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Abstract

Accurate protein inference under the presence of shared peptides is still one of the

key problems in bottom-up proteomics. Most protein inference tools employing simple

heuristic inference strategies are efficient, but exhibit reduced accuracy. More advanced

probabilistic methods often exhibit better inference quality but tend to be too slow for

large data sets.
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Here we present a novel protein inference method, EPIFANY, combining a loopy

belief propagation algorithm with convolution trees for efficient processing of Bayesian

networks. We demonstrate that EPIFANY combines the reliable protein inference of

Bayesian methods with significantly shorter runtimes. On the 2016 iPRG protein infer-

ence benchmark data EPIFANY is the only tested method which finds all true-positive

proteins at a 5% protein FDR without strict pre-filtering on PSM level, yielding an in-

crease in identification performance (+10% in the number of true positives and +35%

in partial AUC) compared to previous approaches. Even very large data sets with

hundreds of thousands of spectra (which are intractable with other Bayesian and some

non-Bayesian tools) can be processed with EPIFANY within minutes. The increased

inference quality including shared peptides results in better protein inference results

and thus increased robustness of the biological hypotheses generated.

EPIFANY is available as open-source software for all major platforms at

https://OpenMS.de/epifany.

Keywords

bottom-up proteomics, protein inference, Bayesian networks, convolution trees, loopy belief

propagation, iPRG2016

Introduction

Ever since the emergence of bottom-up proteomics experiments1, mapping the identified

peptides back to their most plausible source proteins, the protein inference problem, has

been a key problem in proteomics2–4. High dynamic range of protein abundance, limitations

in digestion, separation, and mass spectrometry result in incomplete coverage of the source

proteins by identified peptides. Reconstructing the source proteins originally present in the

sample should thus rely on as much of the experimental evidence (i.e., peptide identifica-
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tions) as possible - which also includes non-unique peptides shared between multiple source

proteins. Starting from a notion of a probability of the presence or absence of peptides in

the sample, usually expressed by a score, we want to infer the presence or absence of the

proteins these peptides originated from. Due to the common presence of ambiguous peptides

arising from one or more proteins sharing parts of their amino acid sequence this is not a

trivial task.2

The scores for peptides are typically obtained by so-called peptide search engines that

match experimentally observed spectra to theoretically derived ones based on the sequences

of an in silico digested database of protein candidates. Those peptide-spectrum matches

(PSMs) then need to be scored to be able to quantify the uncertainty in correctness of such

a match. Uncertainty in the assignment of a peptide sequence to a spectrum may be a

consequence of multiple peptide candidates matching to the same spectrum or a result of

imperfect data such as incomplete or noisy spectra as well as incomplete protein databases.5

The formulation of protein inference algorithms naturally leads to a representation of

the relation between peptides and proteins as a bipartite graph of nodes (proteins and pep-

tides) that are connected with an edge if a peptide is part of the theoretical digest of the

(parent) protein (Figure 1). Figure 1 also shows that the ambiguity of peptides across pro-

teins may lead to proteins without unique evidence (e.g., protein E) and in an extreme case

to experimentally indistinguishable protein groups (e.g., one comprising proteins F and G,

which share all their observed peptides). Reasons for ambiguous peptides are manifold in

biology and include among others homology, alternative splicing or somatic recombination.

Depending on the degree of ambiguity between the peptides of different proteins they are

often clustered into various types of so called protein ambiguity groups.2 It should be noted

that those groups can either be defined solely based on the experimentally observed pep-

tides or based on all theoretically possible peptides.6 Preliminary grouping (especially of

indistinguishable proteins) is often used automatically by inference algorithms to solve a less

