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Abstract

The neural principles of the encoding of face spaces in visual cortex are still unclear and

multiple competing theories have been proposed. Based on new electrophysiological data from

macaque area IT we test two models realizing example-based and norm-referenced encoding.

Comparing the experimentally measured tuning properties with predictions from the two

models we find a better agreement for the norm-referenced encoding model. This suggests that

a majority of IT neurons might represent deviations from a norm face, which is determined by

an average over the distribution of typically occurring faces.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The recognition of faces has been studied extensively in psychology and
neurophysiology [8,11,12]. However, the principles underlying the neural encoding
of faces remain a matter of dispute. Due to the lack of conclusive neurophysiological
data a number of competing theoretical models for the encoding of face spaces have
been proposed (e.g. [5,10,11]). In this paper we try to gain some new insights in the
neural mechanisms of the encoding of face spaces by comparing two models that
see front matter r 2004 Elsevier B.V. All rights reserved.
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implement different encoding principles with electrophysiological data from monkey
inferotemporal cortex [4]. The experimental data seems to be more compatible with
the model that realizes norm-referenced encoding. This indicates that the responses
of a majority of IT neurons might reflect the deviation of faces from an average
stimulus, or average face.
In the following, we will first briefly review the face space concept and the two

encoding principles that are implemented by the models. A detailed description of
the models is given in Section 4. A number of simulation results are presented in
Section 5, followed by some concluding remarks.
2. Face spaces

Face spaces have been a quite popular concept in psychology (e.g. [11]). It is
assumed that faces are perceptually represented as points in an abstract high-
dimensional metric space. Different possible neural encodings of such spaces have
been discussed [8,11]. Exemplar-based theories assume an encoding by neural units
that represent prototypical example faces, which can be parameterized by vectors xn

in an appropriately chosen feature space. The responses of the individual neurons are
determined by the distances between the vector xn of the encoded prototypical face
and the vector x that represents the actual face stimulus. Another possible principle
is a norm-referenced encoding, where faces are represented relatively to an average or
norm face, corresponding to a vector m in feature space. The norm faces is typically
defined by an average of a typical set of example faces. In this case the responses of
the neurons depend on the difference x�m between the actual stimulus and the
average vector.1 This implies that each neuron response depends on the overall
statistics of typically occurring faces, and not only on an individual encoded
example. Many psychophysical results seem compatible with both theories. This
motivates a study that links these two encoding principles quantitatively with
electrophysiological data.
3. Stimulus set and physiological data

We used the same stimulus set as in an electrophysiological experiment by
Leopold et al. [4] who recorded neurons in area IT in macaque visual cortex. The
stimuli were normal and caricatured human faces that were generated using a
morphable model [1] that allows to synthesize photo-realistic pictures of faces by
linear combinations of 200 3D laser scans of human heads.2 The synthesized face
1This principle is mathematically equivalent to an example-based encoding of exaggerated prototypes

[8]. In order to determine such exaggerations knowledge about the average face is also required.
2The 3D shapes of different heads, parameterized as high-dimensional polygon models that have been

brought in correspondence, are linearly combined. Our stimuli had an average texture that was computed

from all 200 heads in the data basis.
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Fig. 1. Face space and facial caricatures generated by the morphable model with caricature levels l and m
for normal and lateral caricatures.

M.A. Giese, D.A. Leopold / Neurocomputing 65–66 (2005) 93–101 95
images can be parameterized by a weight vector fn; whose elements determine the
weights of the scanned faces in the linear combination. Using this parametrization
we computed the average of 50 female faces in the data basis3 to define an average
face vector f̄: Based on this average we generated two types of facial caricature
stimuli:

Normal caricatures of a face fn are defined by vectors of the form f ¼ f̄ þ lðfn � f̄Þ:
The identity level l determines the degree of caricature (l ¼ 1: original face, l41:
normal caricature with exaggerated individually-specific features, 0olo1: ‘‘anti-
caricature’’ with reduced features). Example stimuli are shown in Fig. 1.

