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h i g h l i g h t s

• We devised a new architecture that combines the online-planning of complex coordinated full-body movements, based on the flexible combination
of learned dynamic movement primitives, with a Walking Pattern Generator (WPG), based on Model Predictive Control (MPC), which generates
dynamically feasible locomotion of the humanoid robot HRP-2.

• A dynamic filter corrects the Zero Moment Point (ZMP) trajectories in order to guarantee the dynamic feasibility of the executed behavior taking into
account the upper-body movements, at the same time ensuring an accurate approximation of the planned motion trajectories.

• We demonstrate the high flexibility of the chosen movement planning approach, and the accuracy and feasibility of the generated motion.
• In addition, we show that a naive approach, which generates adaptivemotion by usingmachine learningmethods by the interpolation between feasible

training motion examples fails to guarantee the stability and dynamic feasibility of the generated behaviors.
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a b s t r a c t

Skilled human full-body movements are often planned in a highly predictive manner. For example,
during walking while reaching towards a goal object, steps and body postures are adapted to the
goal position already multiple steps before the goal contact. The realization of such highly predictive
behaviors for humanoid robots is a challenge because standard approaches, such as optimal control,
result in computation times that are prohibitive for the predictive control of complex coordinated full-
body movements over multiple steps. We devised a new architecture that combines the online-planning
of complex coordinated full-body movements, based on the flexible combination of learned dynamic
movement primitives, with a Walking Pattern Generator (WPG), based on Model Predictive Control
(MPC), which generates dynamically feasible locomotion of the humanoid robot HRP-2. A dynamic filter
corrects the Zero Moment Point (ZMP) trajectories in order to guarantee the dynamic feasibility of the
executed behavior taking into account the upper-bodymovements, at the same time ensuring an accurate
approximation of the planned motion trajectories. We demonstrate the high flexibility of the chosen
movement planning approach, and the accuracy and feasibility of the generated motion. In addition, we
show that a naïve approach, which generates adaptive motion by using machine learning methods by
the interpolation between feasible training motion examples fails to guarantee the stability and dynamic
feasibility of the generated behaviors.
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1. Introduction

The modeling and the synthesis of the online-reactive multi-
action sequences is an extremely important topic in both, com-
puter graphics and humanoid robotics. Themost challenging prob-
lem in the online control of complex whole-body behaviors, which
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is solved apparently effortless by humans, is the flexible coordina-
tion of goal-directedmovementswith themaintenance of dynamic
balance during locomotion. The solution of this problem requires
simultaneously the flexible adaptation of executed upper-body
behaviors, e.g. to changing positions of goal objects or obstacles,
combined with a control of dynamic balance during walking, in
order to avoid that the robot falls. In addition, the robot’s joint
torques have to be kept in a feasible range. The detailed analy-
sis of human behavior shows that their motor control is highly
predictive, and often optimizes complex behaviors over long time
horizons, e.g. lasting overmultiple steps. This is fundamentally dif-
ferent from many solutions of this problem in humanoid robotics
[1].

The realization of such complex behaviors for humanoid robots
with long time horizons for predictive control is a challenging
problem. A standardmethod for the computation of control signals
for such high-dimensional robots is optimal control. However, the
solution of optimal control problems over such long temporal hori-
zons is computationally extremely costly. With state-of-the-art
methods [2] even the optimization of a single step for a humanoid
robot can takeminutes, andmulti-step sequenceswould take even
multiple hours. This renders such methods inappropriate for the
real-time planning and control of such complex full-body motion
sequences in humanoid robots.

In this paper, we present an approach for the solution of this
problem that combines two components. The first component is
an online-capable planning algorithm that is based on learned
dynamic movement primitives, which generates human-like full-
bodymotion sequences that flexibly adapt to changes in the action
space, e.g. displacements of the goal object. The second component
is a nonlinear Model Predictive Control (MPC) system [3] for the
humanoid robot that combines the outputs of a Walking Pattern
Generator (WPG) with the panned upper-body motion in a way
that guarantees the dynamic feasibility of the resulting full-body
motion. An essential element of this architecture is a dynamic filter
that appropriately modifies the planned Center of Mass (CoM)
and Zero Moment Point (ZMP) trajectories in dependence of the
planned upper-body motion. We demonstrate the novel approach
by the control of multi-step sequences that realize highly adaptive
reaching and walking towards goal objects at different distances,
where the system implements human-like highly predictive con-
trol over multiple-steps. The resulting computational complexity
of this control system is not much higher than the one of the state
of the art WPG algorithm [4].

Our article is organized as follows: In the following section,
we give an overview of related work in the areas of computer
graphics and humanoid robotics. Section 3 describes the developed
system. This includes a short description of the underlying human
trajectory data from a drawer-opening task, of the online planning
algorithm that is based on a special form of dynamic movement
primitives, and a more detailed description of the integration of
this planning algorithm with the MPC-based control architecture
of the robot. In Section 4 we present a variety of results obtained
with the OpenHRP robot simulator, which evaluate the proposed
approach also in comparison with simpler solutions, and a prelim-
inary test that implemented the planned trajectories on the HRP-
2 humanoid robot. Limitations and extensions of the developed
approach are discussed in the final section.

2. Related work

Work related to the developed system can be found in biological
motor control and related robotics approaches, computer anima-
tion, and in humanoid robotics.

2.1. Control of multi-step sequences in biological systems

Biological systems effortlessly coordinate locomotion with
other goal-directed tasks [5]. A relevant example are studies on
the coordination of walking and reaching. The kinematics of this
behavior can be approximated by two separate underlying move-
ment components, which mainly model the periodic locomotion
and the non-periodic goal-directed movement [6]. A recent study
Land et al. [7] investigated in detail the underlying coordination,
using a task where participants had to walk towards a drawer and
to reach for an object. Participants showed highly predictive con-
trol in their motor behavior, where within multi-step sequences
already the first step was adapted dependent on the position of
the goal object. In addition, participants adjusted their behavior in
a way that ensured comfortable reaching during in the last step.
This behavior is compatible with the maximum end-state comfort
hypothesis that has been formulated in humanmotor control [5,8].
In recent work we have tried to reproduce this behavior by an
algorithm for trajectory synthesis that is based on learned dynamic
movement primitives [9]. A similar problem has also been solved
by Gienger et al. [10], who computed optimized stance locations
with respect to the position of a reaching target, using a dynamical
systems approach for the generation of reaching behavior.