ambiguous problem. While this is enough for studies that only need to confirm presence of
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Figure 1: Example of a bipartite protein-peptide graph. Nodes with letters represent poten-
tial proteins from the input database. Colored nodes are the peptides from in-silico digest
with the given enzyme (trypsin). Arrows are drawn when a protein may theoretically gen-
erate a peptide. Dashed circles represent experimentally unobserved entities due to missing
(NA) peptide-spectrum matches. Red peaks in the sketched hypothetical tandem mass spec-
tra were matched to a theoretical ion of the peptide that matched best to this spectrum.
Probability scores roughly follow a dot-product based score but were invented for the sake
of this example. Bold scores highlight the chosen match probability for this peptide (i.e.,
the maximum probability). The left side shows the used protein database with their tryp-
tic peptides (upper-case bold underlined substrings) following the same color and number
scheme as the nodes in the graph. Proteins in the same shaded curved rectangle comprise
an experimentally indistinguishable (ambiguity) group. The arrows on the bottom show
the general directions of the two processes: causality in the course of the experiment and
inference based on the observed data.
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any protein in a group (using group level inference probabilities), other studies look for the

effects of a certain isoform on a disease and need to know how likely it is that this specific iso-

form was expressed (therefore interested in single protein level results). To compare results

of inference methods on the same level (wherever possible) is an important consideration

during benchmarking.

Early inference approaches resorted to simple rule-based conclusions. If a protein is con-

nected to n or more peptides—where n is usually one or sometimes two to avoid so-called

one-hit-wonders—then it is declared present, otherwise absent. The problem with such ap-

proaches, however, is the implicit overcounting of shared peptides. In the presence of very

large proteins like titin, false positive identifications may arise due to matching one of its

many peptides. Similarly, titin might be wrongly identified if it just shares enough peptides

with truly present proteins. Some methods tackle this problem by either ignoring shared

peptides (Percolator7,8), employing maximum parsimony principles and finding a minimal set

of proteins explaining found peptides or PSMs (PIA4), iteratively distributing its evidence

among all parents (ProteinProphet9) or incorporating the evidence in a fully probabilistic

manner (Fido10, MSBayesPro11, MIPGEM12) to make use of the “explaining-away” prop-

erty of Bayesian networks13. “Explaining-away” is a term used in probabilistic reasoning

to describe the implicit conditional dependency between multiple causes of a common ef-

fect (when its probability is non-zero). In this case knowledge about one cause from other

evidence or prior to inference influences our belief about the other causes. In probabilistic

models with synergistic parametrizations like the ones in the aforementioned Bayesian tools

this means that if one protein is very likely to be present from its unique evidence, it is

already a sufficient explanation for peptides that it shares with other proteins (without evi-

dence) and thereby affects their probability in a negative way. This leads to a probabilistic

type of parsimony.

On a gold standard dataset it was shown by The et al. 14 that fully probabilistic mod-

els perform among the best in terms of the pure identification task. However, current
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solutions are computationally demanding. Additionally, in the case of candidate protein

databases with many cases of peptides being shared between truly present and absent pro-

teins, the reported probabilities are not a good basis for well-calibrated target-decoy false

discovery rates (FDRs) as they yield poor approximations of the true FDR. This leads to

over-/underestimation of the true amount of false discoveries.

In our new approach EPIFANY (Efficient Protein InFerence for ANY protein-peptide

network) we used a fast approximate inference algorithm called loopy belief propagation

(LBP) which has already been shown to perform well on solving other types of probabilis-

tic graphical models (e.g., models used in important information theoretic algorithms like

the error-correcting turbo codes15 as well as on quick medical reference (QMR) disease di-

agnosis networks16). Using LBP we can achieve drastically improved runtimes than other

Bayesian approaches without any approximations on the underlying graph itself. We im-

proved the calibration of the resulting FDRs by introducing an optional regularized model

with max-product inference and a greedy protein group resolution based on the reported

protein probabilities.

Methods

In the following section the underlying probabilistic graphical model, the inference procedure

as well as the pre- and post-processing steps on the data are explained in detail.

Model

The model we chose for protein inference is based on a Bayesian network (BN) representation.

The protein-peptide graph (Figure 1) encodes the conditional dependencies of proteins and

their peptides. The advantages of this specification of conditional (in-)dependencies is the

resulting factorization of the high-dimensional joint distribution into smaller distributions,

namely prior distributions for the proteins and conditional probability distributions (CPDs)
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for the peptides given their parents. In case of the binary representation for every peptide

and protein, these distributions are discrete and correspond to probability tables.

