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Abstract—This is a study on associated postural activities
during the anticipatory segments of a multijoint movement.
Several previous studies have shown that they are task de-
pendant. The previous studies, however, have mostly been
limited in demonstrating the presence of modulation for one
task condition, that is, one aspect such as the distance of the
target or the direction of reaching. Real-life activities like
whole-body pointing, however, can vary in several ways. How
specific is the adaptation of the postural activities for the
diverse possibilities of a whole-body pointing task? We used
a classification paradigm to answer this question. We exam-
ined the anticipatory postural electromyograms for four dif-
ferent types of whole-body pointing tasks. The presence of
task-dependent modulations in these signals was probed by
performing four-way classification tests using a support vec-
tor machine (SVM). The SVM was able to achieve significantly
higher than chance performance in correctly predicting the
movements at hand (Chance performance 25%). Using only
anticipatory postural muscle activity, the correct movement
at hand was predicted with a mean rate of 62%. Because this
is 37% above chance performance, it suggests the presence
of postural modulation for diverse conditions. The anticipa-
tory activities consisted of both activations and deactiva-
tions. Movement prediction with the use of the activating
muscles was significantly better than that obtained with the
deactivating muscles. This suggests that more specific mod-
ulations for the movement at hand take place through acti-
vation, whereas the deactivation is more general. The study
introduces a new method for investigating adaptations in
motor control. It also sheds new light on the quantity and
quality of information available in the feedforward segments
of a voluntary multijoint motor activity. © 2012 IBRO. Pub-
lished by Elsevier Ltd. All rights reserved.
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Postural adjustments accompany any oriented movement
in which there is a displacement of a focal module such as
an arm. They are largely thought to be involved in the
maintenance of equilibrium and to compensate for shifts in
the center of mass due to limb movement (Gahéry and
Massion, 1981; Massion, 1992; Cordo and Gurfinkel,
2004). Anticipatory postural adjustments (APAs) take
place before the movement is observed. They are feedfor-
ward in nature and therefore offer insights into the neural
commands that initiate and control movement without the
benefit of feedback sensory signals that might correct the
movement. Feedback due to postural disturbances can
take place through the somatosensorial, visual, or auditory
systems (Horak and Macpherson, 1996; Nashner, 1977;
Ting and Macpherson, 2004; Fautrelle et al., 2010b). In
this study, we investigate the collective modulation of elec-
tromyographic (EMG) activities in the anticipatory feedfor-
ward activities of several postural muscles during a whole-
body reaching task. How discriminating are these muscle
activities for the different conditions of whole-body point-
ing? We present, in particular, machine learning as an
innovative method that can be used to address this ques-
tion, that is, study the adaptation of signals involved in
complex movement planning and execution. In this intro-
duction, we will first have a brief presentation of previous
studies on the tuning of anticipatory postural EMG activi-
ties followed by a section on the potential contributions that
machine learning might make to the field.

Several investigators have now found APAs to be
tuned to the requirements of the voluntary activity to be
performed. For example, Tyler and Karst (2004) found that
APA onset occurred progressively earlier as the target
distance was increased during a reaching task. Bouisset et
al. (2000) had found that the amplitude and duration of the
APAs showed a linear relationship to the work performed
during a shoulder flexion task. A linear relationship be-
tween the anticipative postural adjustments and the mag-
nitude of self-initiated perturbation in a shoulder abduction
task was also found by Aruin and Latash (1996). Leonard
et al. (2009) demonstrated a direction tuning in the feed-
forward activities of various postural muscles during a
pointing task.

All these studies have in common that they only inves-
tigated how APA is modified as the task variables are
altered one or at most two at a time. The relationship
between the EMG signal and a task variable was estab-
lished with the use of linear correlation (Tyler and Karst,
2004; Bouisset et al., 2000; Aruin and Latash, 1996).
Those that have examined a wider variety of activities have
only conveyed a qualitative report of the differences in the
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Fig. 1. Stick diagrams of whole-body pointing. Stick diagrams of the reaching tasks investigated for this study. These were an unconstrained reaching
to a near target (BD1), an unconstrained reaching to a distant target (BD2), reaching with knees extended to a near target (KD1), and finally reaching

with an imposed semicircular trajectory condition to near target (CD1).

anticipative muscular activity before these movements.
Crenna and Frigo (1991) had reported on the anticipative
postural activities before diverse movements such as walk-
ing, rising on tip toes, throwing, and standing up. No at-
tempt was made to quantify the differences of the feedfor-
ward postural activities for these diverse requirements.
Indeed, classical univariate techniques are not ideal for
this task. We propose in this study the use of a classifica-
tion paradigm to investigate the modulation of APAs for
several variants of a multijoint movement, that is, move-
ments that vary along several dimensions. Using the an-
ticipatory portions of several postural muscle EMGs, we
attempted to classify the type of movement at hand. A
capacity to classify would indicate the presence of discrim-
inating information in the APA. Poor classification would
result from EMG activities with too much overlap.

