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The visual recognition of actions is an important visual function that is critical for motor learning and social communication. Action-
selective neurons have been found in different cortical regions, including the superior temporal sulcus, parietal and premotor cortex.
Among those are mirror neurons, which link visual and motor representations of body movements. While numerous theoretical models
for the mirror neuron system have been proposed, the computational basis of the visual processing of goal-directed actions remains
largely unclear. While most existing models focus on the possible role of motor representations in action recognition, we propose a model
showing that many critical properties of action-selective visual neurons can be accounted for by well-established visual mechanisms. Our
model accomplishes the recognition of hand actions from real video stimuli, exploiting exclusively mechanisms that can be implemented
in a biologically plausible way by cortical neurons. We show that the model provides a unifying quantitatively consistent account of a
variety of electrophysiological results from action-selective visual neurons. In addition, it makes a number of predictions, some of which
could be confirmed in recent electrophysiological experiments.

Introduction
Motor actions are often directed toward goal objects, such as
grasping of a piece of food. The recognition of such transitive
goal-directed actions is an important function of the visual sys-
tem with high importance for motor learning and the interpreta-
tion of the actions of others. The neural basis of this visual
capability is only partially understood. Neurons with visual selec-
tivity for goal-directed hand actions have been found in multiple
regions of monkey cortex, including the superior temporal sulcus
(STS) (Perrett et al., 1989; Jellema and Perrett, 2006; Barraclough
et al., 2009), parietal cortex (Fogassi et al., 2005; Rozzi et al., 2008;
Bonini et al., 2010), and premotor cortex (for a review, see Riz-
zolatti and Sinigaglia, 2010). A subgroup of these neurons that
has received enormous interest in cognitive neuroscience is the
“mirror neurons,” which combine visual selectivity for observed
actions with selective motor tuning during action execution. (See
Materials and Methods, Transitive action-selective neurons and
view-independence.)

Most existing computational models for goal-directed action
recognition have focused on the possible role of motor represen-

tations, and the “mirror neuron system” for action understand-
ing (Wolpert et al., 2003; Oztop et al., 2006) (see Materials and
Methods, Relationship to other models, for a more detailed re-
view). Most of these models assume, implicitly, that action rec-
ognition occurs by a matching of observed and internally
simulated motor behavior within a body-centered frame of ref-
erence, e.g., using joint angle representations. First, this compu-
tational approach predicts view-independence of the relevant
neural representations. Second, this computational approach
requires a relatively accurate reconstruction of the three-
dimensional effector geometry, even from monocular action
stimuli.

The first point seems difficult to reconcile with the observa-
tion that many action-selective neurons in monkey cortex show
view dependence, e.g., in the STS (Perrett et al., 1985; Oram and
Perrett, 1996; Jellema and Perrett, 2003; Barraclough et al., 2009),
and recently also area F5 in premotor cortex (Caggiano et al.,
2011). A transformation in a body-centered frame might thus not
occur until very late in the cortical processing hierarchy. View-
dependent mechanisms are meanwhile accepted as a standard
explanation for the recognition of three-dimensional shapes in the
ventral stream. (See Materials and Methods, Relationship to other
models, for a more detailed discussion.) With respect to the second
point, it is known from computer vision that the estimation of three-
dimensional joint angles from monocular image sequences is a very
challenging computational vision problem (Weinland et al., 2011),
and one might ask whether the brain really solves this problem if
action recognition can be accomplished by computationally less
costly strategies, e.g., bypassing the three-dimensional reconstruc-
tion of the effector configuration.

We present in the following a physiologically plausible model
that reproduces visual properties of action-selective neurons in
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higher cortical areas of monkey cortex. The model accomplishes
action recognition without an explicit reconstruction of the
three-dimensional effector geometry, relying on well-established
simple neural principles. The model is computationally powerful
enough to recognize actions from real video sequences, accom-
plishing position- and view-invariance. It provides a unifying
account for a variety of electrophysiological and imaging results
from monkey cortex.

Materials and Methods
Overview of the model architecture
An overview of the model architecture is shown in Figure 1. The model
consists of three main components: (1) A neural shape processing hier-
archy that recognizes the moving effector (e.g., the hand) and goal ob-
jects, (2) a module that integrates the information about the relationship
between effector and object, and (3) a module containing neurons that
are selective for transitive actions and that establishes view-invariance of
recognition.

