij |2|s̃j(ω)|2[ ∂

∂ω
arg{s̃i(ω)} + τij ]

(5)

Detailed comparisons for periodic and non-periodic trajec-
tory data show that the model (1) results in more compact
trajectory approximations for human movement data, requir-
ing less source terms than models based on standard PCA
and ICA for the same level of accuracy. This is illustrated in
Fig. that shows the approximation quality as function of the
number of sources. Approximation quality was defined by
the expression 1 − (‖D−F‖)

‖D‖ , where D signifies the original
data matrix, F its approximation by the source model, where
the norm is the Frobenius norm. For the approximation of
the gait data basis the new method requires only three source
signals to achieve an approximation quality of 97 % while
while PCA and ICA require more than 6 sources to achieve
the same level of accuracy. See [15] for further details.

This time-frequency approach allows a very accurate esti-
mation of the delays in Fourier domain without the need
for discretization. A detailed analysis shows additionally
that the mixing weights vary with the emotional style of
the movement, while source functions and delays are very
similar between different emotions. This makes it possible
to morph between different emotions by interpolation of the
mixing weights.



Fig. 1. Comparison of different blind source separation algorithms.
Approximation quality is shown as a function of the number of sources
for traditional blind source separation algorithms (PCA/ICA) and our new
algorithm.

III. DYNAMICAL SYSTEM FOR TRAJECTORY GENERATION

The previous model for the compact approximation of
trajectories based on synergies is not suitable for real-time
animation, e.g. for computer games, since the trajectory
has to be synthesized by superposition and delaying of the
complete source signals. A real-time capable algorithm can
be devised by specifying a dynamical system that produces
the same trajectories as solution. We design such a dynamical
system, again exploiting the fact that the movement can be
approximated by a superposition of a few basic components.
For this purpose, we establish a mapping between the
solutions of simple dynamical systems and the sinosoidal
source signals of the trajectory representation. The complete
trajectory is then generated by a set of such simple dynamical
systems, which are coupled to ensure temporal coordination
between the different sources. In an abstract sense, the
resulting system is similar to a set of coupled ’central
pattern generators’ in a biological system. Such architectures
have been proposed as model for the generation of gaits
and other motor patterns [16], [17]. In the following, we
first introduce the attractor dynamics and discuss how the
mapping between its solutions and the source signals of the
trajectory representation is learned. Finally, we demonstrate
how dynamic couplings can be introduced that stabilize the
coordination within single characters, and which are suitable
for the simulation of coordinated behaviour of multiple
avatars.

1) Attractor Dynamics: Often, behaviour can be mapped
onto stable solutions of dynamical systems [18]. Various
applications in the field of robotics (e.g. [16], [17]) suc-
cessfully demonstrate this procedure. In the experiments
of this paper we simulate only periodic gaits, while our
approach generalizes for non-periodic movements. Limit
cycle oscillators seem to be a natural choice as dynamics
for the generation of such periodic behaviours (e.g. [16],
[17]). As basis elements of our architecture we use a van
der Pol oscillator. This oscillator can be understood as a
harmonic oscillator with an amplitude-dependent damping.

Its dynamics is given by the differential equation:

ÿ (t) + λ
(
y (t)2 − k

)
ẏ (t) + ω2

0 y (t) = 0 (6)

The parameter ω0 determines the eigenfrequency of the
oscillator, and the parameter k the amplitude of the stable
limit cycle. After perturbations the state will thus return to
this attractor. In addition, the structure of the dynamics does
not fundamentally change for moderate couplings with other
system components (structural stability). For more details see
[19].

2) Mapping of phase space onto source signals: In order
to generate the source signals in real-time, we construct
nonlinear mappings between the attractor solutions of the
van der Pol oscillators and the values of the source signals.
These mappings are learned by Support Vector Regression
(SVR) [20]. For each of the three sinosoidal source signals
of the model (1) a separate oscillator is introduced. In
order to model the delays for joint angles (17 joints ×
3 angles resulting in 51 joint angles) we introduce new
auxiliary signals for the individual sources with different
delays according to the relationship:

s̃ij(t) = sj(t− τij) (7)

For each of these modified source signals we construct a
separate mapping from the phase space of the van der Pol
oscillator that corresponds to the source sj , defined by the
variable pair yj(t) = [yj , ẏj(t)] and the values of the source
function. The mapping is defined by the nonlinear functions:

s̃ij(t) = fij

(
yj(t)

