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ABSTRACT	
Predicting the behavior of objects in the environment is an important requirement to overcome 
latencies in the sensorimotor system and realize precise actions in rapid situations. Internal 
forward models that were acquired during motor training might not only be used for efficiently 
controlling fast motor behavior but also to facilitate extrapolation performance in purely 
perceptual tasks. In this study, we investigated whether preceding virtual cart-pole balancing 
training facilitates the ability to extrapolate the pole motion. We compared a group of 10 
subjects, proficient in performing the cart-pole balancing task, to 10 naïve subjects. Our results 
demonstrate that preceding motor training increases the precision of pole movement 
extrapolation, although extrapolation is not trained explicitly. Additionally, we modelled 
subjects’ behaviors and show that the difference in extrapolation performance can be explained 
by individual differences in the accuracy of internal forward models. When subjects are 
provided with feedback about the true pole movement in a second phase, both groups improve 
rapidly. The results indicate that the perceptual capability to extrapolate the state of the cart-
pole system accurately is implicitly trained during motor learning. We discuss these results in 
the context of shared representations and action-perception transfer.  
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INTRODUCTION		
Expert tennis players are able to extrapolate the 
motion of a tennis ball and return it skillfully in 
order to score a point solely based on their 
present percept. The current consensus is that 
internal forward models, which predict the 
dynamic behavior of the body and objects in the 
environment (such as the ball and tennis racket) 
support the control of movements [1–3]. 
Especially in fast situations internal forward 
models seem to be exploited to overcome the 
delay of sensory input [4,5] and to predict 
events [6–9]. Since motor control is inherently 
related to the prediction of sensory 
consequences in order to act optimally, the 
question arises whether motor expertise 
facilitates the process of perceptual state 
extrapolation when asked to explicitly report 
the state as precise as possible and how motor 
expertise determines the accuracy of such 
extrapolations. 

In past studies, subjects’ general ability to 
predict the behavior of objects in order to act 
purposefully has been investigated using 
diverse paradigms. For example, La Scaleia et 
al. [10] have examined subjects’ ability to 
intercept partially occluded ball trajectories. 
Despite the occlusion, subjects were able to 
intercept the ball with high precision. In another 
paradigm subjects learned to control objects 
with internal degrees of freedom [11], such as 
mass-spring-damper objects [12], a virtual cup 
of coffee [13] or, very recently, the cart-pole 
system [14]. Predicting the behavior of these 
objects is non-trivial, because all exhibit a high 
degree of complexity. Mehta and Schaal [15] 
have examined subjects while controlling the 
cart-pole system with the goal to balance the 
pole. They compared subjects’ actions under 
full visual feedback to actions during short 
occlusions of up to 550 milliseconds. Despite 
missing visual feedback, subjects’ actions were 
indistinguishable from those under full vision. 
In correspondence with the above-mentioned 
studies they concluded, that actions during the 
occlusion are performed based on an 
extrapolated state, which replaces the missing 

visual feedback. In line with this conclusion, we 
showed that subjects learn to perform their 
actions in the cart-pole balancing task 
predictively [14], suggesting that subject 
implicitly extrapolate the systems behavior to 
plan and time the actions in advance. Moreover, 
if the dynamics of the system were changed, 
subjects needed to adapt the action timing to the 
changes just as it is known from sensorimotor 
adaptation paradigms [16]. This suggests that 
an internal forward model, which mimics the 
cart-pole dynamics, is adapted and, 
furthermore, that it is used to extrapolate the 
state during occlusion of the pole in Metha and 
Schaal’s experiment [15]. Altogether, these 
studies indicate that motor training alters not 
only motor control but also affects mechanisms 
of sensory processing. However, these studies 
only provide evidence in favor of improved 
state extrapolation capabilities for controlling 
motor behavior. 

Psychophysical studies suggest that internal 
simulations are also exploited during different 
tasks of perceptual motion extrapolation. Graf 
et al. [17], for example, showed subjects  
human actions as point-light movies and asked 
them to judge whether a static posture, shown 
after an occlusion of varying duration, is a 
plausible succession of the action. The static 
postures either matched with the duration of the 
occlusion or not. They found, that subjects’ 
responses match with the internal simulation 
hypothesis, which predicts that subjects’ error 
rates depend on the mismatch of the shown 
posture and the duration of the occlusion. Since 
we are all acquainted with human motion, 
comparing different levels of motor expertise 
was not the goal of the study but the study 
shows that humans can be very precise in 
spatial-temporal extrapolation. Aglioti et al. 
[18], in comparison, examined how the 
expertise in playing basketball influences the 
ability to judge the success of a free shot. They 
found that elite basketball players are more 
accurate in this task than subjects with similar 
visual but with much less motor experience 
(coaches and sports journalists). While these 
studies show that internal simulation and motor 
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expertise influence non-motor related 
discriminative decisions, it is still an open 
question whether motor expertise improves the 
precision in extrapolating the state of the 
controlled system. Predicting the exact state of 
a complex dynamical system, such as the cart-
pole system, over a certain duration of visual 
occlusion and reporting it explicitly, is 
presumably a considerably more challenging 
task than, for example, only judging the success 
of a free shot. 