An influential idea in the field of biological motor control has
been the concept of movement primitives [11,12]. According to
this hypothesis the coordination of complex movements is based
on the combination of lower-dimensional control units, strongly
reducing the dimensionality of the underlying control problem.
Such primitives have been extracted by unsupervised learning
from kinematic and EMG data. This idea has been transferred to
robotics. Taïx et al. [13] extracted primitives from human reaching
movements usingprinciple component analysis (PCA), successfully
implementing reaching behavior on an HRP-2 humanoid robot.
Movement primitives, including the use of force feedback, have
also been proposed by Gams et al. [14,15]. A related important
idea is the concept of dynamic movement primitives that gen-
erates planned trajectories by appropriately designed nonlinear
dynamical systems [16,17]. Systems based on dynamic movement
primitives have been proposed for the generation of complex
movements in real-time [18,19]. But all these online DMP-based
methods of modeling the kinematic trajectories do not guarantee
the dynamic feasibility of the resulting motion, which is a critical
issue.

2.2. Modeling of whole-body movement sequences in computer
graphics

The problems of kinematic synthesis of complex whole body
movements has been addressed extensively in computer graphics,
e.g. [20], and many learning-based approaches have been pro-
posed that provide low-dimensional parameterizations of classes
of whole body motion (e.g. [21–24]). The generated individual
movements can be automatically concatenated into longer se-
quences, taking into account additional task constraints [25]. A
relevant example is Huang and Kallmann [26] who modeled the
coordination between locomotion and arm pointing in the final
step, by blending and selecting arm pointing primitives dependent
on the actual gait phase. All these methods model the movement
kinematics without taking dynamic constraints into account. A re-
cent example is Feng et al. [27] who blended motion-captured ex-
ample motion prioritized’stack of controllers’. Shoulson et al. [28]
presented a method where controllers for different body parts are
blended, where their prioritization is changed sequentially over
time, dependent on the actual action within a longer sequence.

Other work in this domain has developed dynamic filtering
techniques in order to adjust such synthesized motion to fulfill
dynamic constraints derived from physical models, e.g. for the
Zero Moment Point (ZMP), in order to increase the generalization
regime of such learning-based methods [29].
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Fig. 1. Illustration of the different phases of the human behavior, illustrated in terms of intermediate postures: (1) normal step; (2) step with initiation of reaching; and
(3) standing with opening of the drawer and reaching for the object.

Fig. 2. Predictive planning of real human trajectories. Distances from the pelvis to
the front panel of the drawer (green, yellow, red), and the distance between the
front panel and the object (blue) for different trials.
Source: Reproduced from [9].

2.3. Related approaches in humanoid robotics

In humanoid robotics numerous approaches have been pro-
posed for the synthesis of walking in combination with grasping
movements. An example is the DARPA robotic challenge valve
manipulation task. For this problem, Ajoudani et al. [30] proposed
a hybrid controller with a goal-driven fast foot step planner that
is combined with visual servoing for the reaching and grasping of
the valve. Kuindersma et al. [31] proposed a control architecture
for the humanoid robot Atlas that automatically finds foot steps
around and over obstacles, in order to reach for a goal object and to
realize more complex actions. Other solutions for the combination
of walking and vision-controlled reaching of a static and mobile
targets during walking have been proposed in [32] and [33].

Some researchers have used randomized motion planning al-
gorithms for whole-body walking combined with manipulation
tasks in constrained environments [34]. For example, Kanoun et
al. [35] proposed a method that is based on a virtual kinematic
tree for the planning of foot placements, which was successfully
implemented on the HRP-2 robot. A framework that decomposes
reach-to-grasp human movements into sequences of kinematic
tasks has been developed in [36]. Further work applied imitation
learning [37], where walking and grasping were modeled as a
sequence of separate actions. A task priority approach based on
a generalized inverse kinematics was applied in [38] in order to
organize several sub-tasks, including stepping and hand motion.

The control of human-like multi-joint systems taking into ac-
count contact constraints and guaranteeing dynamic balance is a
challenging approach. Current solutions range from near real-time
whole body Model Predictive Control with regularized modeling
of contacts in order to decrease the associated computational
cost [39,40] to approaches based on optimal control with precise
modeling of contact phases, requiring typically hours of off-line
computation time (e.g. [2]).

A solution based on prioritized IK, that integrates DMPs with
MPC for individual actions has been proposed by Vuga et al. [41].

3. System architecture

In the following we first give a brief overview of the human
data that was used for the training of the primitives of our online
planning algorithm, andwhich also provides evidence of the highly
predictive coordination of complex human goal-directed move-
ments. Subsequently,we describe briefly ourmovement primitive-
based online motion planning algorithm and discuss how this
planning algorithm can be integrated with the model predictive
control architecture for the humanoid robot HRP-2.

3.1. Human data

3.1.1. Drawer opening task
The modeling of the coordination of walking and reaching was

based on a motion capture data set from humans who opened a
drawer. The participants walked towards a drawer, opened it with
their left hand and reached for an object inside the drawer with
right hand. The initial distance from the drawer and the position
of the object inside it were varied [9]; see Fig. 1. The recorded
sequences consist of three subsequent actions: (1) a normal walk-
ing step (starting with left heel strike and ending with left heel
strike); (2) a shortened step with the left-hand reaching towards
the drawer. This step showed a high degree of adaptability, and
its length was typically adjusted in order to create an optimum
distance from the drawer for the final reachingmovement. This be-
havior is consistentwith themaximum end-state comfort hypothesis
in motor control, which assumes that motor planning optimizes
the comfort of the end state of planned movements [7]; (3) the
drawer opening combined with the reaching for the object while
standing. An example trial is shown in [movie1].