)
(8)

The nonlinear functions fij are learned by SVR from T
training data pairs

{
yj(tk), sij(tk)

}
1≤k≤T

that are derived
by sampling one cycle of the stationary solution of the
oscillator and the modified source signal equidistantly over
time. After the functions fij have been learned, the dynamics
corresponds to three limit cycle oscillators with nonlinear
instantaneous observers that map the state of each oscillator
onto the corresponding set of delayed source signals. These
signals then are linearly combined according to (9). The com-
plete reconstruction of the joint angle trajectories requires
the addition of the average joint angles mi, which have
subtracted from the data before the blind source separation
(Figure 2):

xi(t) = mi +
∑

j

wij s̃ij(t) (9)

3) Dynamic couplings: In order to stabilize the timing-
relationship between the different sources (’synergies’) we
introduced dynamic couplings between the three oscillators
that drive the source signals of the same avatar. It has been
shown applying contraction theory that stable behaviour
of such oscillator networks can be accomplished by
introduction velocity couplings [21].



Fig. 2. Illustration of the dynamics for real-time animation. The phase space
of the limit cycle oscillator is mapped onto the time-shifted source signals
using Support Vector Regression. Joint angles are synthesized by combining
the signals linearly according to the learned mixture model (1). A kinematic
model converts the joint angles into 3-D positions for animation.

The couplings within the same avatar were given in the form
(cf. Figure 3):

ÿ1 + λ
(
y2
1 − k

)
ẏ1 + ω2

0 y1 =
α (ẏ2 − ẏ1) + α (ẏ3 − ẏ1)

ÿ2 + λ
(
y2
2 − k

)
ẏ2 + ω2

0 y2 =
α (ẏ1 − ẏ2) + α (ẏ3 − ẏ2)

ÿ3 + λ
(
y2
3 − k

)
ẏ3 + ω2

0 y3 =
α (ẏ1 − ẏ3) + α (ẏ2 − ẏ3)

(10)

Such dynamic couplings can also be exploited for simulating
coordinated behaviour of multiple characters and crowds, for
example, to enforce that multiple avatars walk in synchrony
(e.g. soldiers in lock-step). To implement such couplings we
only connected the oscillators assigned to the source with
the lowest frequencies (oc1). By introducing unidirectional
couplings it is possible to make multiple characters following
one, who acts as a leader [21].

4) Dynamic variation of movement style: The proposed
model for the real-time generation of trajectories permits
style morphing in a straight-forward way. To interpolate
between two movement styles (a) and (b), e.g. neutral and
emotional walking, the mixing weights and the mean joint
angles are linearly interpolated. For the weights wij this
results in the equation:

wij (t) = λ (t)wa
ij + (1− λ (t))wb

ij (11)

The time-dependent morphing parameter λ(t) specifies the
movement style. Additionally, the gait speed is adjusted by
interpolating the eigenfrequencies of the oscillators:

ω0(t) = λ (t) ωa
0 + (1− λ (t))ωb

0 (12)

The same type of morphing was also applied to implement
direction changes of the avatars for navigation, morphing

Fig. 3. Coupling of multiple avatars, each of them comprising three coupled
oscillators.

between straight and curved gait steps. The change of the
morphing parameter can be made dependent on the be-
haviour of other avatars in the scene, e.g. to influence the
emotional style dependent on the distance d of the avatar
from another ’dangerous’ colleague, introducing a distance-
dependent morphing weight λ (t) = g (d (t)). Similarly, the
eigenfrequency parameter ω0 can be made dependent on the
distance from other agents. In this way, the walking speed
of the characters can be made dependent on the behaviour
of the others.

IV. NAVIGATION

For the simulation of realistic interactive character be-
haviour, navigation and obstacle avoidance have to be in-
cluded in the system for real-time animation. From the
generated articulated motion of the avatars, first, the trans-
latory motion and the rotation of the hip in the horizontal
plane is computed by enforcing the floor contact constraints
of the feet. In this way, we generate the propagation and
heading direction of the avatars indirectly from the joint
angle movements. By interpolating between straight and
curved walking we were able to simulate walking with
different curved walking paths. The addition of a navigation
dynamic makes it possible to simulate avatars that move
towards specific targets in space, or to avoid obstacles and
other avatars.

