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Abstract. In cortical representations action perception and action exe-
cution are closely linked, as indicated by the presence of mirror neurons.
Experiments show that concurrent action execution and action percep-
tion in�uence each other. We have developed a physiologically-inspired
neural model that accounts for the neural encoding of perceived actions
and motor plans, and their interactions. The core of the model is a set
of coupled neural �elds that represent either perceived actions or mo-
tor programs. We demonstrate that this model reproduces the results
of a variety of quite di�erent experiments investigating the interaction
between action perception and execution. It also predicts the emergence
and stability of synchronized coordinated behavior of two individuals
that observe each other during action execution.
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1 Introduction

Perceptual and motor representations of actions are tightly coupled (e.g. [1]).
This is supported by many results from behavioral and functional imaging stud-
ies, and physiologically by the existence of mirror neurons, e.g. in premotor and
parietal cortex [2, 3]. Behavioral and functional imaging studies show in�uences
of motor execution on simultaneous action perception as well as in�uences in the
opposite direction (e.g. [4�6]). Physiological data provides insights in the basis
of the encoding of actions at the single-cell level [2, 7, 8]. This has motivated the
development of neural models that account for action perception (e.g. [9, 10])
as well as for the neural encoding of motor programs (e.g. [11]). Multiple con-
ceptual models have been proposed that discuss the interaction between action
perception and execution (e.g. [12�14]). Some implemented models have been
proposed for these interactions in the context of robot systems (e.g. [15]). We
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describe here a model that is based on electrophysiologically plausible mecha-
nisms. It combines mechanisms from previous models that accounted separately
for electrophysiological results from action recognition and the neural encoding
of motor programs [9, 16, 17]. We demonstrate that our model provides a unify-
ing account for multiple experiments on the interaction between action execution
and action perception. The model might thus provide a starting point for the de-
tailed quantitative investigation how motor plans interact with perceptual action
representations at the level of single-cell mechanisms.

2 Model Architecture

The architecture of our model is illustrated in Fig. 1. The core of the model is
a set of dynamically coupled neural �elds that encode visually perceived actions
and motor programs (Fig. 1B). Each encoded action is represented by a pair
of neural �elds, a motor �eld encoding the associated motor program, and a
vision �eld that represents the visually perceived action. Within these �elds the
evolving action is represented by a stable traveling pulse solution that runs along
the �eld. The di�erent �elds are dynamically coupled in a way that enforces a
synchronization of the traveling peaks between the vision and motor �eld that
encode the same action. Fields encoding di�erent actions inhibit each other. The
vision �elds receive a feed-forward input from a visual pathway that recognizes
shapes from gray-level images (Fig. 1A). The motor �elds are read out by a neural
network that models the motor pathway and produces joint angle trajectories
that correspond to the evolving action. These angles are used to animate an
avatar, which is rendered to produce an image sequence or movie that shows
the action (C). The architecture thus models motor execution as well as action
recognition. The following sections describe the individual components of the
model in further detail.

2.1 Neural Vision and motor �elds

The model assumes that individual actions can be encoded as visual patterns, or
as motor program. Neurally, the patterns are encoded as stable traveling pulse
solutions in dynamic neural �elds. For the simulations in this paper these �elds
are de�ned over periodic spaces (x, y ∈ [−π, π]). We assume the encoding of
M di�erent actions (where M was 2 for the simulations). The vision �eld that
encodes the precept of action m (assuming 1 6 m 6 M) is driven by an input
signal distribution sm(x, t), which is produced by the output neurons of the
visual pathway that are tuned for body postures of the action pattern m. The
temporal evolution of the activation um(x, t) of this visual �eld is determined
by the neural �eld equation [18]:

τ∂um(x, t)

∂t
= −um(x, t)− h+ wu(x) ∗ F (um(x, t)) + sm(x, t) + cmu (x, t) (1)



Neurodynamical model for the coupling of action perception and execution 3

with the nonlinear saturationg threshold function F (u) = d0
(
1− exp(u2/2d1)

)
for u > 0, and F (u) = 0 otherwise, and h > 0 determining the resting level ac-
tivity. As interaction kernel we chose the asymmetric function: wu(x) = −a0 +
a1(

1+cos(x−a3)
2 )γ with γ > 0. The convolution operator is de�ned by f(x)∗g(x) =∫ π

−π f(x
′)g(x−x′)dx′. With this kernel for appropriate choice of the parameters,

a traveling-pulse input signal sm(x, t) induces a traveling pulse equilibrium so-
lution that moves synchronously with the input. This solution breaks down if
the frames of the input movies appear in inverse or random temporal order [9].
The term cmu (x, t) summarizes the inputs from the other �elds and is further
speci�ed below.
The corresponding motor program is encoded by another neural �eld without
feed forward input. It is de�ned by the equation:

τ∂vm(y, t)

∂t
= −vm(y, t)− h+ wv(y) ∗ F (vm(y, t)) + cmv (y, t) . (2)

The form of the interaction kernel wv is identical to the one of wu with
slightly di�erent parameters, resulting in stronger recurrent feedback. As con-
sequence, once a local activation is established by a `go signal' a self-stabilizing
traveling peak solution emerges that propagates with constant speed along the
y-dimension [19]. We associate the values of y with the body poses (joint angles)
that emerge during the action, so that the traveling pulse encodes the temporal
evolution of a motor program. The term cmv (x, t) again speci�es inputs from the
other �elds.

2.2 Coupling structure

The cross connections between the vision and motor �elds encoding the same
actions were de�ned by the kernel function:

wuv(x, y) = −b0 + b1

(
1 + cos(x− y)

2

)γ
= wvu(y, x) . (3)

This kernel results in a tendency of the activation peaks in both �elds to prop-
agate synchronously. The �elds encoding di�erent actions are coupled by the
cross-inhibition kernel wI(x, y) = −c0 with c0 > 0. As consequence the di�erent
encoded actions compete in the neural representation. Summarizing, the corre-
sponding interaction terms in equations 1 and 2 are given by the relationships

cmu (x, t) = wuv(x, y) ∗y F (vm(y, t)) +
∑

m′ 6=m
wI(x, y) ∗y (F (um′

(y, t) + F (vm
′
(y, t)))

cmv (x, t) = wvu(x, y) ∗y F (um(y, t)) +
∑

m′ 6=m
wI(x, y) ∗y (F (um′

(y, t) + F (vm
′
(y, t)))

where the operator ∗y indicates the convolution with respect to the variable y.

2.3 Vision and motor pathway

The input module of our model is given by a vision pathway that recognizes
shapes from image sequences (Fig1A). This module is taken over form a pre-
vious model [9], and it is referred to this paper with respect to further details.
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Fig. 1. Overview of the model architecture. A The form pathway taken over from
a previous neural model [9] drives the input signals for the vision �elds from image
sequences. B The core of the model consists of coupled pairs of vision and motor �elds
that encode the same action. C Motor pathway that reads out the motor �elds and
generates joint angle trajectories, which are used to animate an avatar, which then can
be rendered to produce visual input movies.

In brief, the vision pathway consists of a hierarchy of neural shape detectors.
The complexity of the extracted features and the position and scaling invariance
increase along the hierarchy. The highest level of this pathway is composed from
radial basis function (RBF) units that have been trained with snapshots of the
learned action movies. These neurons thus detect instantaneous body shapes
in image sequences, where the underlying neural network is trained in a super-
vised manner. Dropping for a moment the index m, assume that the vector z(t)
is formed by the activations of the shape-selective RBF units that encode one
particular action pattern at time t, and that that the vector s(t) signi�es input
signal s(x, t), sampled at a su�cient number of discrete points along the variable
x. We learned a linear mapping of the form s(t) = Rz(t) between these vectors
using sparse regression. Training data pairs consisted of vectors z(t) of the RBF
outputs for equidistantly sampled key frames from the training action movies.
Vectors s(t) were derived from appropriately positioned idealized Gaussian input
signals. For learned training patterns the outputs of this linear network de�ne a
moving positive input peak, while the input signal s(x, t) remains very small for
actions that deviate from the training action. In total, we learned M separate
linear mappings from the RBF outputs of the units encoding the keyframes of
action m to the corresponding input signal distributions sm(x, t).
The motor pathway computes joint angles from the position of the activation
peak in the motor �eld along the variable y. This variable parameterizes the
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temporal evolution of the action. Dropping again the index m, we learned by
Support Vector Regression a mapping of the position of the activation peaks
ymax(t) = argmaxy v(y, t) onto the joint angles of the corresponding body pos-
tures. The motor �elds encoding di�erent actions compete in a winner-takes-all
fashion, and we used only the output of the most activated motor �eld for the
computation of the joint angles. In order to close the loop between action control
and perception we used the joint angles to animate an avatar, which then was
rendered to produce input movies for the visual pathway.