We investigated four different variants of a whole-body
pointing task—a totally unconstrained movement toward a
near target (BD1), a distant target (BD2), a straight knee
pointing movement (KD1), and an imposed semicircular
finger trajectory pointing movement (CD1) (Fig. 1). These
tasks represent various adaptations at the postural or focal
level that could be called into play as the result of environ-
mental constraints. Detailed studies on the kinematics of
these movements (Berret et al., 2009; Fautrelle et al.,
2010a) and the triphasic organization of their underlying
EMG activities (Chiovetto et al., 2010) have been previ-
ously published. The state space in which such a classifi-
cation must be performed reflects the complexity of a
multijoint task. The target distance is only varied for the
BD2 task. The CD1 task involves an imposed constraint on
the hand path, whereas it is completely free for the other
conditions. Finally, the KD1 condition is the only movement
with an imposed postural constraint. Placing a point cor-
rectly in this space hence involves decisions along at least
three different axes that represent different task con-
straints.

A Support Vector Machine (SVM) was used to carry
out the four-way classification. The algorithm works by

using part of the data as a training set to find the surface
that best separates the various classes of data. The re-
maining test set is then used to verify whether the con-
structed surface is also able to correctly classify data that
had not been used for training, that is, to detect automat-
ically to which type of movement the feedforward EMG
data belong to. The inability to correctly categorize the test
data sets indicates the lack of sufficient differences be-
tween the data sets being classified, in other words, a lack
of discriminative modulation and too much overlap. In the
case of a four-way discrimination task, this would lead to a
chance discrimination performance which is 25%. A larger
separation between the data sets would lead to a greater
ease and successfclassification. The capacity of SVMs to
discriminate EMG data in a binary task involving whole-
body reaching was reported in a previous study (Tolam-
biya et al., 2011).

Other than investigating the discriminatory capacities
of all the postural muscle EMGs, we also investigated
these capacities in two postural muscle subsets. These
were the postural muscles that activated before movement
onset and those that had deactivated (Chiovetto et al.,
2010). A four-way classification with these two muscle
subsets helped us to identify the postural groups that are
better modulated for the task at hand.

EXPERIMENTAL PROCEDURES
General

Data from ten healthy male volunteers (ages 29+4 years) with no
previous history of neuromuscular disease were used in this
study. The experiment conformed to the declaration of Helsinki.
Informed consent was obtained from all the participants according
to the protocol of the local ethical committee.

Participants were required to point with both their index fin-
gers at the extremities of a wooden dowel located in front of them.
It was positioned horizontally with respect to the ground, parallel to
the subjects’ coronal plane, and with its center intersecting the
subjects’ sagittal plane. For each participant, for the BD1, KD1,
and CD1 conditions, the extremities of the dowel had a vertical
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Fig. 2. EMG recordings from postural muscles during whole-body pointing task. Individual traces of the 15 postural muscles recorded during a
whole-body pointing task. Muscle abbreviations are explained in the Experimental procedures section. The rectified EMG signals presented in the
figure were low pass filtered at 5 Hz for the analysis. The first trace in each column represents finger velocity. Finger movement onset is indicated by
t,, the instant of its maximum velocity by ¢, and the instant of finger movement termination by ¢. The segment analyzed in this study consisted of the

time series between —300 ms and {,.

distance from the ground equal to 15% of their body height. In the
BD2 condition, the greater target distance corresponded to 30% of
participants’ height. The B movements were the only ones per-
formed without any constraints. Postural constraints were im-
posed for the K condition in which subjects were instructed to point
to the target without flexing the knees. Focal constraints were
applied for the C conditions. Participants were requested to reach
the targets with large finger path curvatures (semicircular finger
trajectory). The imposed path was concave in the sagittal plane
(Fig. 1). All movements were self-paced. Six repetitions were
made of each kind of movement. During trial executions, kine-
matic and EMG data were simultaneously monitored. Body kine-
matics was recorded by means of a Vicon (Oxford, UK) motion
capture system. Finger kinematics was used to define basic pa-
rameters in the finger pointing. These parameters have been well
defined in a previous study of arm-pointing (Papaxanthis et al.,
2005). Finger movement onset time t, was defined as the instant

at which the linear tangential velocity of the index fingertip ex-
ceeded 5% of its peak (Papaxanthis et al., 2005).