A. Computation of translation and heading

The pelvis forms the root of the kinematic chain of our
avatar model. The core of the algorithm for computing
the avatar’s propagation is to adjust the horizontal pelvis
translation and rotation in order to fulfil the constraint that
the feet that make contact to the ground do not translate. For
this purpose, we first detect whether the feet make ground
contact using a simple threshold criterion for the vertical
position of the foot centers. This criterion works well when
the original motion capture data did not contain foot slipping.
We add a differential translation and horizontal rotation to the
pelvis coordinate system in order to minimize foot slipping.



In addition, the vertical position of the pelvis is adjusted by
assuming that the foot forms the lowest point of the figure.

B. Navigation dynamics

We use a simplified version of a dynamic navigation model
which has been applied successfully in robotics before [22],
[23]. The temporal change of the heading direction ϕi of
avatar i is given by the differential equation:

dϕi/dt = hgoal
(
ϕi, pi, pgoal

i

)
+∑

j

havoid
(
ϕi, pi, pj

)
+
∑

j

hpcoll
(
ϕi, ϕj , pi, pj

) (13)

The right-hand side of this equation has three different
components, where pi denotes the position of character i.
The first term

hgoal
(
ϕi, pi, pgoal

i

)
=

sin

(
arctan

(pi − pgoal
i )2

(pi − pgoal
i )1

− ϕi

)
(14)

models a tendency to move in the direction of the goal, where
the goal of avatar i is specified by the 2D position vector
pgoal

i .
The second term implements obstacle avoidance, where

the obstacles are defined by the other avatars. This term is
given by:

havoid
(
ϕi, pi, pj

)
=

sin (∆ϕij) · exp

(
−

∆ϕ2
ij

2σ2
ϕ

)
· exp

(
−

d2
ij

2σ2
d

)
(15)

with ∆ϕij = ϕi − arctan
(
(pi − pj)2/(pi − pj)1

)
and

dij = |pi − pj |.
Much more realistic collision avoidance is accomplished

by inclusion of a third term in the dynamics that controls
the heading direction. This term has the same form as the
previous term.

hpcoll
(
ϕi, ϕj , pi, pj

)
= sin (∆ϕij) ·

exp

(
−

(∆ϕpc
ij )2

2σ2
ϕ

)
· exp

(
−
(
dpc

ij

)2
2σ2

d

)
.

(16)

However, dpc
ij and ∆ϕpc

ij are computed like dij and ∆ϕij

replacing the point pj by the predicted collision point of the
avatar i with avatar j.

The walking direction of the characters is changed by
interpolation between straight walking and walking along
curved paths to the left for dϕi > 0, and to the right for
dϕi ≤ 0 using (11). The morph parameter λ(t) was taken
proportional to |dϕi|, normalizing in a way that ensures
λ = 1 for the maximum possible value of this derivative.
The heading direction ϕi (t) generated by the navigation
dynamics was low-pass filtered with a time constant equal to
one step cycle to improve the smoothness of the navigation
behaviour.

V. RESULTS

The proposed technique for motion capture-based self-
organized simulation of character behaviour has a broad
application spectrum, which can only be partially be explored
in this paper. In the following, we present a number of exam-
ple applications that highlight possibilities of the approach.

A. Approximation quality

In general, the blind source separation method discussed
in Section II provides accurate approximations of the joint
trajectories by using less components than other standard
methods for dimension reduction. Beyond the quantitative
analysis in Fig. 1, the influence of approximation quality on
animations is illustrated in by an attached Demo1.

As further evaluation of the method, we compared the
reconstruction errors of the model for different conditions,
including on-line and off-line models. For this purpose, we
extracted 3 shift invariant source signals from the 7 motion-
captured emotional walking gaits (including left and right
turning walks). We compared the reconstructed angles tra-
jectories of neutral straight walking of synthesized gaits with
the original motion-captured trajectories of the same style
(corresponding to avatar 1). The second case was the off-line
generation of the trajectory by the blind source separation
model (1), used to animate avatar 2. The movements of avatar
3 were generated by the simplest possible on-line model,
mapping the phase spaces of 3 coupled oscillators by Support
Vector Regression onto the source signals. The propagation
speed of this avatar deviates slightly (a few percent) from
the avatar 1 due to approximation errors.