Additionally, the Bayesian network needs to be parametrized. Although the factorization

into smaller distributions decreases the number of parameters, each CPD still needs 2p

parameters, where p is the number of parent nodes, to be set or learned. By recognizing the

fact that in the generative process from proteins to peptides the presence of any of the parent

proteins is enough to potentially produce a peptide, we can reduce the number of parameters

further when specifying the conditional probability according to a noisy-OR model13. In its

original form, the network using the noisy-OR model requires the following parameters:

• γρ prior for protein with index ρ

• αρ,ε noisy-OR emission probability of a protein ρ generating peptide ε

• βε noisy-OR leak probability for a peptide ε being generated by chance

For now, we employ the same simplification used in the Fido10 algorithm by assuming equal-

ity among all α and the presence of only one β. Additionally, constant priors γ for all

proteins prevents biases on protein level when no further information is available. The pa-

rameters α, β, γ either have to be specified manually, or are by default selected from a grid

of initial values based on target-decoy classification performance and probability calibration

(see Implementation subsection for details).

With these assumptions, the noisy-OR model suggests Equations 2 and 3 below for the

CPD of a specific peptide ε given the presence of its parent proteins. The binary random

variable Eε denotes the presence of peptide ε while the binary random variables Rε,1, . . . , Rε,p

represent the presence of the parent proteins of peptide ε. Nε is a random variable for the
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total number of present parent proteins of a peptide.

Nε =

p∑
i=1

Rε,i (1)

P (Eε = 0|Rε,1, . . . , Rε,p) = P (Eε = 0|Nε = n) = (1− α)n ∗ (1− β) (2)

P (Eε = 1|Nε = n) = 1− P (Eε = 0|Nε = n) (3)

Note that Equation 2 is exploiting the symmetry arising due to an equal α for all proteins

of a peptide. One addition to the original model is an option to put regularizing priors of

the following unnormalized form onto the number of proteins that may produce a certain

peptide ε:

P (Nε = n) =

 1, for n = 0

1
n
, n > 0

(4)

This results in a more uneven distribution of the evidence from peptide ε starting at

the most likely producing proteins (based on their beliefs from the rest of the network),

especially in conjunction with max-product inference.

Algorithm

The goal of creating a representation of the problem as a (factorized) probability distribution

is to eventually perform inference on random variables of interest. In this specific case, the

probabilities of interest are the marginal probabilities of the proteins given the evidence on

the peptide level, the so called posterior probabilities.

As peptide level evidence, the algorithm first reads the PSM probabilities and the asso-

ciations to their parent proteins from spectra searched with a peptide search engine. It then

aggregates PSM probabilities on the peptide level by picking the maximum PSM probability

per unmodified peptide sequence and filters out peptides with extremely small probabilities
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(e.g., below 0.001).

A naive approach to inference in a Bayesian network would be to create a large joint

probability table for each connected component of the network and marginalize for each

protein by aggregating the probabilities of all possible configurations leading to the same

state of the current protein of interest. To make this approach viable for at least small to

medium-sized problems, previous tools resorted to (Gibbs) sampling11 or sped up calcula-

tions by caching results and making use of symmetries arising due to the chosen model10.

A possible symmetry to be exploited is the dependence of the peptide probability only on

the number of parent proteins (not their exact combination) as can be seen in Equation 2.

This symmetry consideration reduces the number of different input configurations in the

presence of indistinguishable groups. Although this procedure has been implemented effi-

ciently in tools like Fido, the worst-case runtime is exponential in the number of proteins in

a connected component. Reducing the size of the connected components by splitting them

at low-probability peptides is a reasonable approximation only if the probability cutoff is not

too high. Using the looping version16 of Pearl’s belief propagation algorithm17, even non-tree

structured graphs with cycles (such as all but the most simple protein-peptide networks) can

be processed efficiently while keeping flexibility in which types of factors (probability table-

based factors, function-like factors, convolution-tree-based adder factors, etc.) on which sets

of random variables are used. Convolution trees18 (CTs) are an important means to effi-

ciently calculate the sum of discrete probability distributions (e.g., to apply Equation 1).