In this study, we examined whether prior motor 
experience facilitates the accuracy in predicting 
the state of the cart-pole system not only 
implicitly for the purpose of control but also 
explicitly for reporting the state. We 
hypothesized that subjects who are able to 
balance the cart-pole system are more accurate 
in extrapolating the pole angle dynamics than 
subjects without motor expertise who are only 
visually familiar with the cart-pole system. 
Furthermore, we hypothesized that the reason 
for the enhanced ability to predict the pole angle 
dynamics precisely is that motor experienced 
subjects possess a more accurate internal model 
of the cart-pole system. Specifically, we 
hypothesized that the time horizon, over which 
accurate predictions can be performed, is larger 
for subjects with motor expertise and fitted 
subjects’ responses with a corresponding 
model. Lastly, we show that subjects without 
motor expertise are able to improve in 
extrapolation performance when provided with 
feedback. Our results are in line with the 
hypothesis, that motor training facilitates 
perceptual capabilities and further suggest that 
these perceptual capabilities are not only 
implicitly accessible for the purpose of control 
but also to perform explicit and precise state 
extrapolation when asked to report the state in 
a perceptual task. 

METHODS		
Subjects	
Twenty healthy young participants (age range 
18-33 years, mean age 26.1) participated in the 
main experiment (Figure 1). All participants 
gave informed written consent prior to 

participation. The study had been approved by 
the local institutional ethical review board in 
Tübingen (AZ 409/2014BO2). Of the twenty 
participants, ten subjects participated in 
previous experiments in our laboratory and 
were thereby able to control the cart-pole 
system (skill acquisition). Consequently, these 
subjects were assigned to the motor control 
familiar (MF) group. The remaining ten 
subjects (group VF) were naïve regarding the 
control of the cart-pole system. All participants 
were naïve regarding this study. For the motor 
control familiar subjects the average time 
between the skill acquisition and the present 
experiment was 335 days. Gender and age have 
been balanced between groups (mean ±sd: MF 
26.3 ±3.2 years, VF 25.9 ±3.5 years). All 
participants had normal or corrected to normal 
vision. Subjects were paid 8 Euros per hour 
independent of their performance. 

Experimental	Protocol		
We examined two groups representing different 
degrees of motor expertise (experienced vs. 
unexperienced). In the first group (motor 
familiar, MF), subjects had already learned to 
balance the pole on the cart in a previous study 
and were therefore familiar with the cart-pole 
system. Subjects in the second group (visual 
familiar, VF) had no prior exposure to the cart-
pole system and were visually familiarized in 
dedicated blocks during this study. Subjects of 
both groups performed overall 11 blocks of the 
cart-pole extrapolation task (Figure 1 A). 
Feedback about the real pole position was only 
provided in the last five blocks. The very first 
block (block E) was used to ensure task 
understanding. The baseline prediction 
performance was assessed during the second 
block (block B). Each of the subsequent four 
blocks (T1-T4) was preceded by a 5 minutes 
long motor control or visual familiarization 
block (Figure 1 A) depending on the group 
affiliation. Subjects in the group MF only 
performed motor control blocks while subjects 
in the group VF only performed visual 
familiarization blocks. Subsequent to the 
familiarization phase (T1-T4), participants in 
both groups performed the extrapolation task 
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for another five blocks (F1-F5), in which also 
feedback was provided after every response 
(feedback phase, Figure 1 B). Thus, the 
prediction accuracy could be improved by the 
means of error correction. The whole 
experiment lasted about 90 minutes. 

Experimental	Setup	
Visual feedback was provided on a 17 inch 
monitor (1920x1200px) using the 
Psychtoolbox [19–21] for MATLAB (The 
Mathworks, Inc.) at a refresh rate of 60 Hz 
(Figure 1 and Figure 2). Subjects’ heads were 
supported using a chin-rest 60 cm away from 
the screen. The pole of the virtual cart-pole 
system was rendered as a 160 pixels long line, 
corresponding to about 3.01cm on the screen or 
2.92° in visual space. A keyboard for recording 
subjects’ responses during the prediction and 
visual familiarization blocks was positioned 

between the subject and the monitor. For 
subjects in the group MF, a SpaceMouse® Pro 
(3Dconnexion) was additionally placed next to 
the keyboard for controlling the cart-pole 
system in the motor control blocks. The cart-
pole dynamics [22] are described by the pole 
mass (0.08 kg), pole length (1 m), cart mass (0.4 
kg) and gravitational constant (3.5 m/s2). We 
did not simulate friction. Like in our previous 
study [14], we implemented the simulation in 
MATLAB (The MathWorks, Inc.) using the 4th-
order Runge-Kutta method.  