Finally, we created a more complex online situation where
another avatar (avatar 4) follows avatar 1 implementing a
distance-to-frequency coupling in order to keep the dis-
tance between the avatars constant (cf. Section III-.4). The
distance-frequency coupling was implemented by a sig-
moidal function:

λ(t) = g (d(t)) =
1

1 + exp(−γd(t))
(17)

with the positive constant γ. The parameters ωb
0 and ωb

0 in
(12) were appropriately adjusted.

The normalized errors (unexplained variance) between
the trajectories in joint angle space of avatars 2, 3 and 4
compared with avatar 1 (original trajectory) were: 6.89%
(2-1), 8.62% (3-1), and 7.51% (4-1). This implies that the
major error is introduced by the source approximation, while
the support vector regression has a much smaller influence.

B. Coordination of a crowd

A first example is illustrated in Figure 4. A crowd of
characters is first locomoting individually without fixed phase
relationship. An instruction to move synchronously (in lock-
step) is introduced, modeled by introducing couplings be-
tween the oscillator triples of the individual avatars, taking

1www.uni-tuebingen.de/uni/knv/arl/avi/compareN.avi
www.uni-tuebingen.de/uni/knv/arl/avi/compareH.avi



Fig. 4. Synchronization of the gaits within a crowd. (a) Avatars start with
self-paced walks that are out of phase. After a transitory period (b), the
gaits of the characters become completely synchronized (c).

one oscillator as a leader (Section 3). For appropriate cou-
pling, the transition between uncoordinated and coordinated
crowd behaviour is quite short (less than three steps) and
looks quite natural. After the transition, characters adapt
walking behaviour that looks highly realistic [Demo2].

The same example is useful to illustrate the benefit of more
compact generative trajectory models for on-line animation.
We compared the synchronisation behaviour of two avatars
(see [Demo3]). One of them (avatar 1) was driven by three
oscillators corresponding to the source signals extracted by
the discussed blind source separation algorithm. The other
avatar (avatar 2) was driven by 5 oscillators that were
mapped onto PCA components of the trajectories, in the
stationary state resulting in a similar approximation quality.
Both avatars were coupled to a third avatar (leader) with the
same coupling strength. Starting the avatars 1 and 2 with
equal initial phases which differ from the phase of avatar 3,
it shows that the model with three oscillators synchronizes
faster and produces more natural-looking behaviour.

The same example also nicely demonstrates that the
model, even though it has been trained in the attractor of
the dynamics, generalizes in a meaningful way to transient
states. This is illustrated by the phase diagram in Fig. 5 that
illustrates the trajectories of the first leading oscillators of
the two avatars. First, this figure shows that the oscillators
during the synchronization period are not near the attractor,
requiring the system to generalize to trajectories that were not
used during the raining of the system. Second, it is obvious
that the system with less oscillators (red trajectory) returns
faster to the attractor than the system with 5 oscillators (green
trajectory). More detailed investigations testing dependence
on coupling strength and coupling structure are underway.
Since the linear weights of the PCA components are not
sparse the mixing of the many oscillator inputs results in
jerky motion in the starting phase of the synchronization
period.

2www.uni-tuebingen.de/uni/knv/arl/avi/synchronization.avi
3www.uni-tuebingen.de/uni/knv/arl/avi/transient.avi

Fig. 5. Phase plot of the first (principal) oscillators of two avatars that are
coupled to a leader. The diagram shows the state space of the oscillator in
the [y(t), ẏ(t)] plane. The green line corresponds to the avatar driven by
5 PCA components, and the red line to the avatar animated with 3 sources
extracted with our algorithm. The coupling is switched on after short starting
period.

C. Navigation and style change

The second example [Demo4] is illustrated in Figure 6. A
group of avatars that meets in the center of the scene changes
their affect upon the contact with the other characters. This
behaviour was implemented by making the affect of each
avatar dependent on the distance from the others. In addition,
the avatars avoid each other, due to the navigation dynamics
described in section IV. In this simulation, navigation and
changes of emotional styles were combined, based on only
three prototypical gaits: neutral walking with rotation right
or left, and emotional walking. In order to produce the
emotional gait for blending with left and right neutral paces,
we first created an intermediate balanced mixture by inter-
polating the mixing weights. Corresponding with section IV,
gait morphing was based on a piece-wise linear interpolation
dependent on the sign of the change of the heading direction
dϕ/dt.