The general idea of applying loopy belief propagation to our problem is to create a factor

graph (see Figure 2 and Implementation subsection) out of the specified Bayesian network

and initialize messages on all edges in both directions uniformly. All so-called factor po-

tentials are initialized according to their priors and/or likelihoods. Lastly, the algorithm

iteratively queues, updates and passes messages between the factors to be incorporated into

their potentials until messages do not change anymore (i.e., convergence is reached in terms

of their mean-squared error). By default, messages with the highest residuals gain highest
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priority for the next iteration19. Potentials ψ are updated by incoming messages φ follow-

ing the HUGIN algorithm20 according to the equation below for a message from node with

random variables (RVs) V to a node with RVs W whose intersection is S:

φnewV→W = p-marginalize
V \S

(ψV ) (5)

ψnew
W =

φnewV→W

φoldV→W

· ψold
W (6)

p-marginalization is a generalized form of marginalization where instead of summing over

removed variables (equivalent to p = 1) the p-norm is computed. To reach convergence

faster, messages can be dampened (by a “momentum”) in a way that the updated message

is a convex combination of old and new messages16.

Implementation

EPIFANY starts with the output from probabilistic rescoring tools applied to peptide search

engine results. It writes the PSM probabilities and associations from PSMs to proteins

into OpenMS’ datastructures. After aggregating PSM probabilities on the peptide level and

creating the bipartite graph from the peptides mapping to potential protein candidates as

described in the previous section, the resulting protein-peptide graph is split into connected

components by a depth-first search. Then—using the OpenMP 2.0 API21 in a dynamic

scheduling mode—the processing of the connected components is distributed on as many

CPU threads as available. For each connected component in the graph a factor graph is built,

equivalent to the Bayesian network specified in the Model Section. The Bayesian network

represented by the bipartite graph is converted to a factor graph as follows (example shown

in Figure 2): Firstly, to allow querying posteriors for indistinguishable proteins, an additive

factor is introduced for all proteins that share the same set of peptides. Then, to reduce

loops, save computations, and avoid oscillations later on, we also create peptide cluster

factors that hold the probabilities for the number of parent proteins for sets of peptides
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Figure 2: The factor graph created for the loopy belief propagation algorithm based on the
example in Figure 1 (same color and letters). Each node represents one factor. Annotations
on the factors describe the set of random variables (RVs) comprising its potential. Circles
are table-based factors, diamonds convolution-tree (CT) based probabilistic adders. The set
of RVs on CT-based adders are implicitly defined by the union of variables from neighbors
on the left side of the graph (indicated by a plus sign) and an output variable. Although
edges are displayed unidirectional to represent the causality, messages will be passed in both
directions.
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that share the same parent proteins or parent protein groups. Both of these factor types

use convolution trees for an efficient adding of the probability tables. It is worth noting

that this hierarchy could also include more intermediate factors but since no sub-quadratic

algorithm is known to us to create an optimal hierarchy the algorithm only uses two levels of

aggregation. Also, this aggregation is only performed if the number of contributing proteins

or protein groups is greater than one. Finally, for each peptide a factor is added to the

graph, that holds the CPD for the probability of a peptide being present given the number

of parent proteins (see Model section, Equations 2 and 3). The factor nodes on the very

left and very right are just singleton factors to keep track of the potentials (i.e., current

"posteriors" during the LBP algorithm) on proteins and peptides. They are initialized with

priors (for proteins) and evidence probabilities (for peptides) and after convergence of the

algorithm hold the final posteriors to be queried. As mentioned earlier, by default the model

parameters are evaluated based on a grid of possible values for each of them. While the rough

skeleton of the factor graph is kept over multiple sets of parameters, its internals (e.g., the

probability tables) are re-initialized for every combination. After performing message passing

until convergence in a step-wise procedure—loosening convergence criteria as the number of

messages passed increases—posteriors can be queried on all important levels: protein, protein

group, or peptide level. All factors perform the same p-norm marginalization (see Equation 5)

to generate a lower-dimensional message out of the higher-dimensional potentials. p can be

freely chosen by the user. Even max-product inference (p =∞) is available at low additional

computational costs22. A higher p is recommended together with the regularized model to

have a positive effect on calibration when the degree of ambiguity in the database is suspected

to be much higher than in the actual sample. Higher values of p result in messages that focus

on the information from high-probability configurations (i.e., the proteins with the highest

unique evidence).