Collection of electromyographic data

The following 15 postural muscles were recorded on the right side
of each of the 10 subjects: tibialis anterior (Tib); soleus (Sol);
peroneus longus (Per); gastrocnemius (Gast); vastus lateralis
(VL); vastus medialis (VM); rectus femoris (RF); semitendinosus
(ST); semimembranosus (SM); biceps femoris (long head) (BF);
adductor longus (AL); gluteus maximus (GM); rectus abdominis,
superior portion (RA); internal oblique (Ol); and erector spinae,
recorded at L2 (ES) (Fig. 2). For all these muscles, electrodes
were placed to minimize crosstalk from adjacent muscle contrac-
tions following lvanenko et al. (2005) guidelines. The interval
between a pair of electrodes for one recorded muscle was set to
2 cm. To check the goodness of electrodes location, the subjects
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were instructed on how to selectively activate each muscle (Ken-
dall et al.,, 1993), and the experimenter could verify the signal
response on a computer screen. During preparation, subjects’
skin was shaved and cleaned with alcohol to ensure low resis-
tance. Then the surface EMG activities were recorded at a sam-
pling frequency of 1000 Hz (ZERO WIRE EMG system, AURION
S.r.l., Milano, ltalia). Each electrode was equipped with a little unit
for signal processing and six tele-transmitters. The EMG signals
were smoothed using a low-pass filter with a cutoff frequency at 5
Hz (Winter, 2005). Stored trials for each subject consisted of EMG
activities 300 ms before movement onset and ended 100 ms after
the movement termination f.. Finger movement onset time t, was
defined as the instant at which the linear tangential velocity of the
index fingertip exceeded 5% of its peak. Conversely, f; was de-
fined as the instant at which the index finger velocity had dropped
to 5% of its peak value. These parameters have been well defined
in a previous study of arm-pointing (Papaxanthis et al., 2005). The
EMG segments used in this study corresponded to the segments
between (t,—300) and t,. This segment was normalized to 50
points.

Using the same data set that is under investigation in this
study, Chiovetto et al. (2010) had reported that several of these
muscles underwent anticipative modifications before movement
onset. Some of the alterations involved deactivations, whereas
others involved activation. An activation or deactivation onset had
been determined from the full-wave rectified EMG (rEMG) that
had been recorded during the reaching movements. Anticipative
activation activity was noted when the rEMG amplitude exceeded
its mean level (computed between —300 and —100 ms before
movement onset) plus two standard deviations (in the case of
activation) or decreased below the mean level minus one standard
deviation (for deactivation) for at least 30 ms. For activations, two
standard deviations instead of one were chosen to avoid confus-
ing actual muscle activations with noise and slight changes of the
tonic activity level (Stapley et al., 1999). Using these criteria, the
muscles that underwent anticipative activation were Tib, Per, VL,
RF, RA, and Ol. Anticipative deactivation had been observed in
the Sol, BF, ST, ES, and SM (Fig. 2).

Four-way classification

A four-way classification task was carried out using the SVM. In
the section Support vector machines, we describe how SVMs can
be used to carry out a multiclassification. This is followed in
section Linear discriminant analysis by a brief description of linear
discriminant analysis, which is an older more classic classification
algorithm. The manner in which the input vectors for the classifi-
cation were prepared is described in section Construction of the
input vectors, and the data sampling for the training and testing of
the machine learning algorithms is described in Data sampling
and testing section. The efficiency of a multiclassification is usu-
ally evaluated using a Kappa coefficient (k). We provide a brief
description of this coefficient in section The k coefficient. When
necessary the significance of each four-way classification was
also tested using a x? statistic with the required Bonferroni cor-
rection.

Support vector machines. SVMs are powerful methods for
solving classification problems on large data sets. In a binary
classification task, they aim to find an optimal separating hyper-
plane between the data sets by first transforming the data into a
higher dimensional space by means of a kernel function. This
permits the construction of a linear hyperplane between the two
classes in feature space. Thus, although it uses linear learning
methods, it is in effect a nonlinear classifier. Support vector ma-
chines were first developed by Vapnik and coworkers in the early
1990s. A complete formulation of Support Vector Machines can be
found in a number of publications (Vapnik, 1995, 1998; Cortes and
Vapnik, 1995; Theodoridis and Koutroumbas, 2003). In particular,

a full description of the SVM algorithm in a study on EMG classi-
fication was published by Tolambiya et al. (2011).

