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Abstract. Humans reliably attribute social interpretations and agency
to highly impoverished stimuli, such as interacting geometrical shapes.
While it has been proposed that this capability is based on high-level
cognitive processes, such as probabilistic reasoning, we demonstrate that
it might be accounted for also by rather simple physiologically plausible
neural mechanisms. Our model is a hierarchical neural network archi-
tecture with two pathways that analyze form and motion features. The
highest hierarchy level contains neurons that have learned combinations
of relative position-, motion-, and body-axis features. The model repro-
duces psychophysical results on the dependence of perceived animacy on
motion smoothness and the orientation of the body axis. In addition, the
model correctly classi�es six categories of social interactions that have
been frequently tested in the psychophysical literature. For the genera-
tion of training data we propose a novel algorithm that is derived from
dynamic human navigation models, and which allows to generate arbi-
trary numbers of abstract social interaction stimuli by self-organization.
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1 Introduction

Humans spontaneously can decode animacy and social interactions from strongly
impoverished stimuli. A classical study by Heider and Simmel [1] demonstrated
that humans derived very consistently interpretations in terms of social interac-
tions from simple geometrical �gures that moved around in the two-dimensional
plain. The �gures were interpreted as living agents, to which even personality
traits were attributed. More recent studies have characterized in more detail
which critical features of simple stimuli a�ect the perception of animacy, that
is whether the object is perceived as alive [2�4]. Furthermore, detailed studies
have focused on the perception of social interactions between multiple moving
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shapes, e.g. focusing on 'chasing' or '�ghting' [5, 6]. Six interaction types have
been used in a number of studies [7�9], and McAleer & Pollick [9] showed that
these categories can be reliably classi�ed from stimuli showing moving circular
disks whose movements were derived from real interactions.

Coarse neural substrates of the processing of such stimuli have been iden-
ti�ed in fMRI studies. Animacy has been studied, modulating the movement
parameters of individual moving shapes [10�12], and stimuli similar to the ones
by Heider & Simmel have been frequently used in studies addressing Theory of
Mind [13, 14]. In fMRI and monkey studies regions like the superior temporal
sulcus (STS) and human area TPJ were found to be selective for these stimuli
[15�18]. In spite of this localization of relevant cortical areas, the underlying ex-
act neural circuits of this processing remain entirely unclear. Some theories have
associated the processing of such abstract stimuli with probabilistic reasoning
[19, 20], while others have linked them to lower-level visual processing [6]. So
far no ideas exist how such functions could be accounted for by physiologically
plausible neural circuits.

The goal of this paper is to present a simple neural model that reproduces
some of the key observations in psychophysical experiments about the percep-
tion of animacy and social interactions from simple abstract stimuli. The model
in its present form is simple, but in principle extendable for the processing of
more complex stimuli that require also the processing of shape details or shapes
in clutter. The model is an extension of classical models of the visual process-
ing stream that account for the processing of object shape and actions [21�24].
However, such models never have been applied to account for the perception of
animacy or social interaction. Our attempt to use these types of architectures
is motivated by recent work that showed that models of this type for the recog-
nition of hand actions also account for the perception of causality from simple
stimulus displays that consist of moving disks [25]. This modeling work predicted
also the existence of neurons in macaque cortex that are speci�cally involved in
the visual perception of causality [26]. Here we show that a model based on
similar principles accounts for the perception of animacy and social interactions.

In the following section, we �rst describe how we generated a stimulus set for
training of the neural model, devising a generative model for social interaction
stimuli that is based on a dynamical systems approach. We then describe the
architecture of the model. The following section describes the results, followed
by a brief discussion.

2 Stimulus synthesis

For the training of neural network models a su�cient set of stimuli is required.
The problem is that from the classical psychophysical studies only a rather small
set of stimuli is publicly available. For a meaningful application of learning-based
neural networks approaches thus a su�ciently large training data set with similar
properties needs to be generated. In our study we used movies showing individual
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moving agents, and interaction of 2 agents (chasing, playing, following, �irting,
guarding, �ghting) described in psychophisical studies [7�9].

In order to model the interaction of two moving agents we exploited a dynam-
ical systems approach, which before was used very successfully for the modeling
of human navigation [27]. The underlying idea, originally derived from robotics
[28], is to de�ne a dynamical systems or di�erential equations for the heading di-
rections φi and the instantaneous propagation speeds vi of the interacting agents
(in our case i = 1, 2). The speci�ed movement is dependent on goal and obstacle
points in the two dimensional plain, where the other agent can also act as goal
or obstacle as well. We modi�ed a model for human steering behavior during
walking [29] to reproduce the movements during social interactions.