An additional outer loop evaluates the model for points on a three-dimensional grid

over the three parameters α, β and γ based on a convex combination of partial AUC (for
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target-decoy classification) and single protein posterior probability calibration (i.e., compar-

ing posterior based and target-decoy based FDRs).

As an optional post-processing, a greedy protein group resolution can be performed. It

implements a probabilistic maximum parsimony model, where protein groups are ordered by

their posterior probability and starting from the best group, each greedily claims all peptides

that it potentially generates until all peptides have been claimed. Proteins or protein groups

without any remaining evidence are then deleted or implicitly assigned a probability of 0.

Data and data pre-processing

To benchmark the main advancements of EPIFANY and to show the different strengths of

the tool we focused on two different datasets.

Accuracy and calibration can best be measured on a dataset like the iPRG2016 bench-

mark data with a set of known ground truth Protein Epitope Signature Tags (PrESTs)14.

Two sets (labelled A and B) of known PrESTs were designed to share a large number of

peptides, spiked-into an Escherichia coli lysate background in three different experiments,

then measured in triplicates: one experiment each exclusively containing one of the spike-in

sets (A, B) and a third containing both sets of PrESTs (A+B). Our evaluation focuses on

the task of identifying the PrESTs of (w.l.o.g.) B while having the full database of spike-ins

(from A+B), entrapment proteins (i.e., intentionally absent PrESTs) and background pro-

teins as potential candidates. All experiments contained an equimolar concentration of each

PrEST. To avoid confusion, we will simply use the term “protein” instead of PrEST in the

rest of the manuscript.

With the goal to measure scalability of the new tool a second, larger scale dataset was

analyzed. It is part of an unpublished study and consists of two measurements of human

cells on a long gradient at two different time points in duplicates.
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iPRG2016 data set

Raw files from the corresponding PRIDE23 project PXD008425 were converted and cen-

troided with msConvert24 on all levels. The fasta database provided together with the

study was used to generate a decoy database through homology-aware (i.e., peptide-based)

shuffling of amino acids with OpenMS’ DecoyDatabase25,26 tool. Then spectra were searched

using Comet (2016.01 rev. 3)27 allowing a 10 ppm precursor mass tolerance and one missed

cleavage for fully tryptic peptides. As fixed modification we required Carbamidomethylation

(C). Variable modification was set to Oxidation (M). After merging the results over replicates

(by creating the union of proteins and concatenating PSMs) we added target-decoy annota-

tions on protein- and PSM-level. To obtain better discrimination through Percolator 3.02 we

extracted additional features specific for the Comet search-engine before running Percolator

with standard settings for the PSM score re-calibration and basic protein inference activated.

For all other methods tested we used the PSM-level posterior error probabilities reported by

Percolator as input after filtering them slightly by removing PSMs with error probabilities

higher or equal to 0.999 (to be consistent with the defaults in Fido and EPIFANY). For

comparability with PIA and Percolator which only support group-level inference, Fido and

EPIFANY were run with group-level inference as well, thereby querying posteriors on the

(indistinguishable) protein group level (i.e., reporting the probability of at least one mem-

ber being present). ProteinProphet and EPIFANY then report both, group-level and single

protein-level probabilities.

Large-scale data

After searching the spectra of the four runs with MSGF+28 (unspecified number of missed

cleavages, 10 ppm precursor mass tolerance, fully specific Trypsin/P as enzyme, fixed Methylthio

(C) modification, variable Oxidation (M)) against the whole human part of the TrEMBL

(incl. isoforms) database29 (with peptide-level pseudo-reversed decoys appended) and merg-

ing the samples the dataset can be summarized by the following numbers:
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• 119,921 proteins

• 533,218 different peptide sequences

• 807,663 PSMs

• 734,522 spectra

Again, PSMs were re-scored and probabilities extracted via Percolator 3.02 by training its

support vector machine on a subset of 250,000 PSMs for speed and memory efficiency. Since

there is currently no way to run protein inference in Percolator separately, the corresponding

options were set to be activated as well. To evaluate the computationally most demanding

task for the Bayesian approaches, Fido was run in single protein level mode (no groups

to exploit symmetries). EPIFANY calculates both levels simultaneously by default. Other

parameters were left with their defaults in all tools, except for filtering out PSMs under

0.001 probability in ProteinProphet and PIA (to be comparable with the defaults in Fido

and EPIFANY). Times and peak memory usage were measured with the Unix utility time

on a two-socket Intel Xeon X5570 machine (i.e., 16 possible threads) with 64GB of RAM.