For the multiclassification, we used one of the most widely
used algorithms for multiclass SVM—the “one against all” strat-
egy. For an M-class problem, M-SVM classifiers that separate a
particular class from all the remaining classes are constructed
(Rifkin and Klautau, 2004). To make the final decision, the clas-
sifier that generates the highest value from its decision function f
is selected as the winner, and the corresponding class label is
assigned. Because the highest value of f can belong to any one of
four classes during the one against all strategy, the chance level
with a random distribution would be 25%. Multiclass machine
learning techniques are now being increasingly applied in the field
of Neuroscience. Several of these techniques involve strategies
similar to the one being applied here for picking the “winner” class,
and chance levels were placed at 1/M, where M is the number of
categories (Hohne et al., 2011; Xu et al., 2011; Sitaram et al.,
2011). After having tested several kernel functions, the linear
function was chosen as the most efficient for the task. Each SVM
was created using Matlab and run on a PC. The same SVM
program had been employed in several previous investigations
(Tolambiya and Kalra, 2009; Tolambiya et al., 2010, 2011).

Linear discriminant analysis. Linear discriminant analysis
(LDA) invented by Fisher (1936) is a technique that uses a linear
combination of features to create a separating hyperplane be-
tween multivariate data. Unlike the SVM, no kernel is used to
project the data to a higher dimensional space. As a technique
that is older than SVM, several complete descriptions may be
found on the algorithm (Manly, 1992; Duda et al., 2000;
McLachlan, 2004). The LDA algorithm was implemented using the
function “classify” available in Matlab. The diaglinear option was
used to avoid restrictions on the structure of the covariance matrix
that was used during the computation.

Construction of the input vectors. The construction of the
input vectors for the SVM depended on the comparison at hand.
The anticipatory EMG data from each muscle constituted a vector
of 50 elements. A comparison using n muscles was therefore
done using an input vector of size (nx50), where the input vectors
of the muscles were linked together from end to end. This manner
of constructing the input vectors for a classification of EMG data
has already been described in previous publications on the use of
the kernel method for classifying EMG data (Nair et al., 2010;
Tolambiya et al., 2011). The specific input vector constructed
depended on the question at hand. In some cases, we were
investigating the predictive capacities of the anticipatory segments
of all the postural muscle. We called this the full anticipatory
postural vector. In other cases, we only used the anticipatory seg-
ments of the activating or deactivating muscles to construct in the
manner described earlier in the text, the activating or deactivating
anticipatory postural vector. At times, it was necessary to compare
the classification obtained from the anticipatory EMG segments with
what could be obtained from the entire movement, that is, from (t,
—300) to & We will call these vectors the entire movement postural
vectors to contrast them with the anticipatory segments.

Other than the standard normalizing along the time axis that is
described in the Experimental procedures section, the input vec-
tors for the SVM were also normalized for amplitude. This normal-
ization was carried out over each muscle for each individual so
that the differences in the EMG amplitudes between individuals or
muscles were not taken into account. Without such a normaliza-
tion, information from individuals and muscles with EMGs of
higher amplitude would dominate the classifications results. Infor-
mation concerning the amplitude differences between movements
for each muscle however was incorporated by carrying out the
normalization for each muscle of each individual over all the
conditions. The decision to incorporate this information came from
our previous study that had shown amplitude to be one of the
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parameters that the muscles modulate for the different types of
whole-body pointing (Tolambiya et al., 2011).

Data sampling and testing. For each type of movement,
each subject accomplished six trials. The classification tasks were
carried out using cross validation. Cross validation is a technique
that examines whether the results of a statistical test generalize to
an independent data set. For this technique, the data are parti-
tioned into subsets. The training is performed on one subset, and
the remaining subset is then used for testing. Multiple rounds of
testing are performed with different subjects in the testing subset
each time. The reported results are then averaged over all the test
rounds (Dejivar and Kittler, 1982; Geisser, 1993; Kohavi, 1995).
As training is started anew for each test set, the results from each
test set are independent. For our study, we used five-fold cross
validation, that is, for each study we divided all the subjects with
their associated trials into five folds (The input vectors from two
subjects in each fold). Four folds were used for training and the
last fold kept for testing. At no point in these studies was the data
from individuals that were used for training, used in testing. This
process was repeated five times, leaving one different fold for
evaluation each time. The percentage of correct classification was
verified for each subject when they were in the test case. In this
manner, the data from each subject were tested once.

Taking any particular type of anticipatory vector for an indi-
vidual, we report the percent of predictions in each category. For
example, taking all the BD1 anticipatory EMG segments from an
individual, what percentage of them would be classified as a BD1,
BD2, CD1, or KD1 movement? This is done for each subject when
they are in the test set. The results are reported as the
meanz=standard error of the mean (SEM) for all 10 subjects.