3 Simulations in comparison with experimental data

We simulated the results of four experiments that studied the interaction be-
tween action perception and execution. In the following, simulation results from
the model are presented side-by-side with the original data, always using the
same model parameters.
(i) In�uence of action execution on action perception: In the underly-
ing experiment arm actions were presented as point-light stimuli in noise while
the observers performed the same action in a virtual reality setup. The spatio-
temporal coherence between the executed and the visually observed action was
systematically varied, either by delaying the observed action in time or by ro-
tating it in the image plane relative to the executed action. (See [6] for further
details.) Fig. 2A shows a recognition index (RI) that measures the facilitation
(RI > 0) or inhibition (RI < 0) of the visual detection by concurrent motor ex-
ecution in comparison with a baseline without motor execution. For increasing
spatial (Fig. 2A) as well as temporal (Fig. 2B) incoherence between the executed
and observed actions the facilitation by concurrent motion execution goes over
into an inhibitory interaction. The same behavior is reproduced by our model,
simulating the masked point-light stimulus by a noisy traveling input peak (Fig.
2 C, D).
(ii) In�uence of action perception on action execution: The underly-
ing experiment measured the variability of motor execution when participants
moved their arms periodically in on direction while they saw another person
performing a periodic arm movement in the same or in orthogonal direction
[4]. As illustrated in Fig. 3A, compared to a baseline without concurrent visual
stimulation, the variability of the motor pattern increases when the visually ob-
served arm movement is inconsistent (orthogonal) to the executed pattern. The
same increase in variability is obtained from the model (Fig 3B) (quanti�ed as
variability of the timing of the corresponding activation peak in the motor �eld).
(iii) Spontaneous coordination in multi-person interaction: A classical
experiment in interactive sensorimotor control [20] shows that two people that
observe each other during the execution of a periodic leg movement tend spon-
taneously to synchronize their movements. In addition, the variability of the
relative phase of the synchronized movements is frequency-dependent. Fig. 3C
shows the original data for the frequency dependence. In order to simulate this
interactive behavior of two agents, we implemented two separate models and



6 Hovaidi-Ardestani, Caggiano, and Giese

de�ned the visual input of either model by the movie that was generated by
the motor output of the other. Like in the experiment, the two simulated agents
spontaneously synchronize. Fig. 3D shows that, in addition, the model predicts
correctly frequency dependence of the variability of the relative phase (as con-
sequence of the selectivity of the neural �elds for the propagation speed of the
moving peaks).
(iv) Reproduction of the population dynamics of F5 mirror neurons:
Our last simulation reproduces electrophysiological data from action-selective
(mirror) neurons in area F5 [8]. To generate this data, the responses of 489 mir-
ror neurons, relative to the baseline activity, were combined into a population
activity vector that varies over time. Using principle components analysis, the
dimensionality of the `neural state space' that is spanned up by these vectors was
reduced to three. (Higher-dimensional approximations led to very similar results;
see [8] for details.) In this neural state space the trajectories for the execution
and observation of a �rst action (`grasping') were lying close to the same plane,
while the trajectory for the observation of another action (`placing') evolved in
an orthogonal pane. This is quanti�ed in Fig. 3 E, which illustrates the average
distances of the neural trajectories from the planes that �t best the trajectories
for the observation of 'grasping' and 'placing'. A very similar topology of the
neural trajectories emerges for our model, if we concatenate the activities of
all neural �eld neurons into a population vector and apply the same techniques
for dimension reduction (Fig. 3F). Thus neural trajectories for the perception
and the execution of the same action are close to the same plane, while neural
trajectories for di�erent actions evolve in orthogonal subspaces.

4 Conclusion

The proposed model is consistent with the behavior of action-selective neu-
rons in the superior temporal sulcus and mirror neurons in area F5 of monkeys
([16],[17]). It provides a unifying account for a whole spectrum of experiments
on the interaction between action perception and execution. Future work needs
to give up the strict separation of visual and motor �elds, potentially exploiting
inhomogeneous neural �eld models.
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Fig. 2. In�uence of concurrent motor execution on the visual detection of action pat-
terns. The experimentally measured Recognition Index (RI) indicates transitions from
facilitation to inhibition of visual detection by concurrent motor execution, when the
temporal coherence (panel A) or the spatial congruence (panel B) of the visual pat-
tern with the executed patterns are progressively reduced ([6]). Similar RI computed
from the model output shows qualitatively the same behavior (panels C and D). (p:
Signi�cance levels, t test)

.

Fig. 3. Reproduction of experimental e�ects: A Motor variability of executed actions
increases during observation of incongruent actions [4]. B Timing variability of motor
peak in the model shows similar behavior. C Frequency dependence of standard de-
viation (SD) of relative phase for the spontaneous synchronization of two agents who
observe each other [20]. D Corresponding model result derived from activity in motor
�elds. E Neural trajectories for grasping execution and observation are close to 'grasp-
ing' plane, but far away from 'placing' plane [8]. F Same behavior is observed for the
neural trajectories computed from the model neurons. (Details see text.)
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