Benchmarked tools and tool-specific adaptions

The tools tested represent a diverse set of algorithms. PIA 1.3.10 was chosen as spec-

trum level parsimony approach considering shared peptides. Percolator 3.02 represents

aggregation-based approaches on unique peptides only. ProteinProphet (compiled from TPP

5.1) was included as a commonly used iterative and pseudo-probabilistic heuristic which con-

siders shared peptides as well. Lastly, Fido (in the version shipped with OpenMS) is the

representative of Bayesian methods with a very similar model to EPIFANY’s but with a dif-

ferent inference procedure. The selection is also based on other recent evaluations of protein

inference methods14,30.

Since PIA accepts OpenMS’ idXML format by default, the only change that was done was

a renaming of the PSM score type name resulting from Percolator to OpenMS’ posterior error
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probability type so that PIA accepts the scores and interprets them as error probabilities.

For ProteinProphet OpenMS’ IDFileConverter was used to write the error probabilities

from Percolator into a pepXML file that is compatible with ProteinProphet to make sure

that all tools start from the same set of scores. The FDR estimation procedures of the

tools were used whenever possible. For ProteinProphet we used the same FDR estimation

procedure as for EPIFANY with a concatenated target-decoy database and the equation

F̂DR =
(Ndecoy+1)

Ntarget

31. Groups are counted as decoy if they consist of only decoy proteins.

Reported are always q-values unless stated otherwise.

Results and discussion

EPIFANY shows improved identification performance

Results on the unpooled experiments of the iPRG2016 study show that EPIFANY (with

greedy group resolution enabled) yields the highest count of known true positive proteins

among the tested methods (Figure 3). On this dataset EPIFANY reaches a 9.78% higher

true positive count at 5% FDR than the second best method Percolator. Considering the few

missing true positives to be identified, this increase is of even greater importance. PIA and

ProteinProphet did not perform well on this barely filtered set of PSMs with ProteinProphet’s

reported proteins all having q-values higher than 5%. The performance of ProteinProphet

might be explained by the different pipeline32 usually used to create its input. Furthermore,

ProteinProphet performs a different and more aggressive protein grouping by not only ag-

gregating indistinguishable groups but also by subsuming groups into more general protein

ambiguity groups.

However, since this dataset is limited in the number of known proteins that can be found

(191 in sample B), looking at the number of identifications at a certain cutoff does not show

the full strength of our new method. Not only does it identify more known spike-ins, it also

finds them at overall lower FDRs than every other method, and thus at a threshold where it
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is reporting fewer false positives. This is evident in the quickly rising receiver operating curve

(ROC), covering the largest partial area under the curve (truncated at 5% FDR; abbreviated

pAUC) of all tools. This is summarized in Figure 3B. Together with Fido it is also the only

tool reporting all correct proteins after all—though Fido finds all 191 present proteins at

an FDR of 47% (beyond the cutoff in the figures). Other tools (even without any FDR

cutoff) completely ignore or filter some true positives, most likely due to missing/insufficient

evidence, e.g., missing unique peptides in Percolator (which reaches 187 true proteins at its

maximum FDR of 56%).

When applied to data without stringent PSM FDR filtering, some tools (e.g., PIA)

achieved only poor pAUCs. Therefore we performed the evaluation for all tools again with a

suggested pre-cutoff of 0.01 PSM FDR33. Most methods benefit from pre-filtering in various

degrees. PIA now performs almost identically to EPIFANY (Supplementary Figure S2).

While a filtering on PSM-level before inference indeed seems beneficial to identification

performance on this dataset we hypothesize that on other datasets with noisier data (e.g.,

sub-optimal or overly permissive search engine settings with many considered modifications)

this cutoff is too conservative and in the end one is missing out on correct identifications

with low-scoring evidence under this cutoff. Good performance on both strictly filtered and

almost unfiltered data therefore shows the robustness of our method.