The k coefficient. The k coefficient is a measure of the
agreement between two judges concerning the label to be as-
signed to the data. It quantifies how well the classification had
been performed by comparing the results obtained from the SVM
with the correct answers (Carletta, 1996). The calculation is based
on the difference between how much agreement is actually pres-
ent (“observed” agreement) compared with how much agreement
would be expected to be present by chance alone (“expected”
agreement). This difference is standardized to lie on a —1 to 1
scale, where 1 indicates perfect agreement, 0 is exactly what
would be expected by chance, and negative values indicate
agreement less than chance, that is, potential systematic dis-
agreement with correct answers. The following values of k have
been taken to indicate various levels of agreement between the
automatic classifier and the correct answer. Values of k<0 no
agreement, 0<k<0.2 slight agreement, 0.21<«<0.4 fair agree-
ment, 0.41<«<0.6 moderate agreement, 0.61<k<0.8 substantial
agreement, and 0.81 < k < 1.0 almost perfect agreement. The
value of « is defined as follows:

k= (Po—P)/(1-P,)

Where P, is the observed level of agreement between the two
classifiers, and P, is the agreement that could be expected from
two individuals flipping a coin to assign a class label.

The x®test.  The significance of each classification was also
verified using a x? test. Results were judged to be significant when
P<0.05. In the case of multiple x? tests, the necessary Bonferroni
corrections were made.

RESULTS

In this section, we report the results that were obtained
from attempting to classify the feedforward EMG segment
as coming from a BD1, BD2, KD1, or CD1 movement
(Figs. 3-5). As the classification to be performed was a

four-way classification, a chance performance would yield
a prediction of every type of movement for 25% of the
cases. The quality of a classification was also judged using
the x? test and the value of the k coefficient. The figure
legend indicates the type of data that had been used for
the testing. The black bar in each case represents the
percentage of correct responses for the class mentioned in
the figure legend, whereas the hatched bars indicated
erroneous predictions in the remaining three categories.
We will first report the results from attempting a movement
prediction using the full anticipatory postural vector. This
will first be done with an SVM. In the same section, we will
also report the results obtained using the LDA technique.
This will allow for a comparison of classification accuracies
using two different algorithms. Finally, we will report the
results obtained by using the SVM to classify activating or
deactivating anticipatory postural vectors.

Movement prediction using the full anticipatory
postural vector

In Fig. 3, we display the success obtained by using the full
anticipatory postural vectors to predict the movement at
hand. The SVM was asked to classify the input vector as
belonging to a BD1, CD1, KD1, or BD2 movement. Fig.
3a—d display the percentage of correct and erroneous
predictions made when using the BD1, CD1, KD1, or BD2
full anticipatory postural vectors, respectively. The dark
bars represent the percentage of correct answers made for
each type of feedforward EMG segment, whereas the
hatched bars represent wrong answers. The figure shows
a higher than chance performance for each type of move-
ment classification. A x* comparison was carried out to
determine whether the distributions were significantly dif-
ferent from a random one. It was found to be significant in
each case (P<0.01, x* test with Bonferroni correction).
The total mean classification success was 62+3%
(mean=SEM) or on average 37% above chance. The «k
score for the classification was 0.5. This reflects moderate
agreement between the automatic classifier and the correct
answer. Our results indicate that some information for these
multiple conditions is present in the feedforward postural
adaptations of these whole-body pointing movements.

Although the categorization success above chance
levels in the case of each type of movement suggests
some measure of multidimensional modulation, errors
were also made in each case. Were these due to overlap
in the feedforward activities of each type of movement or
due to shortcomings in the SVM classification algorithm?
To provide some answers to this question, we carried out
a four-way classification using the entire movement pos-
tural vectors, that is, postural EMGs recorded from the full
pointing movement. The four-way classification improved
to 75+3% or 50% above chance. The « score in this case
was 0.65 indicating substantial agreement between the
algorithm and the correct answer. This result with the
entire movement postural vectors supports the conclusion
that any shortcoming in the classification using the antici-
patory segments was, in fact, partly due to their overlap in
different conditions.
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Fig. 3. Prediction by SVM of movement at hand by using the anticipatory EMG data from all recorded postural muscles. Prediction of movement at
hand by using the anticipatory EMG data from all 15 recorded postural muscles, that is, the full anticipatory postural vectors of (a) BD1, (b) CD1, (c)
KD1, and (d) BD2 movements. In each case, the figure shows the percentage-wise distribution of correct (black bars) and wrong answers (hatched
bars). Each bar represents the mean=SEM for the ten individuals in the study. For any particular movement, the correct prediction could only be for
one category, whereas the errors made could fall into any of the three remaining classes.

A final test involved investigating the capacities of an
older algorithm, the LDA for performing the same type of
four-way classification. The results of this test are dis-
played in Fig. 4a—d. Although LDA is capable of discrimi-
nating the CD1 and BD2 movements at approximately the
same level of success at the SVM, there is significantly
less selectivity for the BD1 and KD1 anticipative postural
vectors. The difference in the results obtained with the two
algorithms was found to be significant (P<<0.01, x* test).
The less efficient performance by the LDA algorithm was
also reflected in its lower k score of 0.35.