The data set consists of the trajectories of ten trials of single
participant, recorded in Univ. Bielefeld with optical motion cap-
ture system (Vicon Motion Systems, Oxford, UK) consisting of 12
MX-F20 CCD cameras at a frame rate of 200 fps with a spatial
accuracy of about 1.5 mm. PluginGait marker set was used with
41 markers. The length of the individual steps (actions) for the
individual motion-captured sequences is shown in Fig. 2. This
figure very nicely illustrates the predictive nature of the motor
planning. The size of the second step (yellow) is strongly adapted
dependent on the distance of the starting point from the goal
position. The lengths of the other steps is much less variable and
shows systematic dependence on this distance. (See [9] for further
details about this data set.)

1 https://goo.gl/5HKiG7.

https://goo.gl/5HKiG7
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Fig. 3. Offline pre-processing of motion capture data from humans.

3.2. Preprocessing of training trajectories

The recordedmotion capture data was processed and animated
in MotionBuilder (Autodesk), using an ‘actor’ puppet whose ge-
ometric parameters were adapted to the recorded subject. The
trajectories were cut, starting at the first heel strike and ending
with the object reaching. A kinematic model of the HRP-2 robot
was created inMaya (Autodesk), neglecting joint angle constraints.
All ten trajectories were retargeted to the HRP-2 model using
MotionBuilder. During retargeting the feet positions of HRP-2were
constrained to level ground, and the step sizes were reduced pro-
portionally to the height of the robot. The resulting joint frame
trajectories were exported, using the Denavit–Hartenberg (DH)
convention. Trajectories were then segmented by hand, and the
durations each action and the corresponding step sizeswere stored
separately.

The computed trajectories were further analyzed in Matlab
(MathWorks) and resampled, resulting in a normalized duration of
1.6 s for each action. The datawas split into two subsets, separating
the stored pelvis trajectories (time course of pelvis position and
pelvis direction in the horizontal plane), and the upper body trajec-
tories (HRP-2 joint angles extracted from DH representation). The
pelvis position trajectories were rescaled, ensuring the maximally
admissible propagation velocity for the HRP-2 (0.5 m/s). The pelvis
yaw-angle trajectories were rescaled by a constant factor, and a
fraction of the yaw angle trajectory was added back to the trunk
yaw-angle for compensation. After this compensation, customized
inverse kinematics (IK) methods were applied to correct the upper
body arm reachingmotion in order to satisfy joint limit constraints.
As input to the Walking Pattern Generator (WPG) (see below) we
used the time courses of pelvis velocities in the horizontal plane,
and of the pelvis yaw angular velocity. An overview of the pre-
processing steps is given in Fig. 3.

An illustration of this preprocessing is given in [movie2], which
shows the angular trajectories, animating a human avatar, and the
corresponding retargeted trajectories for a HRP-2 kinematicmodel
in MotionBuilder.

3.3. Primitive-based online motion planner

The first core component of our architecture is an onlinemotion
planning algorithm that is based on dynamic movement prim-
itives, which are derived from classes of human trajectories by
unsupervised learning. Because of space limitations we can here
only briefly sketch the structure of the online planning algorithm.
Further details can be found in [9].

3.3.1. Learning of kinematic primitives
The first step in the construction of dynamic movement primi-

tives is the learning of a low-dimensional representation of a set
of motion-captured trajectories that spans the space of relevant
behaviors, by a superposition of a small number of source or
basis functions. By this form of dimension reduction the relevant
behaviors can be generated by a very small number of coupled

2 https://goo.gl/ucbVA2.

dynamic movement primitives (s.b.). Contrasting with many re-
lated approaches for the modeling of trajectories, which exploit
for example PCA or ICA (e.g. [22]), we fit such trajectory sets by
a generative model that is known in acoustics as anechoic mixing
model. Opposed to the instantaneous mixing model that underlies
PCA and ICA models for trajectory representation, the anechoic
model allows for time shifts of the superposed components. We
have shown elsewhere [42] that the anechoic mixing model for
many types of movements result in representations with a much
smaller number of source functions (typically by factor two), for
equal approximation quality in comparison with standard meth-
ods such as PCA or ICA. This low dimensionality is essential since it
determines the dimensionality of the state space of the nonlinear
dynamical system that generates behaviors adaptively online.

Mathematically, the anechoic mixture model is defined by the
equation:

ξi(t)
angles

= mi +
∑

j

wij σj
(
t − τij

)  
sources

.

The joint angle trajectories ξi(t) were derived from the original
motion capture data that is temporally segmented into the three
subsequent actions (s.a.). The normalized action trajectories are
approximated by a linear mixture of the source signals σj(t),
weighted with the mixing weights wij. The individual sources are
shifted in time with the delays τij. The means of the angle trajecto-
ries are indicated by the variables mi. Source functions and model
parameters were learned, applying anechoic demixing algorithms
described in [42,43]. For the application presented in this paper, in
addition to the learned source functions, which approximate the
periodic signals components, we used an additional non-periodic
source component, which was pre-specified. This component was
given by the fixed function s0(t) = cos(π t/T ), where T was the
cycle time of the learned periodic source function with the lowest
fundamental frequency.

In order to model the multi-step sequences we learned such a
representation using a step-wise regression approach. The whole
training data was first used to fit the mean values mi and the
weights corresponding to the non-periodic source function. The
residuals of action 1, the normal walking step, were then approx-
imated by three periodic source functions, applying a modified
algorithm that constrains all time delays for the same source
function to be equal across all trials (but allowing different delays
for different joint angles). This constraint simplifies the spatio-
temporal blending between different motion patterns, at the cost
that more sources have to be introduced for an accurate approxi-
mation (cf. Fig. 4). The second and third action then were approx-
imated using the sources introduced for the normal walking step,
and two additional periodic sources that were added in order to
account for the residuals, where the same constraint was applied
to the estimated time delays. Fig. 4 shows the obtained approxi-
mation quality in comparison with a PCA model, and with models
without constraints for the time delays. It is possible to accomplish
a quite accurate approximation with a total of four sources for the
first action and two additional periodic sources for actions 2 and
3. And the resulting shapes of the learned source functions for the
approximation scheme of 4 + 3 sources are shown in Fig. 5.

https://goo.gl/ucbVA2
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Fig. 4. Approximation quality as function of the number of sources for all three
actions, comparing anechoic demixing without constraints (blue) and PCA (green).
The purple dotted line indicates approximation quality for the first action with fixed
delays across trials. The red dashed line indicates approximation quality with two
additional sources (with fixed delays). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Estimated source functions.