FDR estimates of EPIFANY are more realistic than other estimates

Before introduction of a regularized model and greedy resolution as implemented in EPI-

FANY, Bayesian methods were shown to report overly optimistic FDRs in the case of datasets

like the one tested here14. This is due to the fact that although only a small number of pro-

teins are known to be present in the sample the spectra were searched against an additional

equal number of absent proteins designed to share peptides with the present ones plus an

even bigger number of 1,000 absent random entrapment proteins. Unregularized models

using standard sum-product inference like Fido then would conservatively assign probabil-
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Figure 3: Summary statistics on the identification performance of different inference methods
at a 5% entrapment FDR on the iPRG2016 dataset, sample “B”. ProteinProphet was not
included in this comparison as it yielded first true identifications at an FDR above 5%
only. A) Number of true positive proteins found. The maximum number of true positives
according to the ground-truth database given is 191 and indicated by a dashed horizontal
line. B) The percentage of the maximum area under the partial receiver operating curve
(%pAUC) as a measure of how quickly methods accumulate true positives at increasing FDR
levels until the chosen cutoff at 5% FDR.
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ities far from 0 to proteins with similar or no unique evidence which share one or more

peptides with truly present proteins. Regularized max-product inference in EPIFANY now

makes the assumption that it is less likely for peptides to be generated by many proteins

and preferentially distributes the evidence among proteins with the highest unique evidence.

Greedy resolution additionally makes a definite, unprobabilistic choice among those proteins

based on their posterior probability. By postponing this decision until the end of an iden-

tification pipeline, however, reliable uncertainty estimates are available up to the very last

step. Compared to methods ignoring shared peptides for FDR estimation (e.g., Percolator),

FDRs reported by EPIFANY are closer to the true FDRs. The differences between reported

and observed FDR can be seen in Figure 4 which shows them up to a 15% FDR cutoff

(since higher cutoffs are usually not of interest). The cutoff was set this high to generate

more robust measures of calibration (by being able to include more point estimates for each

method). Additional ROCs and calibration plots on the full FDR range can be found in

Supplementary Figure S1.

Scalable algorithms allow application to large-scale datasets with

vastly disparate discoveries

A common challenge with inference on generative Bayesian models was their scalability due

to the speed of the method, which is inherently tied to the complexity of the underlying

model. The efficiency of EPIFANY enables full Bayesian inference on problem sizes that

were previously intractable given the used model. On the human dataset searched based on

the TrEMBL database with isoforms even non-Bayesian approaches struggle with the high

connectivity in the resulting protein-peptide graph. This is evident in Figure 5 which shows

the runtimes and memory consumption of the different tools. Fido took longer than a day

of runtime, ProteinProphet did not finish after a week and also PIA required more than

two days of processing (without considering compilation of the intermediate graph format

used by PIA). While multi-threaded EPIFANY (16 min) is even faster than (subset-trained)
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Figure 4: Absolute deviations from reported FDR from different tools and settings to the true
entrapment FDR (on the subset of proteins with known presence/absence) on the iPRG2016
dataset (experiment “B”). The boxplots aggregate data points for each method until a 15%
entrapment FDR. Lower deviations imply better calibration with perfect calibration being
indicated by the dashed horizontal line. Data above the horizontal line signify conservative
estimates while data below the line signify overly optimistic estimates.
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Percolator (33 min), it should be noted that most of Percolator’s runtime consists of peptide

rescoring and internal training of a support vector machine model. The same argument

holds for memory usage. Although running Percolator just for protein inference is to our

knowledge currently not possible it is likely that the actual runtime on that dataset will be

in the single-digit minutes.

We also emphasize, that an application of a Bayesian method incorporating results from

shared peptides may lead to different discoveries compared to methods currently used on big

datasets that ignore this complication7,34. On the larger of the tested datasets for example,

Percolator considers only half of the roughly 50,000 potential target proteins (with at least

one PSM above the 0.001 probability cutoff as used in EPIFANY) due to missing unique

evidence for the rest of them (data not shown).