Prediction of movement conditions using the
activating or deactivating anticipatory postural
vectors

We next attempted to predict the movement at hand by
using the activating or deactivating anticipatory postural
vectors. This would then give us some insight into which

muscle types or activities undergo more discriminatory
modulations for the movement at hand during the open-
loop segments of the EMG activities. For the activating
muscles, the rectus abdominus was identified after check-
ing the classification capacities of the individual muscles,
as a muscle contributing relatively little to the classification.
It was hence left out of further tests in which we compared
the discriminatory capacities of the activating and deacti-
vating muscles. This then permitted us to have an equal
number of both types of muscles. Fig. 5 compares the
classifications using the activating and deactivating seg-
ments. The overall mean classification obtained in the
activating case was 56% or 31% above chance levels (Fig.
5a—d). In the case of the deactivating muscles, it was 33% or
only 8% above chance (Fig. 5e—h). This difference between
the activating and deactivating muscles was found to be
significant (P<0.01, »? test). The difference between the two
muscle groups was also clearly indicated by the difference in
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bars). Each bar represents the mean=SEM for the ten individuals in the study. For any particular movement, the correct prediction could only be for
one category, whereas the errors made could fall into any of the three remaining classes.

their k scores. It was 0.1 indicating slight agreement in the
case of the deactivating muscles and 0.41 indicating fair
agreement in the case of the activating muscles.

It should be clearly noted that the differences in prediction by
the activating and deactivating feedforward postural vectors
were not due to lower EMG amplitudes in the latter. The nor-
malization procedures that had been undertaken had ensured
that the amplitude difference between muscles had been elim-
inated. Still present however was the amplitude differences of
each type of movement for any given muscle.

Unlike the BD1, BD2, and CD1 conditions where there
was clearly a better performance when using the activating
EMG segments, such a distinction was not observed for
the KD1 group. The performance was relatively poor using
both subgroups indicating that in the KD1 case, the cate-
gory preferences observed in Fig. 3 could only be obtained
by combining the information present in the activating and
deactivating subgroups.

DISCUSSION
The classification paradigm in motor control studies

In this study, we used machine learning techniques to gain
insights into the quantity and quality of information avail-

able in the feedforward segments of a multijoint move-
ment, namely whole-body pointing. As a task that inte-
grates equilibrium as well as oriented aspects of move-
ment, it is representative of the sort of movements
commonly used in daily life. Although the study of complex
movements can yield much insight concerning motor con-
trol (Cordo and Gurfinkel, 2004), one of the obstacles to
using this approach is the analysis of data from such
studies. In our study, these refer not only to physiological
variables, in this case 15 EMGs, but also to several task
variables—namely, focal and equilibrium constraints.
Based on environmental obstacles, whole-body pointing
tasks can vary in the hand trajectories used for reaching,
the manner in which the knees are held, and the distance
to which one reaches. How well does the motor system
plan for these multiple constraints?

We used a classification paradigm to demonstrate
the presence of postural muscle adaptation for these
diverse task constraints. A machine learning algorithm
that was correctly able to classify EMGs as belonging to
BD1, CD1, BD2, or KD1 movements was taken as evi-
dence of a four-way modulation. Currently used univar-
iate regression techniques are unable to accomplish
this. Classical multivariate regression techniques are
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Fig. 5. Prediction by SVM of movement condition by activating vs. deactivating anticipatory EMG data. Prediction of movement condition by using the
anticipatory postural EMG data of activating (a—d) and deactivating (e—h) muscles. The anticipatory postural EMG data had been used to predict
whether the recording had come from a BD1, BD2, CD1, or KD1 movement. In each case, the figure shows the percentage-wise distribution of correct
(black bars) and wrong answers (hatched bars). Each bar represents the mean=SEM for the ten individuals in the study. For any particular movement,
the correct prediction could only be for one category, whereas the errors made could fall into any of the three remaining classes. The distribution of

accuracy %

accuracy %

accuracy %

accuracy %

A. Tolambiya et al. / Neuroscience 210 (2012) 179-190

Activation
BD1
80 -
60 -
40
20
O 4
BD1 BD2 CD1 KD1
b cD1
80 -
60 -
40
20
0 , Eéa :
BD1 BD2 CD1 KD1
c BD2
80 -
60 -
40
20 A
0 |
BD1 BD2 CD1 KD1
d KD1
80
60
40 -
RS @
0 T T T
BD1 BD2 CD1 KD1