Cart‐Pole	Extrapolation	Task	
In the extrapolation task, participants were 
asked to indicate the expected angle of the pole 
after a short occlusion (900ms) during the 
simulation of the cart-pole system (Figure 1 B). 
Every trial began with a short sequence (4.5sec) 
extracted from previous balancing attempts of 

 

Figure 1. Cart-pole extrapolation task. (A) Phases of each trial during the cart-pole extrapolation task. 
During the observation phase, a red arrow indicated the direction and magnitude of the force, which was
applied during balancing. In the prediction phase, even though the pole was hidden, the dynamical system was
simulated further. Thus, the cart and pole kept moving. Subsequently the time bar turned red and the subject
gave a response (keypress) representing the expected location of the pole. The feedback phase indicated the 
correct pole angle and was optional (see below). RT: response time. (B) Sequence of the blocks and tasks.
Subjects in the group VF (and extVF) followed the upper (orange), while subject in the group MF followed 
the lower (blue) path. In block E, the extrapolation task is explained, while in block B, the baseline
performance is measured. The subsequent four blocks are preceded by a visual familiarization block (orange)
or motor control block (blue). Feedback was provided during the last five blocks (dark gray). (C) Schematic
illustration of the prediction error regarding the pole angle. Notice that an underestimation of the pole
movement (blue) corresponds to a positive error irrespective of the side. 
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other subjects (Figure 1 B). Afterwards the 
system was simulated over one second with the 
input force set to zero. Within this second, the 
pole was occluded after 100ms for the 
remaining time of 900ms. Since the input force 
is zero during this time, there are neither any 
discontinuities nor any external sources 
influencing the systems behavior even 100ms 
before the occlusion, making deterministic 
extrapolation of the pole dynamics without 
additional information possible. To indicate the 
expected pole angle, subjects had to choose one 
of thirteen response options (Figure 1 B, C), 
which were evenly distributed over the pole 
angle range [-65°, 65°] and identified by nearby 
letters. Each letter corresponds to the key 
subjects had to press for choosing the respective 
response option. Subjects were instructed to 
always choose the response option that is 
closest to the expected pole angle. A time bar 
(Figure 1 B) indicated the time progression 
within the trial. Subsequent to observing the 
system’s movement for overall 5.5 seconds, the 
time bar turned red which was the sign for the 

subjects to respond. Depending on the block 
(Figure 1 A), subjects received feedback after 
having responded, which consisted of the 
presentation of the true pole position. We 
presented in every block the same 40 balancing 
attempts (stimuli) in pseudorandom order and 
recorded subjects’ responses. The stimuli were 
selected such that correct responses were 
balanced between the left and right side, while 
additionally covering a variety of pole angles 
and angular velocities at the time of occlusion 
onset.  

Familiarization	Tasks	
During the motor control blocks, participants 
had to balance the cart-pole system (Figure 2 
A, for details see also [14]). Specifically, they 
were asked to balance the system for a 
maximum of 30 seconds without letting the 
pole fall out of the green arc and without 
driving off the track. They therefore had to 
apply lateral virtual forces to the cart, which in 
turn accelerated the cart. In order to control the 
force, they used an input device (SpaceMouse® 

  

Figure 2. Motor control and visual familiarization task. (A) Visualization of the cart-pole system for both 
tasks. In contrast to the motor control blocks, in the visual familiarization blocks the force was indicated as
red arrow (like in the extrapolation task). (B) The input device, which was used for controlling the system
during the motor control blocks. The knob of the input device can be shifted left and right, which was used to
control the virtual force that is applied to the cart from either side. (C) Phases of each trial during the visual 
familiarization. During the observation phase, a balancing attempt was shown that lasted up to 30 seconds.
Afterwards, subjects rated the attempt on a scale from one (very bad) to five (very good). BD: balancing
duration, RT: response time. 
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Pro, 3Dconnexion) with a lateral degree of 
freedom in displacement (see Experimental 
Setup and Figure 2 B). Pushing the knob of this 
device to the side was translated into a 
proportional force into the same direction. 
Because the device position was aligned with 
the monitor, the left-right knob movement was 
in correspondence with the virtual force and 
cart movement on the monitor. Hence, a 
rightward knob movement caused a force that 
pushed the cart to the right. Subjects quickly 
remembered how to balance the pole on the cart 
and therefore rapidly reached high performance 
(see Supplementary Material). 

In the visual familiarization blocks (Figure 2 
C), participants had to observe balancing 
attempts of previously recorded subjects 
instead of controlling the system themselves. 
Like in the extrapolation task, a red arrow 
indicated the force, which had been applied 
during actual balancing. Apart from these 
arrows, visual information was identical in both 
conditions (see Supplementary Material). In 
order to ensure that participants pay attention to 
the balancing performance and to the dynamic 
behavior of the cart-pole system, they had to 
rate every balancing attempt on a scale from 
one (very bad) to five (very good). Participants 
were instructed that the task of the individuals, 
whose balancing performance is shown, was to 
balance the pole on the cart for a maximum of 
30 seconds and, that the persons were rewarded 
(points) depending on the duration and 
proficiency of the balancing attempt. 
Importantly, the presented attempts during 
these blocks were different from those shown 
during the extrapolation task. Additionally, 
instead of only showing short sequences as in 
the extrapolation task, the entire balancing 
attempts were shown, which each lasted up to 
30 seconds.  