Implementation grants flexibility in input and output information

In addition to increased performance, EPIFANY’s general Bayesian framework also permits

the inclusion of auxiliary information (besides PSM data) in a convenient manner. The

new implementation allows the usage of arbitrary protein priors for any protein which allows

integration of information from complementary RNA-seq experiments, which has been shown

to improve protein identification35. Due to its modular graph structure it is also easy to add

additional probabilistic evidence on the peptide level in the future. Since the factor graph

includes both single proteins and indistinguishable protein groups, both results can be output

simultaneously. Single protein-level probabilities of proteins in indistinguishable groups are

e.g., not possible to be reported in PIA or Percolator. Another novelty is the reporting of

updated peptide-level posteriors that can be used to re-score and improve FDR on peptide-

level, yielding increased target-decoy classification performance by up to 6% (in the area

under the receiver operating curve). This effect comes from the fact that the information

from sibling peptides9 in the graph was now propagated and incorporated into every peptide

posterior.
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Figure 5: Memory usage in megabytes (upper) and runtimes in minutes (lower) on the large-
scale human dataset filtered at 0.001 PSM probability. ProteinProphet did not terminate
within a week of runtime and was thus not included in the figure.
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Limitations

Since the algorithm’s grid search explores multiple parametrizations of the model, there

might be settings in which at some point during LBP contradicting messages are generated

that have disagreeing beliefs about the probability of a protein or peptide (e.g., from evidence

of different parts of the graph). This can often be solved by a step-wise increase in dampening

in later iterations. In extreme cases, however, it can lead to interruptions in the inference

on that part of the graph (since for example zero probabilities cannot be recovered). In the

latter case we evaluate the (failing) parameter set by using the prior probabilities of the

affected proteins (assuming no knowledge could be gained for those proteins). In the case

of non-convergence due to too many iterations the current beliefs for a protein are used.

However, those cases are rare and usually seen in very large components caused by extreme

parameter sets only.

Also, due to the fact that the parameter estimation is based on target-decoy annotations,

our method is affected by the composition of the decoy database. However, as shown in

Supplementary Figure S3 different random shuffles of the iPRG2016 database resulted in

comparable identification performances with a median partial AUC of 96% and a median

absolute deviation of one percent point.

Furthermore, group-level inference is still based on experimentally indistinguishable pro-

teins which hinders reproducibility of the specific groupings across multiple runs.6 If other

types of groupings should be performed this has to be reflected in the input before running

inference (e.g., by merging protein IDs beforehand).

Availability

EPIFANY runs on all major platforms (Windows, Linux, OSX). It is available under an

open-source license (BSD three-clause) at https://openms.org/epifany. This website

also contains demo data, a manual, binary installers for all platforms and links to the

source code repository. EPIFANY relies on the Evergreen inference library released by O.
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Serang under an MIT license which can be found under https://bitbucket.org/orserang/

evergreenforest36,37

Conclusion and Outlook

With EPIFANY we present a new approach to efficient Bayesian protein inference in pro-

teomics that combines excellent inference quality with good runtimes. The underlying

method certainly can be improved upon. As mentioned in the Limitations Section, the

results depend on the convergence of the algorithm. Convergence is generally affected by the

current parametrization of the model as well as the connectivity in the graph. To which de-

gree still has to be investigated. In case of sub-optimal results on a connected component the

algorithm could in the future try different message scheduling types or resort to heuristics.

Additionally, the currently experimental options of peptide re-scoring and user-defined priors

are worth further research. Incorporation of additional evidence especially from MS1-level,

replicates or multiple PSMs is a viable extension, too, however, initial tests with precursor

mass and retention time deviations yielded noisy, generally disappointing results so far. Reg-

ularization of protein groups could be improved by facilitating user-defined protein groups

(e.g., by gene or theoretical digest). Together with a re-introduction of proteotypicity with

discretized α parameters per peptide instead of a single α per dataset it could help in the

discrimination of otherwise indistinguishable proteins. In general, parameter estimation via

grid-search is a very time-consuming part of the algorithm and although different parameter

sets can be distributed across machines on even larger-scale data, learning speed might be

improved by learning on a subset of the graph or completely circumvented by including the

parameters as hyperparameters into the probabilistic model.
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