accuracy %

accuracy %

accuracy %

accuracy %

@l Correct answers

Wrong answers

Deactivation
e BD1
80 -
60 -
40 1
20 1
0 4
BD1 BD2 cD1 KD1
f cD1
80 -
60 -
40 -
20 1
NN |
BD1 BD2 cD1 KD1
g BD2
80 1
60 -
40 1
20 1
0 .
BD1 BD2 cD1 KD1
h KD1
80 1
60 -
40 -
] @ §
0 N |
BD1 BD2 cD1 KD1

responses in the activating case was found to be significantly different from those in the deactivating case (P<0.01, x2 test).
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linear and require that the data be normally distributed
(Howell, 1992; Wonnacott and Wonnacott, 1990). These
two conditions may be extremely difficult to fulfill in a
situation with multiple motor constraints. Another advan-
tage to using the classification paradigm is that it pre-
empts the need for defining particular EMG features if
this knowledge is not explicitly required. By permitting
the use of the entire EMG segment, arbitrary definitions
of features such as EMG onset times can be avoided.
The classification paradigm has already seen limited
applications in the field of neural encoding (Ghazanfar et
al., 2000; Thomas et al., 2000). For obvious reasons,
they also represent important steps in the field of brain
machine interface (Nicolelis and Lebedev 2009).

The classification paradigm algorithm used in this
study was the SVM. This technique, which is a type of
kernel method, was chosen over other machine learning
techniques, as previous studies have demonstrated their
higher classification capacities over techniques such as
neural networks and linear discriminant analysis when an-
alyzing EMGs (Chan et al., 2002; Begg and Kamruzza-
man, 2005; Nair et al., 2010). The previous studies, how-
ever, were carried out on binary classifications tasks. Our
results with LDA in this study show that the earlier conclu-
sions with the algorithm in question can also be extended
to the multiclassification situation.

Modulation for multiple conditions in postural
anticipatory adaptation

Feedforward segments in an EMG are interesting due to
the insights they offer concerning the open-loop aspects
of movement control, that is, aspects of movement con-
trol that are not rectified based on feedback and error
messages. Movement execution during these phases
must therefore depend on a combination of hard-wired
elements in motor control and prior motor learning. This
has been referred to as the internal model of movement
planning (Jordan and Rumelhart, 1992; Miall et al, 1993;
Wolpert et al, 1995; Saltzman, 1979; Hollerbach 1990).
Previous research has demonstrated that feedforward
postural adaptations are tuned to the particular de-
mands of the task at hand. These previous studies,
however, only examined cases in which the task de-
mands were altered along one dimension (Leonard et al,
2009; Tyler and Karst 2004; Bouisset et al., 2000; Aruin
and Latash 1996). In these studies, careful changes in
a task parameter allowed for a description of how the
body then adjusted itself for these changes. In other
words, they traced a stimulus response curve for a
particular task parameter. Our daily tasks, however, re-
quire an adaptation to several constraints. How different
is the whole-body pointing internal model for distance,
hand trajectory, and constraints of the knee? Perhaps
the internal model for these variants of whole-body
pointing is quite general, and feedback is an important
part of the specifications in muscular activation patterns.
We attempted to gain insight into this question by prob-
ing whether a classification algorithm was able to distin-
guish when presented with four possible choices,

whether the feedforward postural EMGs belonged to a
BD1, BD2, KD1, or CD1 movement. Too many features
in common for these EMGs would have led to poor
classification or in other words, a chance level classifi-
cation of 25% for each type of movement. Our result of
a mean classification that is 37% above chance sug-
gests that there is some multidimensional modulation in
the open-loop activities of postural adaptations. These
adaptations would then help with the maintenance of
equilibrium in the movement and is also thought by
some to help in actively positioning the hand close to the
target (Pozzo et al, 2002, Kaminski and Simpkins 2001).

Neuronal activity in the premotor and motor cortex
before movement is interesting in the context of discus-
sions concerning the internal model for movement. Neu-
rons in the reach system of the premotor and motor cortex
have been found to fire before movement onset. This
activity has been found to be tuned to the direction of
movement (Wise 1985), movement extent (Fu et al, 1993;
Messier and Kalaska, 2000), and hand path curvature
(Hocherman and Wise, 1991). Adaptations in these stud-
ies have only been investigated along one dimension at a
time. Our results indicating multiple adaptation at the ef-
fector level (muscles) suggest that the same may take
place at the cortical level. The classification paradigm pro-
vides a means for investigating this question.

A classification performance of 37% above chance still
means that several errors were made as we attempted to
predict the source of the feedforward EMG segments. Was
this due to shortcomings in the classification algorithm? Or
is there a significant overlap in the activation patterns of
these 15 postural muscles specified by the internal model?
Some insight into this can be attempted by performing a
four-way classification with the entire movement postural
vectors. The substantial improvement that was obtained in
this case indicates that the SVM is able to classify better in
the presence of more information and that the shortcom-
ings in the classification obtained when using the feedfor-
ward segments are indeed due to the limits in the informa-
tion content of the feedforward EMG. In other words, the
results suggest that there is a fair amount of overlap in the
early feedforward segments of the postural adaptations in
a whole-body pointing task. This is not altogether unex-
pected. Many of the stability and planning requirements
may be common for the early parts of all the different
classes of whole-body movements.