The first model component follows closely well-known neural models
for shape recognition in the ventral stream (Oram and Perrett, 1994;
Riesenhuber and Poggio, 1999b; Rolls and Milward, 2000; Cadieu et al.,
2007). Its core part is view-specific detectors for shapes. Invariance and
feature complexity increase along the hierarchy, where position and scale
invariance are achieved by maximum-pooling. Contrasting with the
mentioned object recognition models, the shape-selective neurons in our
model show only incomplete position-invariance. These neural units
have spatially localized receptive fields with a diameter approximately 4°
visual angle, corresponding to electrophysiological results from area IT
(Op De Beeck and Vogels, 2000; DiCarlo and Maunsell, 2003; Aggelo-
poulos and Rolls, 2005). This makes it possible to decode the two-
dimensional retinal positions of recognized goal objects and effectors
from the population activity of such shape detectors.

A second modification compared with standard object recognition
models is that the neural detectors for effector shapes, such as hand
postures, are selective for the temporal order with which such shapes
occur in the stimulus. Such temporal sequence selectivity is compatible
with neural data, e.g., from the superior temporal sulcus (Jellema and
Perrett, 2003; Vangeneugden et al., 2009; Singer and Sheinberg, 2010),
and it can be accounted for by recurrent connections between shape-
selective neurons (Giese and Poggio, 2003).

The second model component is substantially extending existing pre-
vious architectures and implements a physiologically plausible mecha-
nism for the integration of the information about effector and goal
object. This computational function is potentially associated with neu-
rons in parietal cortex, and potentially also in the STS. The central com-
ponent is a neural representation of the relative positions of effector and
goal object, and of the matching between object type and grip [relative
position map (RPM)].

The third model component contains neural detectors that are selec-
tive for goal-directed action stimuli. This component integrates the in-
formation from the previous modules. In addition, this component is
critical for accomplishing view invariance of recognition, by pooling of
the responses of a number of view-specific modules. The neural detectors
in this model component reproduce properties of action-selective neu-
rons in the STS and premotor cortex (e.g., area F5).

Relationship to other models
Many other biologically-relevant computational models for goal-
directed action recognition have focused on the role of motor represen-
tations (Haruno et al., 2001; Wolpert et al., 2003) and specifically of the
mirror neuron system (Oztop and Arbib, 2002; Demiris and Simmons,
2006; Oztop et al., 2006; Kilner et al., 2007). These models assume typi-
cally a matching of visual input to internal representations of motor
programs that are represented in terms of variables relevant for motor
control, such as joint angles. Only very few implementations have pre-
sented how such variables could be extracted from real image sequences
(Oztop and Arbib, 2002; Metta et al., 2006; Tessitore et al., 2010). In this
sense, the model presented here is complementary to approaches that
mainly treat the relationship between visual and motor representations
(Erlhagen et al., 2006; Kiebel et al., 2008; Bonaiuto and Arbib, 2010;
Chersi et al., 2011).

The model presented in this paper represents actions in terms of
learned sequences of learned example views of action stimuli. View-
independence is accomplished by pooling over the output signals of
neural classifiers that are specific for individual views. Such approaches
are very common in computer vision (Weinland et al., 2011), proving
their computational feasibility. In addition, the representation of three-
dimensional structures in terms of learned example views is meanwhile
accepted as a fundamental mechanism for the cortical representations of
object shape in the ventral stream (Poggio and Edelman, 1990; Oram and
Perrett, 1994; Logothetis et al., 1995; Tarr and Bülthoff, 1998; Riesenhu-