Control	experiment	
In order to examine whether subjects improve 
in prediction accuracy if the visual 
familiarization phase exhibits a similar overall 
duration as the preceding motor control training 
of the other group, we performed a small 
control experiment (group extVF). In this 

condition, each visual familiarization block was 
20 minutes long (instead of 5 minutes), 
providing the participant with an overall 
interaction time of 80 minutes with the system. 
This is comparable to the duration which 
subjects in the group MF needed during the 
initial motor training to master the cart-pole 
balancing task. It turned out that this procedure 
was quite cumbersome and annoying for the 
subjects, not only because of the overall 
duration but also because subjects did not 
improve without receiving feedback (ANOVA 
which examined the effect of the blocks B and 
T1-T4 on the prediction error, within-subject 
factor block: p=0.92). Hence, we only recorded 
three subjects in control experiment. Although 
a statistical comparison between groups is not 
possible, subjects in this group exhibited a 
similar average prediction error (blocks B and 
T1-T4) as subjects in the group VF (mean ±sd: 
extVF -14.84° ±1.92, VF -14.84° ±2.94). We 
therefore concluded for the further analysis that 
there is no difference between repetitively 
observing and rating balancing attempts in 
blocks of 5 or 20 minutes duration. 

Data	Analysis	
Data preprocessing has be performed in 
MATLAB (The Mathworks, Inc.). Due to a 
recording error, one of the subjects in the group 
MF had to be excluded, leaving overall 9 
subjects in the group MF and 10 in the group 
VF. All statistical analyses have been 
performed in R (v3.3.2) using the packages 
lme4 (v1.1), lmerTest (v2.0), phia (v0.2) and 
nnet (v7.3). Measures have been examined 
regarding normality using visual inspection of 
quartile-quartile plots.  

Rating	 of	 balancing	 attempts	 during	
visual	familiarization	
Based on participants’ responses during the 
visual familiarization, we investigated how the 
two parameters balancing duration (BD) and 
mean absolute pole angle (maPA) influenced 
the rating. While the balancing duration is an 
obvious measure of balancing performance, the 
mean absolute pole angle represents how 
easeful the balancing was performed. The lower 
the mean absolute pole angle, the smoother the 
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system was controlled and the more vertical the 
pole was held throughout the trial. First, we 
examined the effect of the rating on the two 
parameters using a mixed-effects ANOVA. 
This provides information about the difference 
between the rating classes in these parameters. 
Secondly, we fitted a multinomial log-linear 
model that mapped the two parameters (BD, 
maPA) to the rating. Using model comparison 
(likelihood ratio test), we determined the 
significance of each of the two parameters (and 
their interaction) for rating. Thereby, we 
revealed that both parameters and their 
interaction are influencing the rating of the 
balancing attempts significantly (see Results). 

Pole	angle	prediction	error	
The main measure for the accuracy in 
predicting the pole angle is the prediction error 
(Figure 1 C). In the extrapolation task, subjects 
chose in every trial one of 13 response options 
corresponding to the location where they 
expected the pole to be after the occlusion. We 
defined the prediction error (PE) as the angular 
difference between the true pole position and 
subject’s response multiplied by the sign of the 
true pole angle (Equation 1, Figure 1 C).  

	ܧܲ ൌ 	 ൫ߠ௥௘௦௣ 	െ	ߠ௧௥௨௘൯	signሺߠ௧௥௨௘ሻ  (1) 

Thus, negative errors correspond on both sides 
to an underestimation of the pole’s downwards 
motion, while positive errors correspond to an 
overestimation. Statistical examination of the 
factors influencing the prediction error was 
performed using linear mixed-effect ANOVAs. 
In all models, we accounted for individual 
performance and learning rates by introducing 
random effects per subject. 

We first examined whether the ability to 
extrapolate the pole angle improves during the 
familiarization phase (B, T1-T4). Since we did 
not find any improvement (see Results), we 
then compared the prediction error between 
groups in the blocks T4 (no feedback, but 
familiar) and F5 (feedback). These blocks 
represent different knowledge levels: (T4) 
subjects are familiar with the system, but did 
not receive feedback yet, and (F5) subjects had 

time to utilize the feedback for improvement. 
We conducted a mixed-effect ANOVA that 
examined the effect of group and feedback on 
the prediction error in these blocks.  