Lateral caricatures of a face fn were determined by interpolation on curved paths
that connect it with other example faces fm: To generate these paths we interpolated
the lengths of the vectors fn and fm and their directions in the high-dimensional space
separately. The lateral caricature level m parameterizes these paths (m ¼ 0
corresponding to the point fn; and m ¼ 1 to the point fm; see Fig. 1). We selected
four female faces from the data basis for the generation of the lateral caricatures that
were perceived as maximally dissimilar by human subjects in a previous study.
These stimuli were presented to monkeys during a fixation task. One hundred and

fifty-seven neurons were recorded in the anterior part of area TE in inferotemporal
3Dimensionality was reduced using a PCA retaining 100 principal components.
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Fig. 2. Schematic illustration of the most important electrophysiological results: (a) monotonic tuning

with respect to the identity level l; (b) gradual tuning with lateral caricature parameter m with extrema for
intermediate levels.
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cortex. For comparison with the model we used the average spike rates in an interval
200–300ms after stimulus onset. Monkeys had prior experience with human faces,
but not with this specific stimulus set.
A detailed description of the experimental data is given in [4]. In this paper we only

briefly review two important key results:
(1)
 Many neurons shows gradual and monotonic tuning with the identity level l:
The majority of tuning curves has positive slopes and no extrema for
intermediate levels of l (Fig. 2a).
(2)
 Tuning with the lateral caricature parameter m is typically smooth and a
significant fraction of neurons shows maximum responses for intermediate levels,
i.e. for 0omo1 (Fig. 2b).
4. Neural model

Both implemented models consists of a hierarchy of neural feature detectors
(Fig. 3). The first hierarchy levels extract local orientation and more complex form
features. This part is identical for both models and consistent with many other
physiologically inspired object recognition models (e.g. [7,9]). The highest hierarchy
level contains the face-selective neurons whose activities are compared to the
electrophysiological data from area IT.

4.1. Preprocessing

The first level of the processing hierarchy consists of Gabor filters with
physiologically realistic parameters [3] that model simple cells in primary visual
cortex. The gain of these filters increases with their preferred spatial frequency in
order to compensate for the 1=f -dependence of the frequency spectrum of natural
images. We used eight preferred orientations and three different spatial scales
(0:125; 0:25; and 0:5 deg per cycle). The receptive fields for each scale were strongly
overlapping.
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Fig. 3. Overview of the hierarchical model (including numbers of neurons and potentially corresponding

cortical areas).
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The next level of the hierarchy consists of neural detectors with larger receptive
fields (bigger by factor 5) that pool the responses of the local orientation detectors on
the previous level separately for each orientation and spatial frequency. Pooling is
accomplished by MAXIMUM computation. The pooled responses show partial
position invariance and higher robustness [9]. Maximum computation has been
observed electrophysiologically for orientation-selective neurons in area V4 [2]. The
receptive fields of the orientation detectors on the second hierarchy level were
strongly overlapping. Only 10% of the outputs of this hierarchy level were
transmitted to the next higher level. This subset was determined by the requirement
that the variance of the output signal over a representative set of faces had to exceed
a certain threshold value, implementing a simple form of feature selection.
The third hierarchy level is a linear neural network that extracts significant

complex form features from the outputs from the previous level. The weights of this
network were determined using a principle component analysis. Principle
components can be learned with multiple physiologically plausible learning rules.
For the simulations we retained 20 principle components that explain about 84% of
the variability. The qualitative trends of our results were highly robust against strong
variations of the parameters of all preprocessing levels (e.g. number and size of
spatial scales, number of principle components, variance threshold).

4.2. Face-selective neurons

The highest hierarchy levels of our models consist of neurons that are selective for
faces. The level was modelled in two different ways in order to realize the two
different encoding principles. For modelling example-based coding we use radial
basis functions. Consistent with other learning-based recognition models (e.g. [9]),
these units were trained with 49 random faces from the data basis, which were
chosen to be disjoint from the set that was used to generate the caricatures. This
assumption reflects that the monkey had substantial opportunity to memorize other
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human faces before the start of the experiment.4 The tuning function of the face-
selective neurons in this implementation is given by a Gaussian function:

vk ¼ C1 expð�ju� ukj
2=ð2Z2ÞÞ: (1)

The 20-dimensional vectors u and uk signify the responses of the previous layer for
the actual face and the training face of model neuron k. The parameter Z determines
the selectivity of the neurons. It was adjusted in order to match the fraction of
activated neurons in the physiological data.