Figure 1. Overview of the model architecture for transitive action recognition. Model components: A, Detector hierarchy for recognizing effector actions and shapes of goal objects. B, Module that
integrates information about effector movement and the goal-object. The central elements of this module is an RPM that represents the effector in image coordinates relative to the position of the
goal object. From this map the responses of neural detectors for the matching of grip affordance and for the type for the relative motion between hand and object are derived. C, Transient
action-selective neurons combine the information from the previous modules. The recognition of goal-directed grasping acts is first accomplished in a view-dependent manner by view-specific
modules. Only the highest hierarchy level pools the information over different views (view-independent transitive action neurons). The approximate receptive field sizes for the different levels
compared with the stimuli are indicated by the insets below.
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ber and Poggio, 1999a). This hypothesis seems consistent with electro-
physiological data showing view-dependent and view-independent
shape-selective neurons, and an experience-dependent modulation of
tuning properties of neurons in area IT (Kobatake et al., 1998; Sigala and
Logothetis, 2002; Freedman et al., 2006; Suzuki and Tanaka, 2011). Also,
biologically inspired computational and neural models, based on learned
example views, have successfully reproduced a variety of properties of the
recognition of non-transitive actions, sometimes even reaching bench-
mark performance compared with computer vision algorithms (Giese
and Poggio, 2003; Lange and Lappe, 2006; Jhuang et al., 2007; Prevete et
al., 2008; Escobar et al., 2009; Jhuang et al., 2010). However, many
action-selective neurons in monkey cortex show a critical dependence of
their response properties on the presence of goal objects and their spatial
relationship to the moving effector (like the grasping hand) (Perrett et al.,
1989; Gallese et al., 1996; Umiltà et al., 2001; Barraclough et al., 2009).
These previous models do not account for this property of action-
selective neurons, which is likely essential for the decoding of the mean-
ing of observed transitive actions. Our model proposes simple neural
circuits that account for these neurophysiological observations, at the
same time proposing a neural implementation of a computational step
that might be essential for the realization of higher forms of action cate-
gorization. The following sections give a more detailed description of the
individual components of the model. In parallel, we discuss different
experimental results that support the core assumptions of the proposed
architecture.

Shape recognition pathway
The recognition of effector and object shapes is accomplished by a hier-
archical neural pathway whose structure is compatible with well-known
models for visual object recognition (Perrett and Oram, 1993; Riesenhu-
ber and Poggio, 1999b; Mel and Fiser, 2000; Rolls and Milward, 2000). It
has been shown in previous work that such hierarchies can support ac-
tion recognition by the recognition of shape sequences. For example, a
body movement can be represented as a temporal sequence of body
shapes (Giese and Poggio, 2003; Lange and Lappe, 2006; Prevete et al.,
2008). Recent work in computer vision shows that neutrally inspired
hierarchical architectures that recognize sequences of body shapes, or
optic flow patterns, can be computationally quite powerful, reaching
state-of-the-art performance in computer vision (Jhuang et al., 2007;
Serre et al., 2007b; Schindler and van Gool, 2008; Escobar et al., 2009).

The shape recognition pathway consists of a hierarchy of layers, where
the complexity of the extracted features increases along the pathway. The
tuning properties of these detectors are predefined at the lowest hierar-
chy level (Gabor filters) and learned at higher hierarchy levels. Following
previous shape recognition models (Fukushima, 1980; Riesenhuber and
Poggio, 1999b), the pathway is organized in terms of layers that corre-
spond functionally to “simple” and “complex cells.” Assuming that the
stimuli for the simulated experiments were typically foveated, we did not
model the modulation of receptive field properties with the eccentricity
within the visual field. The simple cells increase feature complexity, while
the complex cells pool responses of simple cells of the same type over
neighboring spatial positions and scales, resulting in an increase of posi-
tion and scale invariance along the hierarchy (cf. Rust and diCarlo, 2010).
The spatial resolution was down-sampled by a factor of two at each
complex cell level. The output nonlinearity of the neural detectors was
given by a linear threshold function. This nonlinearity provides a coarse
approximation of the output nonlinearity of real cortical neurons
(Movshon et al., 1978; Carandini et al., 1997) and results in a suppression
of responses of suboptimally stimulated neural detectors. The parame-
ters of the model neurons were, as far as possible, constrained by physi-
ological parameters, partially taking over results from related models in
the literature (Serre and Riesenhuber, 2004; Serre et al., 2007b). If no
experimental evidence was available, parameter values were optimized
for shape recognition performance in a separate cross-validation exper-
iment (see Video stimuli and simulation procedures). Figure 1 A shows a
coarse overview of the shape recognition pathway, where the approxi-
mate receptive field sizes of the neural detectors are indicated by the
insets below. A more detailed description of the different hierarchy levels
is given in the following.

Shape recognition hierarchy. The first hierarchy level that models sim-
ple cells in primary visual cortex consists of local orientation detectors
that are modeled by quadrature phase pairs of Gabor filters with eight
different preferred orientations and seven different spatial scales (Jones
and Palmer, 1987). Receptive fields sizes ranged from 0.35° to 0.99°;
matching approximately the values observed in electrophysiological ex-
periments (cf. Serre and Riesenhuber, 2004). The output signals of the
Gabor filters were rectified and normalized (Heeger, 1993).