Models	of	inaccurate	state	predictions	
In attempt to identify the cause for subjects’ 
inability to predict the pole angle precisely, we 
investigated whether an inaccuracy of the 
subjects’ individual internal forward models 
could account for the difference in observed 
prediction errors. Specifically, if subjects had a 
perfect forward model (PERF) of the pole 
dynamics, the prediction error would be 
roughly zero (neglecting the discretization error 
introduced by the finite number of response 
options). Simplification of the dynamics, such 
as assuming constant pole acceleration (cACC, 
Supplementary Material) or constant pole 
velocity (cVEL, Supplementary Material), as it 
might be appropriate for free-falling objects, 
introduces a considerable error in the 
extrapolated pole angle because the actual pole 
acceleration depends on the angle. Subjects 
may also be able to predict the pole movement 
precisely only over the first few milliseconds, 
before they have to switch to a heuristics 
because of their limited computational 
capabilities. Our hypothesis is that motor 
familiarity facilitates these capabilities, leading 
to an increased duration of the interval for 
which precise extrapolation is possible 
(extrapolation horizon). We modelled this 
behavior by a class of partly heuristic response 
models, which are described in more detail in 
the Supplementary Material (lh_cVEL). The 
models simulate the pole dynamics accurately 
over the first ݄ milliseconds (extrapolation 
horizon) and then assume constant pole velocity 
for the remaining time of the occlusion 
ݏ݉	900) െ 	݄ ). We investigated 61 values of 
the parameter ݄ , corresponding to the 61 frames 
(Δݐ ൌ ݄) from 100ms (ݏ1/60 ൌ െ100݉ݏ) 
before to 900ms (݄ ൌ  after the pole (ݏ900݉
occlusion. Notice, that the models for ݄ ൌ  ݏ0݉
and ݄ ൌ  coincide with the previously ݏ900݉
specified models cVEL and PERF. The average 
prediction error of the models decreases 
monotonically with increasing ݄ 
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(Supplementary Material). Our interpretation of 
negative extrapolation horizons is that the 
respective subject solely relies on the constant 
velocity assumption to extrapolate the pole 
angle and additionally uses a deprecated 
estimate of the pole velocity (e.g. derived from 
50ms before occlusion), instead of the actual 
velocity immediately before the occlusion.  

We fitted the parameter ݄ for each subject 
separately using the individual responses in 
each trial of block T4 (see Supplementary 
Material for details). Notice, that this procedure 
is different from fitting the model parameter 
based on the mean prediction errors. After 
having determined the best fitting model for 
each subject, we compared the groups also 
based on the parameter ݄. In analogy to the 
model class lh_cVEL, we also explored the 
class lh_cACC, which corresponds to assuming 
constant pole acceleration after first 
extrapolating the pole angle for ݄ milliseconds 
accurately. However, this model class was not 
able to explain subjects’ behavior, because 
subjects made larger errors than the model 
could explain. 

RESULTS		
Rating	 of	 balancing	 attempts	 is	
influenced	by	 the	balancing	duration	
and	mean	absolute	pole	angle	
During visual familiarization, every subject in 
the group VF rated overall 100 balancing 
attempts on a scale from one (very bad) to five 
(very good). In order to verify that subjects did 
not respond randomly, but paid attention to the 
balancing attempts and the cart-pole dynamics, 
we examined whether the rating of the subjects 
were meaningful. Two salient parameters for 
rating the balancing attempts are the balancing 
duration (BD) and the mean absolute pole angle 
(maPA). 

First, a mixed-effects ANOVA was conducted, 
for subjects in the group VF, that examined the 
effect of rating for the two parameters, BD and 
maPA (Figure 3 A, B). We found a significant 
effect of the factor rating for each of the 
parameters (p<0.001), suggesting that the rating 
separated each parameter into distinct classes. 
Post-hoc test revealed significant pairwise 
differences between all rating classes for BD 
(p<0.001, Holm corrected). For the maPA, all 
but one (3 vs 4) pairwise difference were 
significant (p<0.01, Holm corrected). Hence, 

  

Figure 3. Analysis of subjects’ ratings during visual familiarization. (A) Balancing duration and (B) 
average absolute pole angle as function of subjects’ ratings. Data shown are the averages (bar) ± S.E.M. (C)
Predicted rating of the fitted multinomial log-linear model as function of balancing duration and average
absolute pole angle fitted to subjects’ responses. The model prediction was sampled uniformly in both
dimensions for visualization. Opacity indicates whether training samples are close. Notice, that the rating
(color) depends on both parameters, balancing duration and average absolute pole angle. *** p<0.001, n.s. 
p>0.1.  
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subjects used the rating to classify the two 
performance measures, balancing duration and 
mean average pole angle, into ordered, 
significantly different, and thereby meaningful 
classes. 

The influence of the two parameters (BD, 
maPA) on the rating was examined using a 
multinomial log-linear model (see Data 
Processing and Analysis). Both parameters and 
their interaction contributed significantly to the 
classification (all p<0.01). Figure 3 C shows 
the predicted rating of the fitted model as 
function of the two parameters. Notice that the 
classification depends on both parameters. 
Inferring the mean absolute pole angle requires 
attentive observation throughout the whole 
trial. Thus, subjects in the group VF paid 
attention to the presentation of each balancing 
attempt and adhered to a non-trivial set of rules, 
based on the trial length and mean absolute pole 
angle, for classifying the balancing attempts 
into meaningful classes. 