D. Animation of a ’folk dance’

The next example is a self-organized scenario, where eight
pairs of avatars execute a type of ’folk dance’ that requires
them to walk in synchrony to the music along a straight line,
forming a corridor. Once the couples have reached the end
of the corridor, they are required to walk quickly to the other
end and re-enter the corridor from the other side. At the point
of reentrance the individual avatars need to synchronize with
their partner and the other avatars within the corridor. In spite
of this relatively complex scenario quite natural behaviour of
the whole group of 16 avatars can be self-organized [Demo5].

To simulate this complex behaviour, we divided this sce-
nario into four main sectors that are described separately in
the following (see Figure 7):

1) At the entrance of the corridor the characters gather
and wait for the corresponding partner to move syn-
chronously. To simulate the synchronized walking of

4www.uni-tuebingen.de/uni/knv/arl/avi/avoidance.avi
5www.uni-tuebingen.de/uni/knv/arl/avi/dance.wmv



Fig. 6. Avoidance behaviour and change of emotional style. a) At the
meeting point their emotional styles change from sad to happy. In addition,
the characters avoid each other. b) Avatars heading towards their goals (red
circles) with a happy emotion.

all couples within the corridor the corresponding oscil-
lators are coupled similar to equation (10), introducing
couplings not only between the avatars of one couple
but also between the subsequent couples within the
corridor.

2) At the end of the corridor reaching the second zone the
two avatars of each couple separate and the coupling
between their oscillators is removed. Their movements
from this point are asynchroneous and determined by
the the navigation dynamics according to Section IV.
In addition, within this zone the emotional walking
style of the characters changes from happy to neutral.
The curved walking paths are generated by defining
appropriate goal points.

3) Along the straight paths outside the corridor the avatars
accelerate to catch up with their partner at the begin-
ning of the corridor in time, simulated by a temporary
increase of the eigenfrequency of the corresponding
oscillators.

4) In the last zone the characters decelerate, modeled by

Fig. 7. Simulation of a ’folk dance’ behaviour is organized within four
zones: 1) Avatars within the corridor move in synchrony, simulated by
coupling the corresponding oscillators. 2) Leaving the corridor the avatars
of the individual dancing couple become separated and start to move along
curved paths. Their emotional style changes from happy to neutral. 3)
Avatars walk asynchronously and ’hurry up’ to reach the entrance of the
corridor, simulated by increasing the eigenfrequency of the oscillators. 4)
When the avatars approach the entrance of the corridor their walking speed
decreases, and they need to get in synchrony again with the appropriate
leg. Both can be simulated by appropriate adjustment of the oscillator
frequencies.

decreasing the frequency of the oscillators. A difficult
problem is the re-synchronization with the correct foot
at the entrance of the corridor. This is accomplished by
slightly adjusting the oscillator frequencies to ensure
re-synchronization with the appropriate leg. Again, the
curved paths are generated by defining appropriate goal
point exploiting the navigation dynamics (13).

VI. CONCLUSION AND FUTURE WORK

We presented a new framework that links the synthesis
of realistic human movements based on motion capture
data with the self-organization of behaviour using nonlinear
dynamical systems. The proposed method exploits biolog-
ically inspired concepts and is based on the learning of
highly compact models for human movement trajectories by
a superposition of learned ’synergies’, which are controlled
by nonlinear attractors dynamics. By introducing of appropri-
ate dynamic couplings complex realistic looking behaviour,
reproducing the fine structure of human movements, could
be self-organized, even for complex scenarios. Presently,
we extend this approach also for non-periodic movements.
In addition, we work on scenarios with contact between
multiple avatars inducing additional kinematic constraints.

Future work will try to exploit more the synergy concept,
learning sparse components that encompass only limited
sets of degrees of freedom. This will potentially result in
more flexible control of motion styles. In addition, such
components offer the possibility to make individual synergies
reactive and dependent on external constraints, potentially
providing a basis for a much more fine-grained adaptation
of the generated behaviour to external constraints. In this
context, possible applications in robotics will be considered.



VII. ACKNOWLEDGMENTS

Supported by DFG Forschergruppe ’Perceptual Graphics’
and EC FP7 project COBOL. We thank C. Roether for
help with the acquisition of the motion capture data.
Additional support was provided by the Hermann und
Lilly-Schilling-Stiftung. We are grateful to T. Flash and J.J.
Slotine for many interesting discussions and W. Strasser for
his support.