Norm-referenced encoding was implemented using neurons whose responses
depend explicitly on a vector m that represents the average or expectation of the
input vectors from the previous layer over a representative set of randomly chosen
faces. Interestingly, this vector is very similar to the input vector u that arises during
presentation of the average face. The expectation of the input vector can be
estimated using simple neural mechanisms, e.g. by a slow leaky integrator that
averages over many stimulus presentations. The tuning function of the norm-
referenced encoding units are given by a product of two terms:5

vk ¼ C2ju�mj
ðu�mÞTnk

2ju�mj
þ
1

2

� �n

: (2)

The first term depends only on the distance between the actual input vector u and the
average vector m: The second term is responsible for the tuning with respect to facial
identity. It depends on the cosine of the angle between the difference vector u�m
and a unit vector nk: This unit vector is given by a fixed set of weights that
characterizes the neuron, and which is learned from training faces. The cosine of this
angle is proportional to the scalar product ðu�mÞTnk and realizes a direction tuning
in the high-dimensional input space. The positive parameter n determines the width
of this direction tuning. Reasonable fits of the data were obtained for values n ¼
1; . . . ; 1:5:
5. Results

Our models were trained with 49 randomly chosen male faces from the Max
Planck data basis [1] and tested with 199 facial caricatures. During training no
caricatured stimuli were presented. The stimulus set was identical with the one used
in the electrophysiological experiment.
Fig. 4 shows population responses from the two models implementing norm-

referenced encoding (panels a and c), and example-based encoding (panels b and d).
The averages were computed by ordering the responses for each neuron according to
the face that elicits maximum, second-maximum, third-maximum, etc. response
4Electrophysiological experiments show that neurons in area IT can learn to respond selectively to novel

stimuli, showing tuning properties that are consistent with radial basis functions [6].
5For n ¼ 1 an approximation of this function can be implemented with a simple two-layer linear

threshold network. This implementation was used for the simulations.
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Fig. 4. Simulation results: mean and standard errors over the whole population after rank-ordering

responses by faces that induce maximum responses (see text) as functions of the caricature levels l and m:
Panels a and c show the responses for the norm-referenced encoding model, and panels b and d responses

of the example-based model. Significance of the response variation with the caricature parameters was

assessed with ANOVAs (� � po0:01; �po0:05).
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(taking the maximum over all identity levels of the same face). The ‘‘rank-ordered’’
responses were then averaged over the whole population of neurons. Panels a and b
show the means and the standard errors of these average responses as function of the
identity level l: The responses of the norm-referenced encoding model (panel a) vary
monotonically with the identity level and show a strong dominance of positive
slopes, consistent with the physiological data (Fig. 2a). The responses of the
example-based encoding model (panel b) show a dominance of negative slopes.
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These observations are confirmed by a more detailed statistical analysis where the
slopes were fitted using linear regression. Seventy-six percent of the tuning curves of
the norm-referenced model show positive slopes, comparable to the experimental
data (78%), whereas only 29% of the tuning curves of the example-based model have
positive slopes. We also computed the percentage of the variance of the tuning curves
that can be predicted with the two models. The norm-referenced encoding
model predicts 63% of the variance of the experimentally measured tuning curves.
The example-based model produces huge prediction errors resulting in an
error variance that exceeds the variability of the tuning curves by 270%. This
model thus does not predict the experimental data very well. By fitting quadratic
functions we also quantified the percentage of tuning functions that have extrema for
intermediate levels of l: This percentage is closer to the experimental data for the
norm-referenced model (26%) than for the example-based model (37%, experi-
mental data 19%).
A similar analysis can be applied for the tuning functions with respect to the

lateral caricature parameter m: F1; . . . ;F4 indicate for each neuron the face that
elicits minimum, second-minimum, third-minimum, etc. responses for normal
caricatures. Figs. 4c and d show the averages and standard errors of the responses
for different lateral caricature levels between F1 and all other faces, and F4 and all
other faces. In this case the averaged tuning curves of the two models (panels c and
d) are rather similar. A regression analysis shows that both models show significant,
but higher fractions of tuning curves with intermediate extrema (36% and 38%,
respectively) than observed for the experimental data (18%). Both models explain a
significant amount of the variance (64% for the norm-referenced and 62% for the
example-based model) of the average tuning curves (Fig. 2b).
6. Conclusion

We have quantitatively compared two neural models that implement norm-
referenced and example-based encoding of face spaces with electrophysiological data
from area IT in monkey cortex. In particular, for normal caricatures the models
make different predictions, which were robust against parameter changes on the
different levels of the processing hierarchy. The monotonicity of the tuning curves
with respect to the identity level and the dominance of positive slopes could be better
reproduced with the norm-referenced encoding model. The behavior of the two
models for lateral caricatures is very similar and consistent with the data. This makes
it potentially difficult to distinguish norm-referenced and example-based encoding
based on lateral caricatures.
Obviously, more fine-tuning between the proposed models and physiological data

has to be accomplished, and other alternative models have to be tested. However, the
proposed framework offers a quantitative link between real images and electro-
physiological data that might be quite useful to unravel underlying encoding
principles, and to explore the coding efficiency of different possible physiological
implementations of face spaces.
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