Precision	 in	 extrapolation	 does	 not	
improve	without	feedback	
For the pole extrapolation task, we first 
inspected the prediction error across blocks 
visually. Subjects of both groups show in 

average negative errors, which corresponds to a 
systematic underestimation of the pole 
movement (Figure 4 A). This suggests that 
extrapolating the state-dependent acceleration 
of the pole is even for motor familiar subjects 
difficult. Furthermore, we noticed, that the 
variability between subjects in the group MF 
seems to be higher than for group VF. A 
possible reason could be a correlation between 
the extrapolation performance and the 
balancing proficiency, which varied between 
subjects although all motor familiar subjects 
were able to balance the cart-pole system (see 
Supplementary Material). However, we did not 
find any significant correlation between the 
average balancing duration in the motor control 
blocks and the prediction error in the 
subsequent extrapolation task block (for all 
blocks p>0.14, Spearman’s rank correlation). 
Furthermore, the between-subject variability 
was similar for both groups over the last blocks 
(F1-F5). Before comparing groups, we 
examined whether there is any improvement in 
extrapolating the pole angle when no feedback 
is provided (Figure 4 A), which would suggest 
that subjects improve in pole extrapolation due 
to the rating (group VF) or control (group MF) 
task. Specifically, we conducted for each group 

  

Figure 4. Average prediction error for both groups. (A) Average prediction error of the motor familiar 
(MF) and visually familiar (VF) group across all examined blocks. Negative errors correspond to an
underestimation of the pole downwards movement. Notice that neither of the two groups improves
significantly over the blocks B and T1-T4. Only during the blocks F1-F5, feedback is provided. (B) Prediction 
error of both groups in the blocks T4 (light gray) and F5 (dark gray). Within each group, subjects improve
significantly due to feedback. There is a significant difference between the two groups before feedback was
provided (T4). The prediction error is however not significantly different between groups after feedback was
provided (F5). ** p<0.01, *** p<0.001. Error bars indicate ±1 S.E.M. 
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a mixed-effects ANVOA that examined the 
effect of block on the prediction error over the 
blocks B and T1-T4. There was no significant 
effect of block in any of the groups (MF: 
p=0.87, VF: p=0.95).  Hence, the ability to 
predict the pole angle does not improve without 
task specific feedback.  

Motor	 familiar	 subjects	 predict	 the	
pole	angle	more	accurately	
In order to test our hypothesis, that motor 
familiar subjects show a smaller prediction 
error than visual familiar subjects, we 
compared the prediction error between the 
groups just before any task specific feedback 
was provided (T4) and at the end of all feedback 
blocks (F5). To this end, a mixed-effect 
ANOVA was conducted that examined the 
effect of feedback (see Data Analysis) and 
group on the prediction error (Figure 4 B). 
Both effects reached significance (group: 
p<0.02, feedback: p<0.001). The interaction did 
not reach significance (p=0.07). Post-hoc tests 
revealed a significant difference between 
groups before feedback was provided (p<0.01, 
Holm corrected, mean MF: -9.6°, VF: -14.9°) 
but not after (p=0.22, Holm corrected, mean 
MF: -5.2°, VF: -7.5°). Post-hoc comparison of 
the two blocks (T4: no feedback vs. F5: 
feedback) revealed a significant improvement 
within groups (both p<0.001). In summary, this 
analysis revealed a significant difference 
between the groups MF and VF before task-
specific feedback was provided. Thus, motor 
familiar subjects can predict the pole movement 
more accurately. Subjects in both groups are 
however able to utilize the feedback for 
improvement, resulting in statistically 
indistinguishable extrapolation performance in 
the last block (F5).  

Larger	 extrapolation	 horizon	
accounts	 for	 better	 extrapolation	
performance	
We also investigated the average prediction 
error of different response models for 
extrapolating the pole angle during the 
occlusion (see Methods). Visual inspection 
reveals that, on average, both groups performed 

worse than a response model that accurately 
predicts the pole movement (PERF) or than 
assuming constant acceleration (cACC, Figure 
5). For a more detailed analysis, we fitted 
subjects’ responses using our model class 
lh_cVEL, which extrapolates the state over the 
first ݄ milliseconds (extrapolation horizon) 
accurately and then assumes constant pole 
velocity for the remaining time of the occlusion 
(see Methods and Supplementary Material). 
This model mimics the potentially limited 
capability to predict accurately over longer 
periods. In comparison to visually familiar 
subjects, behavior of motor familiar subjects 
was described by a significantly larger 
extrapolation horizon (parameter ݄, p=0.026, 
Wilcoxon rank sum test, median MF: 
183.33ms, VF: 16.66ms, mean MF: 211.11ms, 
VF: 5.00ms). Thus, the subjects in the group 
MF seem to possess a more accurate, although 
not perfect, internal representation of the pole 
dynamics, which accounts better for the angle-
depended acceleration of the pole.  