Modulation for multiple conditions in activating or
deactivating postural muscles

Electromyographic activities in the anticipatory segments
of postural muscle activities involve both activating and
deactivating patterns. The former refers to a phasic in-
crease in the activity of a muscle, whereas the latter is a
decrease in its activity. The former is related to the mus-
cular contraction that is necessary for the movement,
whereas the latter is thought to be a decrease in activity in
preparation for movement (Agostino et al., 1992; Aoki et
al., 1989; Berardelli et al., 1996; Berret et al., 2008). In-
deed, inhibition in the antagonist muscle is the first activity
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that is observed before the commencement of movement
(Hufschmidt and Hufschmidt, 1954).

Are both excitatory and inhibitory activities of the neu-
romuscular system equally modulated in the open-loop
phases of movement control? We probed this question by
comparing the prediction capacities using the activating or
deactivating anticipatory postural vectors. Some measure
of success was observed in the four-way predictions using
the activating muscles. The mean categorization success
using the activating anticipatory postural vectors from the
normal (BD1), distant (BD2), or hand curved trajectories
(CD1) was 31% above chance, whereas it was only 8%
above chance for the deactivating muscles. This difference
as explained in the Result section was not due to higher
EMG amplitudes in the activating muscles, as the EMG
maximum amplitudes were normalized to be equal for
each muscle. Note that for each muscle, information con-
cerning amplitude differences between each type of move-
ment was present. Previous work has shown that the latter
variable is pertinent to the classification of the different
variants of whole-body pointing (Tolambiya et al., 2011).
Our results suggest that movement planning for whole-
body pointing takes place to a greater extent via the acti-
vating muscles. In comparison, a poor classification with
feedforward inhibitory activities suggests that they are
more general and share many features between the
several variants of whole-body pointing. This may be
because deactivation is usually associated with the dis-
ruption of an erect posture, which may be common to
several movements.

It is interesting to compare the contrast we observed
between activating and deactivating muscles with previous
studies on the subject. First of all, no direct comparisons
can be made as previously used techniques such as cor-
relation analyses have not permitted an analysis of a pop-
ulation adaptation to multiple task requirements. Neverthe-
less, itis interesting to observe what previous studies have
shown concerning the comparative modulation of these
two types of activity in postural muscles. Although several
studies exist on this topic and arm movements (Hallet et
al., 1975; Berardelli et al., 1996; Hoffman and Strick, 1990;
Berret et al., 2008), we will restrict ourselves to postural
muscles for the sake of simplicity. Aruin and Latash (1996)
report a positive correlation between anticipative activation
in postural muscles before a task that involves arm exten-
sion. They did not, however, find this task-dependant cor-
relation in the anticipatory inhibitions of the dorsal postural
muscles. Some researchers have, however, demonstrated
a correlation between the anticipatory inhibitory activities
of an antagonist and the activation of the agonist (Cheron
et al., 1997; Crenna and Frigo, 1991) during tasks involv-
ing postural adjustments. This would seem to imply a
tuning in the anticipatory inhibitory activities of the postural
muscles. There are several possible explanations for the
contrast between these results and ours. The most simple
might be that anticipatory deactivation is sufficient for a
binary separation but not well enough tuned for a four-way
task. Another possible explanation is that timing rather
than amplitude was found to be the correlated variables in

the last two cited studies. In contrast, amplitude rather than
timing seems to be the pertinent variable for distinguishing
several variants of whole-body pointing (Tolambiya et al.,
2011).

CONCLUSION

This study introduces the use of classification as a means
of probing the modulation of muscular activity in multijoint
movements. Anticipatory postural EMGs were used to pre-
dict which one of four different variants of whole-body
pointing was to be performed. The support vector machine
algorithm was used to carry out the aforementioned task.
An average classification success of 62+3% (mean=
SEM) or 37% above chance in this task provides an idea of
the information available in the open-loop segments of
motor control. The results suggest that there is some mea-
sure of population modulation for multiple conditions in the
feedforward phases of whole-body pointing. A comparison
was made of the classification capacities of the anticipa-
tory activating and deactivating postural EMGs. Better pre-
diction results using the activating muscles imply that mo-
tor planning is adapted to the various conditions to a
greater extent via the activating muscles. Deactivating an-
ticipatory postural EMGs associated with the rupture of an
erect posture in whole-body pointing are more general and
share more common features across several variants of
the movement.
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