3.3.2. Online planning of multi-action sequences
Our online planning algorithm forwhole-bodymovements gen-

erates the trajectories as solutions of nonlinear dynamical sys-
tems that are based on dynamic movement primitives, which are
derived from the kinematic primitives described in Section 3.3.1.
Dynamic movement primitives have been proposed in robotics
before [16,17], and similar approaches have been described in
[14,44,45]. These previous approaches, however, exploit no dimen-
sion reduction for the learning of the kinematic primitives. We
have previously demonstrated the suitability of our approach for

Fig. 6. Architecture for the online synthesis of body movements using dynamic
primitives, [46].

the adaptive online generation of complex multi-step sequences,
coordinated with arm movements, and for the animation of coor-
dinated crowds of agents [9,46].

We constructed dynamic movement primitives (DMPs) from
the kinematic primitives described in the previous subsection.
For this purpose, we mapped the state space of simple nonlinear
canonical dynamical system onto the values of the learned source
functions. These nonlinear mappings were learned using Support
Vector Regression (using a Radial Basis Function kernel, exploiting
the LIBSVM Matlab R⃝ library [47]). In this way the source signals
can be generated online as solutions of a nonlinear dynamical
system. The canonical dynamical systems related to different prim-
itives were dynamically coupled in order to ensure a synchro-
nization of the corresponding states. The resulting architecture is
summarized in Fig. 6. A more detailed discussion of the design of
this coupling and its relationship to the stability of the resulting
dynamics is given in [48]. The online generated source signals are
then used as inputs for the anechoic mixing model, which defines
the planned joint angle trajectories. An overview of the underlying
architecture is shown in Fig. 6.

As canonical dynamics for the periodic DMPs we chose a limit
cycle oscillator (Andronov–Hopf oscillator), which is given by the
equations (ω defining the eigenfrequency), and the pair of state
variables [x(t), y(t)]:

ẋ(t) = [1 − (x2(t) + y2(t))]x(t) − ωy(t)
ẏ(t) = [1 − (x2(t) + y2(t))]y(t) + ωx(t).

Since the attractors of this nonlinear system can be mapped onto
circle in the phase plane, delays can be represented by a rotation
of the vectors in state space by an angle that is proportional to the
delay. In this way, we are able to model coupled networks with
delays between different CPGs by a set of coupled set of differential
equationswithout explicit delay times (see [46] for further details).
The instantaneous phase of the leading DMP, which generates
the periodic solution with the lowest frequency also was used to
control the timing of the non-periodic source.

In order to plan online highly flexible behaviors,with an adapta-
tion of steps and reaching behavior to the goal position, we learned
nonlinearmappings from task parameters onto themixingweights
of the anechoic mixing model. The task parameters were the steps
lengths and durations. Mappings were learned from training data,
applying Locally Weighted Linear Regression (LWLR) [9,49].
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Fig. 7. Adaptivity of online planning. If the goal (drawer) jumps away during the
approaching behavior, automatically an additional step is introduced. Overall, a
very smooth human-like whole-body coordination pattern emerges.

For the synthesis of multi-step sequences the step lengths was
computed from the actual estimated target distance. For this pur-
pose we tried to reproduce the dependencies between the individ-
ual step sizes and the distance to the goal. In the human data, the
reaching distance of the arm (action 3) is positively correlatedwith
the distance to the object inside the box, and negatively with the
length of the previous step. These dependencies were modeled by
linear regression and exploited for the computation of the reaching
distances while standing. For the second step, the step length

Fig. 8. Control system for the humanoid robot HRP-2. The Walking Pattern Gen-
erator computes foot positions and CoM and ZMP trajectories, which are further
adjusted by the Dynamic Filter, depending on the planned upper body motion.
The resulting trajectories are consistent with the dynamic stability constraints of
the robot. The approximation of the planned upper body movement and dynamic
stability of walking are guaranteed by a Stack of Task approach, where optimal
trajectories are computed by sequential quadratic programming. (See text for
further details.)

was adjusted in order to realize a maximum-comfort distance
for reaching. The length of the other steps then was adjusted
accordingly. Step ranges were computed from the training data,
and an appropriate number of additional steps was automatically
introduced when the target could not be reached within three
steps. Amore detailed description of the algorithms for the smooth
interpolation of the mixing weights, ensuring smooth transitions
between the different steps is given in [9].

Fig. 7 illustrates the high degree of flexibility of this online
planning algorithm. For this example, the goal (drawer) jumps
away from its original position while the agent is approaching it.
The algorithm adapts online to this perturbation, generating very
human-like adaptive coordination, and it includes automatically
an additional step in order to compensate for the suddenly in-
creased distance to the drawer. See alsomovie.3

3.4. Integration of online-planning with model-predictive control of
the HRP-2

The central innovation of our work is the integration of the
described online-planning algorithm with a control architecture
for the HRP-2 humanoid robot, which is based on nonlinear model
predictive control (NMPC). This does not only involve the combi-
nation of trajectories derived from human data, as described in
Section 3.2, but it requires specifically the approximation of human
data by dynamically feasible trajectories, exploiting NMPC frame-
work. These feasible trajectories form a novel training set, from
which a new set of optimized dynamic primitives was derived.

3.4.1. Overview of control architecture
The control architecture for the HRP-2 robot is shown in Fig. 8.

It consists of three main building blocks. The online kinematic
synthesis algorithm, which was laid out in Section 3.3, provides
input to the control architecture (shaded box in Fig. 8) in terms of
two sets of variables: the velocity and angular velocity of the linear
and angular velocity of the pelvis (variables vref and ωref), and the
joint angles of the upper body qupper body.