DISCUSSION		
We compared human’s ability to extrapolate the 
pole angle of the cart-pole system between 
subjects with and without motor expertise. 
Subjects without motor expertise were visually 
familiarized with the system in dedicated 
blocks during the experiment, while motor 
familiar subjects instead performed again the 
balancing task during this time as they have 
done previously during skill acquisition. 
During the extrapolation task, subjects 
observed balancing attempts and indicated for 
each attempt where they expected the pole to be 
after the pole was occluded for 900ms. Our 
analysis has revealed that neither of the two 
groups improves without receiving feedback 
about the true pole angle (Figure 4). Subjects 
with motor expertise were, however, even 
before receiving feedback significantly more 
precise in extrapolating the pole angle, although 
both groups received similar visual information 
during the familiarization blocks. We examined 
and explained the higher precision of motor 
familiar subjects in terms of exploiting a more 
accurate model of the pole dynamics, especially 
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regarding the influence of the angle dependent 
gravitational acceleration of the pole and the 
ability to extrapolate this influence over a long 
duration accurately (extrapolation horizon, 
Figure 5). Subjects of both groups improved 
significantly in terms of minimizing the 
extrapolation error by using the feedback about 
the true pole angle in the last phase of the 
experiment (F1-F5). Finally, at the end of the 
experiment (F5), the extrapolation performance 
of the two groups was statistically 
indistinguishable. 

La Scaleia et al. [10] argued that subjects 
incorporate prior experiences about gravity and 
air drag when intercepting ball trajectories in 
the form of model-based control. Since we are 
all used to the motion and behavior of objects 
during free fall, we already possess the 

knowledge that is necessary to catch falling 
objects. Similarly, we are used to human 
motion in the sense that we are able to interpret 
and extrapolate it [17]. It is important to note, 
that we usually acquire this ability and the 
corresponding knowledge implicitly and only 
rarely use it explicitly, meaning we use it for 
performing actions instead of expressing our 
expectations verbally. Nevertheless, subjects 
were able to discriminate plausible from 
implausible future body postures and to report 
their decisions [17]. Although the way subjects 
responded in the two studies differed 
substantially (actual catching vs. binary 
discrimination), the concept of internal 
simulation of the motion plays a central role for 
both studies in explaining subjects’ 
performances. These internal simulations of 
motion and the corresponding neural 

  

Figure 5. Average prediction errors for the investigated response models. In addition to the average 
prediction error for each model, the average prediction errors of subjects in the groups MF (light blue) and VF 
(orange) are shown. The three highlighted models (red: PERF, magenta: cACC, blue: cVEL) correspond to
common assumptions in model-based extrapolation of motion (perfect model, constant acceleration and
constant velocity). The average prediction error of each model in the class of partly heuristic forward models
(lh_cVEL) is plotted as gray line, where h denotes the extrapolation horizon of the model. Notice that h ൌ 0
and h ൌ 900 coincide with the models cVEL and PERF. The model cACC is not in the class lh_cVEL. The
parameters h∗ of the models that fit subjects’ behaviors best in block T4 are significantly higher, and therefore
closer to the perfect model (h ൌ 900), for subjects in the group MF. Error bars indicate ±1 S.E.M. 
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representations are arguably formed already 
during our childhood as result of throwing and 
catching balls, observing other people move as 
well as moving ourselves. During the training 
of specific tasks, such as playing basketball, 
these internal simulations are refined and 
specialized, which enables, for example, elite 
basketball players to outperform less 
experienced individuals in predicting the binary 
outcome of free shots [18]. Similarly, subjects 
with motor expertise were in our experiment 
more precise in predicting the pole angle than 
subjects without motor expertise. However, in 
comparison to Aglioti et al.’s experiment, the 
most important difference is that the cart-pole 
extrapolation task requires subjects to indicate 
the expected pole angle as precisely as possible 
instead of making only binary decisions 
(outcome of free shot). Thus, the underlying 
internal simulation has to fulfil substantially 
more restrictive accuracy requirements. In 
other words, the extrapolation of the pole angle 
has to be very precise in order to be able to 
discriminate between the diverse response 
options reliably. According to the internal 
simulation hypothesis [23], the precision of the 
extrapolation is determined by the accuracy of 
the internal forward model that represents the 
cart-pole system. We found that the responses 
of subjects with motor expertise are more 
similar to those of a perfect model than the 
responses of visual familiar subjects (larger 
extrapolation horizon, Figure 5). Thus, motor 
subjects seem to use a more accurate model for 
extrapolation. However, we also found that 
even motor familiar subjects are not able to 
extrapolate the motion without flaws. In fact, 
our model-based analysis suggests that subjects 
only extrapolate for about 211ms accurately 
(group MF in block T4, Figure 5) before 
switching to the constant velocity assumption. 
Similarly, Mehta and Schaal [15] reported that 
subjects show an average visuomotor delay of 
269ms during virtual pole balancing and that 
trained subjects can additionally tolerate 
occlusions of 500-600ms duration without 
losing balance. Regarding the last point, it 
should however be noted that balancing the 
pole might be possible without being able to 

extrapolate the pole movement perfectly over 
the whole duration of the occlusion. In fact, 
since small mistakes during balancing can, to a 
certain degree, be corrected for later, subjects 
might acquiesce imperfections in order to 
reduce the effort for extrapolating more 
precisely. Nevertheless, when confronted with 
the error in the extrapolation task, subjects use 
the additional information to improve in this 
specific task.  