From the output signals of the Gabor filters, “complex cell” responses
were computed by pooling of the responses of orientation detectors with
the same orientation preference and spatial scale using a maximum op-
eration. The spatial receptive fields of these complex cells had diameters
between 0.63° to 1.37°, consistent with data from monkey cortex (Schiller
et al., 1976; De Valois et al., 1982).

The model neurons at intermediate hierarchy levels extract shape fea-
tures of intermediate complexity, similar to neurons in area V4 (Gallant
et al., 1993; Pasupathy and Connor, 1999). The responses of the simple
cells at the intermediate layers were given by Gaussian radial basis func-
tions (RBFs) with divisive lateral inhibition (Heeger, 1993). The re-
sponses of detector type � at hierarchy level l with receptive-field center x
were given by the function:

fk
l(X, t) �

��
l N�hl�1�X, t� � d�

l , ��
l �

c � �n �n
l N�hl�1�X, t� � dn

l , Zn
l �

, (1)

where N (x��, �) is the functional form of the multidimensional normal
distribution with mean � and covariance matrix �. The vector hl � 1 (x, t)
signifies the outputs from a local neighborhood of complex cells at the
previous hierarchy layer that feed into the simple cell of type � with
receptive field center x, and the parameters �� define the weighting of the
input. The small constant c � 0 prevents the denominator from vanish-
ing. Mathematically, the last equation approximates a Gaussian mixture
model. The centers dk

l of the individual Gaussians were determined by
unsupervised learning, using k-means clustering, from the response vec-
tors of complex cells sampled at random positions on the previous layer,
computed from a set of training sequences. For each extracted cluster
also the covariance matrix �k

l was estimated from the training data, and
the weights �k

l were set to values proportional to the size of the cluster.
A fixed number of 200 Gaussian RBFs were learned from training data

and shared for all subsequent computations. The responses of the learned
feature detectors were pooled over local spatial neighborhoods (diameter
1.59 to 2.35°) using a maximum operation, defining the responses of the
corresponding complex cells that were characterized by an increased
level of position invariance. The same procedure was replicated to gen-
erate a further intermediate layer that extracts even more complex form
features (spatial pooling ranges: 2.16 to 3.19°). These two intermediate
layers turned out to be sufficient to accomplish robust performance for
the simulations presented in this paper. More complex visual tasks, e.g.,
including massive clutter or substantial variations in size, might require
the introduction of additional intermediate hierarchy layers (Serre et al.,
2007a; Fidler et al., 2008).

The highest level of the shape recognition hierarchy is formed by neu-
ral detectors that are selective for complete views of objects and effectors.
These detectors were also modeled as radial basis functions with the
functional form N (x�d�, 0.1 � I ), where the RBF centers were sampled
equidistantly in time from example frame sequences, and where I indi-
cates the unit matrix. The receptive fields have diameters of approxi-
mately 3.9°, covering an area that contains whole object shapes (see insets
Fig. 1 A).

Only a subset of these shape detectors on the highest hierarchy level
generalized robustly to novel instances of the same shape class. More
robust detectors for the individual shape classes were constructed by
learning of linear neural networks that map the response vectors f�(x, t)
of the shape detectors at position x onto a shape class-specific activation
a�(x, t). These linear networks were given by the equation

a��X, t� � ��
Tf�X, t�, (2)

where the weights �� were learned by linear regression with sparsifica-
tion [Lasso method (Tibshirani, 1994)]. For the recognition of static
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shapes (i.e., the goal object) this linear network was trained using the
actual input vectors f�(x, t) and corresponding idealized binary class
activities as training data (i.e., a�(x, t) � 1 if the stimulus belonged to
pattern class � and a�(x, t) � 0 otherwise). For the recognition of dy-
namic shapes the linear network was trained with the actual input vectors
and idealized moving output distributions (moving activity peaks),
where the details are given in Selectivity for the temporal order of effector
shapes, below.

In the spatial continuum limit the function a�(x, t) can be interpreted
as a two-dimensional activation field with a peak that is located at the
retinal position of the recognized shape. Opposed to typical object rec-
ognition models, this representation at the highest level of the shape
recognition hierarchy in our model is not completely position-invariant
and retains coarse position information about the retinal coordinates of
the recognized shapes. For each shape the model contains multiple rep-
lica of the shape detectors with different preferred positions and highly
overlapping receptive fields with a diameter of approximately 3.9°. This
representation of shape position is crucial for the subsequent levels of the
model that determine the relative locations of effector and goal object
(see below).