The first building block is a Walking Pattern Generator (WPG)
that computes from the variables vref and ωref, for one gait cycle,
foot placements xfeet and trajectories of the Center of Mass (CoM)
xCoM and of the Zero Moment Point (ZMP) xZMP that ensure the dy-
namic stability of the gait [50]. This computation is based onmodel
predictive control (MPC), and further details about the underlying
computations can be found in Section 3.4.2 and in [3].

3 https://goo.gl/9fLzO7.

https://goo.gl/9fLzO7
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The second block is a Dynamic Filter (DF) that corrects the
preplanned foot, CoM, and ZMP trajectories, taking into account
the planned whole-body motion, resulting in the corrected trajec-
tories xcorfeet, x

cor
CoM and xcorZMP. The DF operates in closed-loop together

withWPG, and further details about the underlying algorithms are
described in [3,51].

The third building block is the generalized inverse kinemat-
ics (IK) module that implements a ‘Stack-of-Task’ approach. This
module combines the corrected CoM and ZMP trajectories, and the
upper-body motion (specified by the joint angles). This module
outputs joint angle trajectories for the legs and theupper-body that
respect the dynamic stability constraints of the robot, at the same
time approximating, as far as possible, the planned behavior of the
upper body. For this purpose the task of stabilizing the locomotion
is given the highest priority, and the approximation of the planned
trajectories is realized in the null-space of the control signals for
this prioritized task. The resulting optimization problem is solved
by a sequential quadratic programming approach (QP solver).

The resulting optimal trajectories q are dynamically feasible
and can be realized by the low-level controllers of the HRP-2 robot.
During motion execution, the real-world environmental and task
parameters and the current state of the robot are fed back to
the kinematic planner, closing the control loop for an adaptive
interaction between online planning and MPC in the real world.

3.4.2. WPG based on optimal predictive control
The Walking Pattern Generators (WPG) is based on Model Pre-

dictive Control (MPC). The first WPG of this class was proposed
by Kajita et al. [52]. This method computed the reference nominal
Zero Moment Point (ZMP) trajectory from the desired placements
of feet during the gait cycle. A simplified linear inverted pendulum
dynamics (‘Cart-Table Model’) was used to link the Center of Mass
(CoM) and the ZMP. Preview control was exploited for comput-
ing the CoM trajectory from the desired ZMP. Due to the model
simplifications, the real ZMP trajectory deviates from the desired
one. This deviation is the result of neglecting the inertial and
Coriolis forces generated by the leg swing and by fast movements
of the upper-body. In order to alleviate this problem, the authors
ran the full body inverse dynamics in order to compute a better
approximation of the real ZMP. This new ZMP can be computed
for the preview horizon in real-time. The resulting ZMP error was
transformed into a resulting CoM error via the Preview Control,
following the approach proposed by Kajita et al. [52]. This result
can then be exploited to correct the CoM trajectory. The described
two steps of preview control combined with an evaluation of the
inverse dynamics can be repeated iteratively, successively reduc-
ing the ZMP error. This approach for the dynamic correction can be
interpreted as a kind of Newton–Raphson iteration [51], and was
referred to as Dynamic Filter in Section 3.4.1.

Another improvement of MPC-based WPG is the integration
of the computation of the optimal ZMP trajectory within the
constrained quadratic optimization framework that computes the
optimal CoM trajectory [53]. This approach requires only the spec-
ification of the preplanned foot positions as input, returning the
optimal trajectories for the ZMP and the CoM. Our approach for
nonlinear MPC relies in addition on another improvement of the
same framework made by Herdt et al. [54], which is the further
extension of the approach by Wieber [53]. This reformulation
of the optimization framework allows to exploit positional and
angular velocities of the CoM as reference trajectories (for a time
horizon of the next two steps), returning the foot placements and
the optimal ZMP trajectories as result of the nonlinear predictive
control problem. This framework (which is described in detail in
[3,4]) was exploited in our system.

3.4.3. Generation of the dynamically feasible training data
In order to link the described approach for the online synthesis

ofmovementswith theNMPC approach described above,we trans-
form a set of human-compatible movement trajectories that were
generated by interpolation from the original human data into tra-
jectories that result in dynamically feasible behavior of the robot.
For this purpose, we approximated the human-like trajectories
by ones generated by physics-based simulations, exploiting the
NMPC framework discussed in Section 3.4.1. This training of our
learning-based approach using dynamically feasible training data
is one of the key concepts of our proposed approach. The details of
retargeting and transformation in dynamically feasible trajectories
of the training data are discussed in Section 4.3.

4. Results

In the following we first briefly discuss the computation time
of our approach. Then we present some results on the online
kinematic planning algorithm. We then present results of the per-
formance of the method in the off-line mode, where it was used to
reproduce the behaviors of retargeted training trajectorieswithout
adaptation to new step sizes or goal distances. We demonstrate
that the obtained behaviors indeed are dynamically feasible and
can be implemented on the real HRP-2 robot.We thendemonstrate
the performance of the system in case when adaptive behavior is
planned dependent on the actual goal positions. In the last section
we compare the robustness of the proposedmethod that integrates
MPC with learning-based online planning with a simpler machine
learning-based approach, which realizes control by interpolation
between learned whole-body angle trajectories which have been
derived from training examples that were dynamically feasible. It
turns out that such a more naïve machine learning approach in
many cases results in instability and infeasibility of the produced
behavior.

4.1. Computation time

The kinematic pattern synthesis algorithm has a computation
time around 81–86 ms for the whole trajectory (1280 time steps,
each 5 ms) on a modern CPU (Intel(R) Xeon(R) CPU E3-1241 v3,
3.50 GHz, Ubuntu 14.04). The kinematic synthesis is required only
when target goal changes its position, and this computation time is
below the buffer size for the preview control (100ms). The average
computation time of the optimization problem involving WPG-DF
iterations is 4 ms (see [3]), which is below the duration of control
time-step (5 ms). The whole algorithm is thus realtime-capable. In
contrast, the optimal control approaches typically require several
hours for the off-line synthesis of multi-step sequences.