Intriguingly, motor familiar subjects cannot 
only use the forward model, which they 
acquired during motor training, for performing 
actions predictively [14] but also to extrapolate 
and report the state of the system precisely, 
suggesting that information between action and 
perception is shared. Hecht et al. [24] have 
investigated the transfer of information and the 
relation between acting and perceiving in more 
detail. In their experiment subjects either had to 
rate (perceptual task) or perform (motor task) 
two subsequent movements that exhibited a 
certain relative timing. By permuting the 
sequence of tasks across groups, they 
investigated the transfer of knowledge from 
action to perception (action-perception transfer, 
APT) and vice versa (perception-action 
transfer, PAT). In comparison to a control 
group, both test groups were better in the 
second task, suggesting that information is 
transferred in both directions. Another 
interpretation is that for the perceptual and 
motor tasks the same representation is used and 
thereby the information is shared [25,26].  

Recent research in the field of sensorimotor 
control addressed the topic of shared 
representations for action and perception from 
a slightly different perspective. Instead of 
acquiring a new motor skill, researchers 
investigated how the adaptation of motor 
behavior influences the perception. 
Sensorimotor adaptation is commonly 
explained by the adaptation of internal forward 
models that map actions to their sensory 
consequences. By minimizing the sensory 
prediction error (difference between predicted 
and actual outcome), predictions about the 
sensory consequences of actions are maintained 
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accurate [27]. When the sensory consequences 
are artificially biased, for example due to a 
visuomotor rotation in virtual reality [27,28], 
the sensorimotor map is perturbed. Intriguingly, 
after having adapted to such perturbation as 
result of the minimization of the sensory 
prediction error, not only the subsequent motor 
execution is biased but also the perceived 
sensory consequences are biased in comparison 
to reality. Indeed, for classical visuomotor 
rotation paradigms, it has been shown that 
healthy subjects perceive their hand at a 
different position after sensorimotor adaptation 
and that the perceived hand position 
corresponds to the visuomotor rotation [29]. 
These studies suggest that extrapolation 
mechanisms for motor control and perception 
are not only tightly related but might also share 
the same internal forward models. Regarding 
the neural correlates of this behavioral finding, 
Synofzik et al. [29] have shown that not only 
the adaptation of motor behavior [16] but that 
also the shift in perception depends on the 
integrity of the cerebellum. Especially the 
posterior-lateral cerebellum seems to be 
important not only for the planning of motor 
actions [16,30] but also for the perception of 
action [31,32] and sensory prediction [5–
9,33,34]. It seems therefore plausible that the 
cerebellum implements mechanisms, which are 
equally used for perception and action. Whether 
the cerebellum and other brain areas, such as 
the parietal lobe [35–39], are involved in the 
cart-pole balancing and extrapolation tasks, and 
whether there are different neural correlates 
depending on the preceding type of training 
(visual vs. motor), is an interesting direction for 
future research. 

Finally, we would like to address a limitation of 
this study, which is that motor familiar subjects 
interacted overall for a longer duration with the 
cart-pole system due to the prior skill 
acquisition. However, although we were not 
able to perform a statistical comparison, the 
control experiment suggests that the duration of 
visual exposure does not influence prediction 
accuracy in this specific task. Furthermore, the 
goal of this study was not only to reveal a 

general behavioral difference between visual or 
motor familiar subjects, as has similarly been 
reported before [18,24], but also to provide a 
model-driven analysis that characterizes and 
explains individual prediction performances. 

CONCLUSIONS	AND	OUTLOOK		
In summary, we have shown that motor training 
does not only improve motor control but also 
task-relevant perceptual abilities. Being able to 
extrapolate the state of the cart-pole system into 
the future is an important ability for easeful 
balancing performance. Correspondingly, 
subjects who had previously learned to control 
the cart-pole system were more precise in 
extrapolating the pole movement. Our results 
suggest that motor training yields an accurate, 
although not perfect, internal forward model of 
the controlled dynamics, which can be used for 
both, controlling and accurately extrapolating 
the dynamic behavior of the cart-pole system. 
Similar extrapolation accuracy can, however, 
be achieved without motor training by 
minimizing the prediction error when task-
specific feedback is provided. Since our model 
explains the difference in extrapolation 
performance based on the duration of accurate 
simulation, a future study could tested this 
prediction explicitly by varying the duration of 
the occlusion. Another interesting question for 
future investigations is whether the ability to 
extrapolate the pole movement more precisely 
improves the cart-pole balancing performance 
in the case of motor familiar subjects or 
facilitates the acquisition of the cart-pole 
balancing skill for visual familiar subjects 
(perception-action transfer, similar to Hecht et 
al. [24]). Furthermore, comparison of the neural 
correlates corresponding to cart-pole balancing 
and extrapolating the pole movement might 
foster the understanding of knowledge 
representations in the brain and their 
acquisition. 
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