The resulting dynamics is given by the following di�erential equations for the
heading direction:

φ̈i = −bφ̇i − kg(φi − ψg,i)(e
−c1dg,i + c2)

+ko

Nobst∑
n=1

(φi − ψo,ni)(e
−c3|φi−ψo,ni|)(e−c4do,ni). (1)

The variables ψg,i and dg,i signify the absolute direction of the actual goal point
and the distance of the goal from the agent in the 2D plain. Likewise, ψo,ni and
do,ni signify the absolute direction and distance from obstacle number n from
the agent, where Nobst is the number of relevant obstacles, and where km and
cm signify constants. The forward speed of the agents is speci�ed by the two
stochastic di�erential equations

τ v̇i = −vi + Fi(dg,i) + kεεi(t), (2)

where εi(t) is Gaussian white noise. The two functions Fi that specify the dis-
tance dependence of the speed dynamics are di�erent for the two agents:

F1(d) =
1

1 + e−c5(d−c6)
− c7e−kd (3)

F2(d) =
c8

1 + e−c9(d−c10)
− c11e−kd + c12. (4)

Table 1: Parameters of simulation algorithm.
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The goal point of the second agent was typically the �rst agent. The goal
points for the �rst agent was given by a sequence of �xed positions, which were
randomly generated by uniformly sampling from the 2D plain and rejecting the
samples that were closer than a �xed distance from the last sample. Since it
turned out that the in�uence of the obstacle terms was rather low for the speed
dynamics, we dropped the obstacle terms from the speed control dynamics. Table
1 provides an overview of the model parameters for the six simulated behaviors.
We generated 50 stimuli for each interaction class. Figure 1 shows examples
paths of the agents for the di�erent behaviors for typical simulations.
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(f) Fighting(FI)

Fig. 1: Sample trajectories for 6 di�erent social interactions. Colors indicate the
positions of the two agents (agent 1: blue, agent 2: red). Color saturation indi-
cates time, the color fading out after long times.

3 Model architecture

An overview of the model architecture is shown in Fig. 2. Building on classical
biologically-inspired models for shape and action processing [21, 22], the model
comprises a form and a motion pathway, each consisting of a hierarchy of fea-
ture detectors. Presently, these pathways were modelled following these classical
papers, which was su�cient for the tested simple stimuli.
Form Pathway: The form pathway of the simple model implementation here
comprises only three hierarchy layers. The �rst is composed from (even and
uneven) Gabor �lters with 8 di�erent orientations (cf. [22]), whose centers were
placed in a grid of 120 by 120 points across the pixel image. The outputs of this
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Fig. 2: Model consisting of a form and a motion pathway. ME sign�es a layer
of motion energy detectors, and RPM the relative position map. The top level
of the model is formed by neural detectors for the perceived animacy, and a
network that classi�es six di�erent types of interactions. (See text for details.)

Gabor �lter array are pooled by the next layer using a maximum operation over
a grid of 41 by 41 �lters, separately for the di�erent orientations, in order to
increase the position-invariance of the representation. The highest layer of the
form pathway is formed by Gaussian radial basis function, which are trained with
the shapes of the agents in di�erent 2D orientations. Opposed to many other
object recognition architectures, these shape-selective neurons have receptive
�elds of limited size (about 20 percent of the width of the image), which is
cosistent with neural data from area IT [30]. The outputs of this layer provide
thus information about the identity of the agents, their positions, and their
orientation in the image plain. The signal uk(φ, x, y) is the output activity of
the neural detectors detecting shape k at the 2D position (x, y). Summing this
signal over all φ provides a neural activity distribution upk

(x, y) whose peak
signals the position of agent k in the image. This signal is used to compute the
velocity and the relative positions of the moving elements or animate objects.
Similarly, by summing over the positions one obtains a activity distribution
uφk

(φ) over the directions with a peak at φk.
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Motion Pathway: it analyzes the 2D motion and the relative motion of the
moving agents. As input we use the time-dependent signals upk

(x, y) for each
agent as input to a �eld of standard motion energy detectors (ME in Fig.
2), resulting in an output that encodes the motion energy in terms of a four-
dimensional neural activity distribution (dropping the index k in the following)
uv(x, y, vx, vy, t), where v = (vx, vy) is the preferred velocity vector of the motion
energy detector. Pooling this output activity distribution over all spatial posi-
tions using a maximum operation, a position-invariant neural representation of
velocity is obtained. From this a neural representation of motion direction is
obtained by pooling this activity distribution over all neurons with the same
(similar) motion direction, resulting in a one-dimensional activity distribution
uθ(θ, t) over the motion direction θ, from which the direction can be easily es-
timated by computing a population vector1. The same applies to the length of
the velocity vector2 v = |v|. In order to compute also the acceleration of the
agents, we transmit the position-invariant activity distribution uv(vx, vy, t) as
input to another �eld of motion energy detectors, which computes from this an
energy distribution ua(x, y, ax, ay, t) over the acceleration vectors a = (ax, ay).
By pooling over directions, from this an activity distribution over the length of
these vectors a = |a|) is computed, and again this parameter can be estimated
by a simple population vector. The population estimates of θ, v and a enter the
animacy computation (s.b.).