4.2. Primitive-based synthesis of kinematic trajectories

In order to validate the primitive-based online planning algo-
rithm we generated a set of highly human-like novel full-body
movement behaviors, varying the initial distance of the actor from
the goal object, including a spectrum of distances that were not
part of the training set. In order to judge the human-likeness of
the interpolated behaviors, we did not retarget the movements to
the robot kinematics and illustrate them asmovies, using a human
avatar.We learned 3 sources for the approximation of the first step,
and another two extra sources for approximating the residuals of
the second and third step (‘‘3 + 2 sources’’). The training data set
consisted of 10 human joint-angle trajectories.

From the model trained with this data new trajectories were
generated by interpolation, and the agent’s propagation velocity
and rotation of the base (pelvis) were computed from the feet-
ground contact events. The step distances from this simulation
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served as task parameter for the Linearly Weighted Regression
(LWLR).

For all tested novel goal distances the algorithm generated
very human-like highly coordinated three-step sequences. This is
illustrated in the movie4 that shows step sequences for total goal
distances between 2.34 and 2.94 m, all of which were not in the
training set. Behaviors for goal distances above 3 m are shown in
movie,5 where the algorithm introduces automatically additional
gait steps in order to ensure that the agents reaches the goal. Also
these behaviors look amazingly human-like.

The capability of online replanning is demonstrated in movie6
(see also Fig. 7). In this case, the goal jumps away from the agent
during the approaching behavior towards a more distant position,
where it cannot be reached anymore with the originally panned
number of steps. The online planning algorithm automatically
introduces additional steps and adjusts the others, so that the
behavior can be successfully accomplished, again resulting in quite
human-like appearance of the generated behavior.

4.3. Approximation of training trajectories by robot movements

In order to validate our newarchitecture,we first tested the sys-
tem by the realization of open-loop control, simulating a physical
model of HRP-2 robot that was implemented using the OpenHRP
simulator, and also testing generated behaviors on the real robot.

In a first set of simulations the robot started from a parking
position and makes a transition to a normal step. At the end
of this step the pelvis velocities (propagation and angular) were
determined and used as initial conditions for the generation of a
three-action sequence. At the end of the last action, a step back
to the final parking position was generated by spline interpolation
of the pelvis angular and positional coordinates between the final
state of the last step of the action sequence and the final position,
introducing two additional steps on the spot. We also generated
examples of four-action sequences. For this purpose, the retargeted
trajectories were extended by an additional normal walking gait
cycle. In order to augment the training data set for the learning
of the mappings between the task parameters and the model
parameters, we generated additional artificial kinematic data by
scaling of the pelvis forward propagation velocities for all gait
cycles uniformly (by the factors 0.8, 0.92, and 1.2), while keeping
the upper body trajectories fixed. In this way we generated a total
of 30 training examples from the original 10 motion capture trials.
Examples of the generated three- and four-action sequences are
shown inmovie.7

These trajectories were dynamically feasible for the robot, but
still based on movement primitives learned from human data.
In order to construct optimized primitives for the control of the
robot, we generated 30 trajectories that were simulated with the
OpenHRP physics simulator of the robot as novel training data and
learned from this novel optimized movement primitives. For this
purpose, the trajectories were approximated using 4 sources for
the approximation of the first step, and 3 additional ones for the
approximation of the residuals of the other steps, because this
resulted in the best approximationswith a small number of sources
(Fig. 5).

A systematic validation of the approximation quality, depen-
dent on the number of learned sources, is presented in Fig. 9. This
figure showshistograms of the reproduction errors of the step sizes
of the first two actions and the resulting arm reaching distance
for the last action for different choices of the number of source

4 https://goo.gl/Pn7atI.
5 https://goo.gl/JBz216.
6 https://goo.gl/9fLzO7.
7 https://goo.gl/7IZ0P1.

Fig. 9. Reconstruction accuracy of the step-sizes and reaching goal distances for
different numbers of sources. The figure shows the histograms of the spatial errors.
The first number indicates the number of sources learned from the first step (action
1), and the second number the number of sources used to approximate the residuals
of the other actions (2 and 3).

functions. In all cases the spatial errors of the parameters, realized
by the full control system, are small, always below 10 mm and
often below 5 mm. This shows that in spite of the high complexity
of the operations that are necessary to transform the original
humanmotion into amotion sequence that is feasible for the robot
the final control system produces movements that approximate
the planned step sizes and reaching distances quite accurately.

Some of these feasible re-synthesized trajectories were also
tested using the real HRP-2 robot (cf. Fig. 10). A demonstration of

https://goo.gl/Pn7atI
https://goo.gl/JBz216
https://goo.gl/9fLzO7
https://goo.gl/7IZ0P1
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Fig. 10. Real HRP-2 robot performing a 4-action walking–reaching sequence in the
laboratory of LAAS/CNRS.

the resulting behaviors for the three-action sequence is shown in
movie,8 and a four-action sequence is shown inmovie.9

We also quantified the improvement of the behavior resulting
from the inclusion of the dynamic filter in comparison with an
architecture without this stage. Fig. 11 shows the x-coordinate
trajectories of the Zero Moment Point (ZMP) for different model
variants: (1) the idealized inverted pendulum model, which pro-
vides a reference trajectory for the underlyingMPC approach (solid
blue line xreferenceZMP ); (2) the architecture without the dynamic filter
correction (green dashed–dotted line xunfilteredZMP ); (3) application of
the dynamic filter only to the lower body degrees of freedom,
assuming the upper body degrees-of-freedom to be freezed (ma-
genta dashed–dotted line xDF(legs only)ZMP ) and (4) when the dynamic
filter takes in account the full body motion (orange dashed–dotted
line xDF(full body)ZMP ). The trajectory of a model without dynamic filter
correction (green) deviates significantly from the planned refer-
ence trajectory (blue). The inclusion of the dynamic filter results

8 https://goo.gl/jjAVfT.
9 https://goo.gl/RqT6Q3.