REFERENCES

[1] M. Gleicher, ”Retargetting Motion to New Characters”, Proc. ACM
SIGGRAPH, Int. Conf. on Comp. Graph. and Interactive Techniques,
1998, pp. 33-42.

[2] M. Gleicher, H.J. Shin, L. Kovar and A. Jepsen, ”Snap-together
motion: Assembling run-time animation”, ACM Trans. on Graph.
SIGGRAPH, 2003, pp. 702-702.

[3] O. Arikan, D.A. Forsyth and J.F. O’Brien, ”Motion synthesis from
annotations”, ACM Trans. on Graph. SIGGRAPH, 2003, pp. 402-408.

[4] J. Chai and J.K. Hodgins, ”Performance Animation from Low-
dimensional Control Signals”, ACM Trans. on Graph. SIGGRAPH,
2003, pp. 702-702.

[5] R. Grzeszczuk, D. Terzopoulos and G. Hinton, ”NeuroAnimator: Fast
neural network emulation and control of physics based models”,
Proc. ACM SIGGRAPH, Int. Conf. on Comp. Graph. and Interactive
Techniques, 1998, pp. 9-20.

[6] W. Shao and D. Terzopoulos, ”Autonomous pedestrians”, Proc. ACM
SIGGRAPH, 2005, pp. 19-28.

[7] J.K. Hodgins, W.L. Wooten, D.C. Brogan and J.F. O’Brien, ”Animat-
ing human athletics”, Proc. ACM SIGGRAPH, 1995, pp. 71-78.

[8] N.A. Bernstein, The coordination and regulation of movements, Perg-
amon Press, Oxford, 1967.

[9] T. Flash and B. Hochner, Motor primitives in vertebrates and inverte-
brates, Curr. Opin. Neurobiol., vol.15, no.6, 2005, pp. 660-666.

[10] A. d’Avella and E. Bizzi, Shared and specific Muscle synergies in
neural motor behaviours, Proc. Natl Acad Sci USA, vol.102, no.8 2005,
pp. 3076-3081.

[11] Y. Ivanenko, R. Poppele and F. Lacquaniti, Five basic muscle activa-
tion patterns account for muscle activity during human locomotion,
J Physiolol, vol.556, 2004, pp. 267-282.

[12] A. Safanova and J.K. Hodgins and N.S. Pollard, ”Synthesizing phys-
ically realistic human motion in low-dimensional, behaviour-specific
spaces”, ACM Trans. on Graphics, Proc. SIGGRAPH, 2004, pp. 514-
521.

[13] L. Omlor and M. Giese, ”Extraction of spatio-temporal primitives of
emotional body expressions”, Neurocomputing, 2007, pp. 10-12.

[14] G. Matzand and F. Hlawatsch, Wigner distributions (nearly) every-
where: Timefrequency analysis of signals, systems, random processes,
signal spaces, and frames, Signal Processing, vol.83, no.7, 2003, pp.
1355-1378.

[15] L. Omlor and M.A. Giese, ”Blind source separation for over-
determined delayed mixtures”, Advances in Neural Information Pro-
cessing Systems, 2006, pp. 1049-1056.

[16] A. Ijspeert, J. Nakanishi and S. Schaal, ”Learning Attractor Land-
scapes for Learning Motor Primitives”, NIPS, 2002, pp. 1547-1554

[17] S. Schaal, A. Ijspeert and A. Billard, Computational approaches to
motor learning by imitation, Philos Trans R Soc Lond B Biol Sci.,
vol.358, no.1431, 2003, pp. 537-547.

[18] J.A.S. Kelso, Dynamic Patterns: The Self-Organization of Brain and
Behaviour, MIT Press, Cambridge, 1995.

[19] A.A. Andronov, A.A. Vitt and S.E. Khaikin, Theory of oscillators,
Dover Publ. Inc., New York, 1987.

[20] V. Vapnik, Statistical Learning Theory, Wiley-Interscience, New York,
1998.

[21] W. Wang and J.J.E. Slotine, On Partial Contraction Analysis for
Coupled Nonlinear Oscillators, Biological Cybernetics, vol.92, no.1,
2005, pp. 38-53.
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