For analyzing the relative motion of the two agents, following [22], the output
distributions upk

(x, y) of the form pathway are also fed into a gain �eld network
that computes a representation of the position of the second agent in a coordinate
frame that is centered on the �rst. Its output is computed as convolution-like
integral of the form upR

(x, y) =
∫
x′,y′

up1(x
′, y′)up2(x + x′, y + y′) dx′dy′. This

output de�nes a neural relative position map that represents the position of agent
2 as an activity peak in a coordinate frame that is centered on the �rst. The in-
tegral is taken over a �nite region of shifts |(x, y)| < D, implying that situations
where the agents have a distance substantially larger than D will not produce an
output peak. This makes sense since agents that are too distant do not produce
the percept of a social interaction. The activity distribution upR

(x, y, t) is again
processed by a cascade of two levels of motion energy detectors in order to com-
pute the relative speed and acceleration of the two agents. Population estimates
of the relative distance dR = |pR|, velocity vR, and the acceleration aR enter
the interaction classi�er.

Recognition Level: the highest level of the model consists of a circuit that
derives the perceived animacy of the two agents, and another one that classi�es
the perceived interaction class. The neurons detecting instantaneous animacy
(dropping again the index k and time) multiply two input derived from the signal

1 A simple estimate of the encoded angle is given by θ̂ =
arg
(
(
∑
m exp(iθm)uθ(θm, t))/(

∑
m uθ(θm, t))

)
, where the θm are the preferred

directions of the neurons.
2 Here the estimator is v̂ = arg

(
(
∑
m vmuv(vm, t))/(

∑
m uv(vm, t))

)
, where the vm

are the preferred speeds of the neurons.
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of both pathways signals B = A1A2. The �rst signal measures the alignment of
the body axis of the moving agent with its direction of its motion. It is just
given by the scalar product of the activity distributions over the body axis
of the agent uφ(φ) and the motion direction of the agent uθ(θ) in the form
A1 =

∑
n uφ(θn)uθ(θn). The second signal A2 linearly combines information

about the speed, and the magnitude chages and angular changes of speed, which
are given by a and the angular component of a. The linear mixing weights of
the animacy neurons were estimated by �tting the psychophysical results from
[2]. Final animacy responses were computed as time averages over the whole
trajectories.

The second circuit at the top level of the model classi�es the di�erent in-
teraction types based on the following features: speeds vi and acceleration ai
of the agents, and relative position pR, velocity vR, and acceleration aR of the
agents. These features served as inputs of di�erent classi�er models, We tested
a multi-layer perceptron, linear and nonlinear discriminant analysis (see also
[31]), k-nearest neighbor classi�cation, and a linear and a nonlinear support
vector machine.

4 Results

Results on animacy detection are shown in Fig. 3. The model reproduces at
least qualitatively the dependence of animacy ratings on directions and speed
changes [2]. In these experiments an agent shape moved along a straight line
and then suddenly changed speed or direction by di�erent amounts. In addition,
the model reproduces the fact that a moving �gure that has a body axis, like a
rectangle, results in stronger perceived animacy than a circle if the movement,
and that the rating is highest if the body axis is aligned with the motion than
if it is not aligned [2].
Fig.4 shows example results from the application
of the di�erent classi�er models for the 6 inter-
action behaviors in the study [9]. The classi�ers
were trained on movies generated with the stim-
ulus generation algorithm described in section
2. The linear SVM classi�er achieves 99% cor-
rect classi�cations on this data set. See Tab.2
for the results with the other classi�ers. Most
importantly, the model achieved also 100 % cor-
rect classi�cations on the example videos from
[9], even though these movies were not used for
training.

.

Table 2: Classi�cation re-
sults with di�erent classi-
�ers (6 interaction types).
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Fig. 3: Simulation results for animacy perception in comparison with experimen-
tal results. (a),(d): Dependence of animacy ratings on size of direction change.
(b),(e): Dependence of animacy rating on size of speed change. (c),(f): E�ect of
alignment of body axis with motion direction, compared with moving circle (no
body axis).

5 Conclusion

Our model accounts by combination of very elementary neural mechanisms for
a number of classical results from animacy and social interaction perception
from abstract �gures. To our knowledge this is the �rst neural model that can
account for such results. Evidently the model is only a proof-of-concept with
many shortcomings, a major one being that the accuracy of the form and mo-
tion pathway that provide input to the animacy and interaction detection have
to be improved. Since the model is in principle consistent with deep architec-
tures for form and action recognition that can achieve high performance level it
seems likely that it can be extended to the processing of much more challenging
stimulus material. Even in its simple form the model proves that animacy and
social interaction judgements partly might be derived by very elementary oper-
ations in hierarchical neural vision systems, without a need of sophisticated or
accurate probabilistic inference.
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European Commission HBP FP7-ICT2013-FET-F/ 604102 and COGIMONH2020-
644727, the DFG KA 1258/15-1, and BMBF CRNC FK: 01CQ1704.
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(a) Linear SVM (one-vs-one) (b) Linear SVM (one-vs-all) (c) KNN

Fig. 4: Confusion matrices for the best(Linear SVM) and the worst(KNN) clas-
si�er; TP: true positive rate, FN stands for false negative rate. 50 videos per
class.
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