Fig. 11. Trajectories of the ZeroMoment Point (ZMP) (inwalking direction, x coordi-
nate) for different architectures. The blue curve xreferenceZMP indicates the reference ZMP
trajectory computed from the linear inverted pendulum model. The green curve
xunfilteredZMP shows the ZMP trajectory without filter correction. The trajectory with
filter correction of all degrees-of-freedom is indicated in orange color xDF(full body)ZMP ,
and the case where the dynamic filter was only applied to the lower-body degrees-
of-freedom is indicated by themagenta trajectory xDF(legs only)ZMP . (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

in amuch better approximation of the reference trajectory (orange
color curve). This correcting effect of the dynamic filter is signifi-
cantly reduced when it is only applied to the lower body degrees-
of-freedom (magenta curve). This implies that only if the dynamic
filter is applied to all degrees of freedom the robot motion is close
to the planned dynamically feasible motion.

4.4. Inference of adaptive behaviors for novel gait distances

In order to test the architecture, with an online generation of
new behaviors (step lengths and reaching movements) dependent
on the actual state of the robot, we synthesized the control signals
for 30 different 4-action sequences, where a spectrum of step sizes
was generated by linear morphing of the sources’ weights. The
first normal walking step length spanned 30 values in the range
of 50.5–56.1 cm, and the size of the second step was linearly sam-
pled within the interval between 16.3 and 35.9 cm. The reaching
distance of the box in the last step varied in the interval of 66.3–
75.5 cm. The distance between the object and the front of the
drawer was varied within the interval between 12.4 and 27.3 cm.
The generated behaviors for the most extreme step sizes (smallest
and largest) are shown in Fig. 12. Movie10 shows these action
sequences. For all tested intermediate step sizes that were not part
of the initial training set very human-like coordinated behavior
was generated.

In order to validate more precisely whether the generated
closed-loop behaviors reproduce details of human grasping–
reaching behavior we quantified the generated step sizes for dif-
ferent goal distances and starting positions. Fig. 13 shows the step
sizes generated for 10 different combinations of the two task pa-
rameters: distance of initial standing positions from the goal, and
position of the object in the drawer. Consistent with the results in
humans, the generated behavior shows aweak positive correlation
between position of the object inside the drawer (blue) and the
reaching distance of the arm (red). This reaching distance is almost
constant, realizing the principle of the optimization of end-state
comfort. The bars in the other colors indicate the durations of
the starting step, the initial walking step, and the stopping step,
which are changed in an adaptive manner similar to the behavior
shown in Fig. 2. The starting gait cycle is not present in the human
behavior, and is required in order to ensure a correct initiation of
the first step from the parking position.

10 https://goo.gl/IcwrXb.

https://goo.gl/jjAVfT
https://goo.gl/RqT6Q3
https://goo.gl/IcwrXb
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Fig. 12. Synthesized behaviors with the full close-loop architecture, simulatedwith
the OpenHRP simulator for the two most extreme goal distances.

Fig. 13. Simulation of multi-step sequences with the full closed-loop architecture
using the OpenHRP simulator. The behavior reproduces details of the step-length
relationships in humans, Specifically it reproduces adjustments which result in
a relatively constant reaching distance during the last step, compatible with the
maximumend-state comfort hypothesis. The results are shown for 10 simulated trials,
aligning the positions according to the front of the drawer. Different colors refer to
different steps within the sequence. (See text.).

A more quantitative assessment of the performance is given in
Fig. 14, which shows the variability of the ZMP in the lateral plane.
The figure compares feasible trajectories, which are generated by
the WPC from original trajectories without interpolation to novel
step sizes or goal distances, with the behaviors of the system for
novel goal distances that were not part of the training set and
that required adaptation of the behavior using the online planning
architecture. We compared again the behaviors for the choices of
different number of sources for the anechoic mixing model (in

Fig. 14. ZMP variability in the lateral plane (y-direction). See the text for more
explanations.

total between 5 and 9 sources). The analysis is based on 30 newly
synthesized four-action sequences for novel goal distances.

The ZMP trajectory in the lateral planewas computedwithin all
stance intervals, and the standard deviation (STD) of the difference
between this trajectory and the reference ZMP trajectory was
computed. The figure shows error bars with mean and variances
as well as the maximum ranges of the variation. The ZMP vari-
ability is relatively independent of the number of sources for the
reconstruction of trajectories and even for an inference of novel
step distances the variability is not significantly higher than for
original trajectories generated with the WPG. This shows that the
closed-loop system produces highly stable behaviors in terms of
the variation of the ZMP.

4.5. Comparison with simple machine learning approach

One might ask if the proposed complex architecture is really
necessary, and if one could not just learn dynamically feasible tra-
jectories generatedwith theWPGand interpolate between the cor-
responding full-body kinematic angle trajectories using machine
learning techniques. This approach would be based on the hope
that the generated interpolations of the control signals also result
in dynamically feasible behaviors when the training trajectories
were dynamically feasible. We tested our method against such a
simpler approach.

For this test we created training data consisting of 30 dynam-
ically feasible walking–reaching trajectories, which were directly
generated by the MPC-based WPG. Each of these trajectories re-
sults in dynamically stable behavior of the robot. The resulting full-
body angle trajectories were again approximated with anechoic
mixing models with different numbers of sources (between 5 and
9). Based on this training data 30 new trajectories for the new
goal distances were computed, using either the simple machine
learning approach discussed above, or with ourmethod of learning
upper-body and base trajectories separately.

The behaviors generated with the simple machine learning
approach often result in falling of the robot, specifically during the
last action (box opening and reaching for the object, where both
arms are extended). The instability frequently also emerges earlier,
already after the robot stops during the reaching step. A demon-
stration of this behavior is given in movie,11 which compares the

11 https://goo.gl/6hbX6g.

https://goo.gl/6hbX6g
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behavior generated by the naïve machine learning approach with
the stable behavior obtained with our method. The parameters of
the target behaviors are exactly identical for the two simulations.

A further quantitative analysis is given in Table 1, that shows
how often the robot fell down out of the 30 novel synthesized
behaviors. The simulations are grouped according to the speed of
the walks. In addition, we tested interpolations generated with
different numbers of source functions for the machine learning
approach, and compared this with ourmethod using 4+3 sources.
For the low speed behaviors the machine learning approach leads
to stable behaviors in some cases, and to falling in others,where the
success of the method varies in a non-systematic manner with the
number of source functions used for the approximation. For the fast
speed movements the simple machine learning approach always
results in falling in a significant number of cases. Opposed to
this result, our method always results in stable behaviors without
falling.

The superiority of our approach is also confirmed by an addi-
tional analysis of mechanical parameters that determine whether
the behaviors can be realized on the real HRP-2 robot. Fig. 15 shows
the peak values of the ankle pitch torques for behaviors created
directly using the MPC-based WPG, behaviors generated with the
naïve machine learning approach (ML) of approximating the full
body angle trajectories, and our method. For the naïve machine
learning approach almost all torque peak values exceed 30 N m,
which is infeasible for the robot (red shaded region in Fig. 15). This
is especially true if this approach is used for the learning-based
inference of the new trajectories. Contrasting with this result, the
torques for behaviors generated directly with the WPG and the
ones generated with our method are always in the feasible range.
This is true for both, for the off-line reconstruction and for the
learning-based inference using our method, and independent of
the used number of source functions.

A similar result emerges for the analysis of the ground reaction
forces (maximal normal force of the feet during the 4-action se-
quence). The maximum admissible force for the real HRP-2 is 800
N. Fig. 16 shows that for the naïve ML approach in many cases the
ground reaction force is too large compared to this limit, except
for the reconstruction with 9 sources. Especially for the synthesis
of new inferred behaviors, the peak ground reaction forces are
always infeasible. This contrasts with the results obtainedwith our
method. Here in all cases, for the off-line reconstruction and for
the learning-based inference, the ground reaction forces are always
in the feasible range and quite similar to the peak values that are
obtainedwhen the behavior is directly computedby theWPGusing
MPC.

Summarizing, we think that these results convincingly show
that the proposed architecture provides a significant benefit over
simpler approaches that just interpolate between control signals
obtained from training data that corresponds to stable behaviors of
the robot. The integration of online planning with the MPC-based
control architecture in combination with the dynamic filter results
in always stable and robust behavior, even largely independently
of the accuracy of the learned trajectory model (number of source
functions).

5. Conclusions

We have presented an architecture that combines the highly
flexible online planning of coordinated full-body movements,
based on learned dynamic movement primitives, with a control
architecture that is based on a Walking Pattern Generator, which
exploits nonlinear Model Predictive Control. The proposed ar-
chitecture is suitable for online generation of human-like highly
coordinated full-body movements with long planning horizons.
It generates dynamically feasible behavior of the robot, ensuring

Fig. 15. Peak ankle torques obtained for testing trials with different methods:
WPG: trajectories generated with the WPG; naïve ML: interpolation of feasible
control signals usingmachine learningmethods; andwith ourmethod.We compare
also resynthesis of training behaviors, using different numbers of sources for the
approximation of the trajectories, and the synthesis of new trajectories for new
target distances. (Blue error bars indicate mean and standard deviation. Red lines
indicate the ranges betweenminimum andmaximum value). (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

Fig. 16. Peak ground reaction forces obtained for testing trials with different meth-
ods:WPG: trajectories generated with theWPG; naïveML: interpolation of feasible
trajectories using machine learning methods; and with our method. We compare
also resynthesis of training behaviors, using different numbers of sources for the
approximation of the trajectories, and the synthesis of new trajectories for new
target distances. (Blue error bars indicate mean and standard deviation. Red lines
indicate the ranges betweenminimum andmaximum value). (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)

appropriate balance control during walking in presence of fast
online replanning.

To our knowledge, no other presently existing approach allows
the realization of such human-like long-term predictive motion
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Table 1
Fraction of trials with falls of the robot within 30 test trials with novel goal distances that were not part of the training
set. Simple interpolation using machine learning techniques, approximating the trajectories with different numbers of
sources (ML) is compared with our method that integrates online planning with the MPC control system. (For the ML
conditions, the first number indicates the number of sources for the approximation of the fist action, and the second
number the additional sources introduced for the approximation of the other steps.)

The distribution of falling events

Algorithm Slow speed (tr.1–10) Middle speed (tr.11–20) Fast speed (tr.21–30)

‘‘ML 3 + 2’’ 0 10 7
‘‘ML 4 + 3’’ 1 0 2
‘‘ML 5 + 4’’ 0 5 10
Our method 0 0 0

planning in combination with a guarantee of dynamic balance
duringwalking in combinationwith other tasks for the upper body
of bipedal robots. Common alternative approaches, such as the
optimization of such complex behavior by model-based optimal
control approaches [2] are presently computationally too costly to
allow the online generation of such complex movements, where
even the optimization of shortmulti-step sequences can take easily
hours of computation time with the presently available optimiza-
tion methods. The functionality and flexibility of the proposed
architecture was demonstrated by simulation using the OpenHRP
physics simulator and also in trials on the real HRP-2 robot. In addi-
tion, the proposed system realizes predictive motor behavior that
is compatible with the end-state comfort hypothesis [5,8]. Similar
approaches have been proposed for the off-line optimization of
reaching behaviors before (e.g. [55,56]).

The shown results represent only a first feasibility test of the
proposed architecture, and they demonstrate that a single highly
complex behavior can be robustly implemented on the HRP-2,
resulting in robust behavior, where the closed-loop system so far
has been only tested using the OpenHRP simulator, and presently
is being implemented on the real robot. Our present work focuses
on the implementation of the full adaptive algorithm on the real
HRP-2 platform, testing the system in scenarios that require online
replanning.

An extension of the approach to other classes of complex be-
haviors seems possible, since we have demonstrated elsewhere
that the proposed primitive-based planning model is suitable for
the highly adaptive synthesis of other types of complex behaviors,
either of individual agents or even crowds [48]. Since the compu-
tational efficiency of optimum control approaches is limited, we
think that architectures like ours make a useful contribution to the
control of humanoid robots, especially for the online generation of
complex behaviors with longer planning horizons. The realization
of the end-state-comfort hypothesis contributes to the creation
of robots that realize principles of human motor control. This
helps to increase the human-likeness and acceptance of humanoid
robots, and might be interesting for the realization of smoother
interactions between real humans and humanoid robots.
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