Selectivity for the temporal order of effector shapes. The recognition of
hand actions depends strongly on the temporal order of the occurrence
of hand shapes in the visual stimulus. This is immediately apparent if one
observes a movie showing a hand action with random temporal order of
the frames, or if such a movie is played in reverse temporal order. Revers-
ing temporal order can sometimes even result in the perception of a
completely different action (e.g., grasping vs placing).

There are multiple physiologically plausible mechanisms that can ac-
count for such temporal sequence selectivity. We used a mechanism that
was proposed before in the context of neural action recognition models
(Giese and Poggio, 2003). The network mechanism consists of a single
network layer with asymmetric lateral connections between neurons that
encode individual snapshots from the hand motion sequence. The result-
ing network dynamics can be described by a neural field (Wilson and
Cowan, 1972; Amari, 1977; Ben-Yishai et al., 1997; Giese, 1999; Erlhagen
et al., 2006) with an asymmetric interaction kernel (Zhang, 1996; Xie and
Giese, 2002). It has been shown that this type of network, if activated by
a moving localized input distribution, supports a form-stable output
activation distribution that propagates along the network with the same
speed as the input. Using a proceeding described in the study by Zhang
(1996), the functional form of this traveling pulse was adjusted, by learn-
ing of the shape of the lateral interaction kernel, to fit reported average
firing rates of body action-selective neurons in the STS (Oram and Per-
rett, 1996). The moving activity pulse is only a stable solution of the
network within a limited range of speeds for the input distribution. If the
input pulse moves in the opposite direction along the fields or with
inadequate speed the stable solution of the network dynamics breaks
down, and the output amplitude of the network is very small (Xie and
Giese, 2002). Likewise, the activation of the inputs of the network with
random temporal order results in outputs with very small amplitude
(Giese and Poggio, 2003). In addition, previous work shows that the
lateral connections of such networks can be learned easily by time-
dependent Hebbian plasticity (Brody and Hopfield, 2003; Jastorff and
Giese, 2004).

The sequence-selective networks that encode the time course of indi-
vidual hand actions (e.g., closing for grasping and opening for placing) in
this model consist of 20 coupled neurons per action type. We signify by
s	(
, t) the input current of the neuron 
 encoding action 	, where 
 can
be interpreted as the position of the neuron in a one-dimensional neural
field. The network dynamics is specified by the differential equations:

�uu̇v�
, t� � � uv �
, t� � �

�

wu�
� � 
� g�uv�
�, t��

� sv�
, t� � qv�t� � hu. (3)

In this equation, g(x) is a sigmoid activation function that behaves ap-
proximately linear in the relevant input range for x � 0 and decays
exponentially for x � 0 (Zhang, 1996), hu � 0.15 is a constant that

specifies the resting activity level of the network, and �u (� 20 ms) is the
time constant of the neural field. As consequence of the asymmetric
lateral interaction kernel wu(
), an active neuron in the field preactivates
neurons that encode temporally subsequent hand shapes, while it inhib-
its the other neurons.

The term q	(t) � 0 specifies lateral inhibitory feedback from other
neural fields that encode different action patterns. Such inhibition
turned out to be critical for accomplishing robust behavior, especially for
the discrimination between action patterns with different temporal order
of the frames. Defining by Ov�t� � max
� uv(
�,t) the maximum of the
output activity of the field encoding pattern 	, the strength of this non-
linear feedback was given by the equation:

qv�t� � qo max 1
v��v

�Ov�(t)

Ov(t)
� �, (4)

with 1(x) � 1 for x � 0 and zero otherwise and with  � 0.7. This
equation specifies an inhibition of fixed strength (q0 � 0.71), in the case
that at least one other field v� is significantly activated by the same stim-
ulus as field 	.

The input distribution of the individual neural fields were computed
from the output vector f(x, t) of the shape recognition hierarchy by
learning of linear mappings similar to Equation (2). We first computed
position-selective input vectors s	(x, t) � [s	(1, x, t), s	(2, x, t), …],
discretely sampling the position coordinate 
 of the neural field. These
input vectors were approximated by the linear mapping s	(x, t) � �	 f(x, t),
which was trained by pairs of input vectors f derived from (spatially
centered) training patterns and corresponding idealized input peaks of
the neural field that were given by Gaussian functions with maximum
amplitude 0.2 and a width (variance) �s

2 � 4 that moved with an appro-
priate speed over the neural field. While in our model these linear map-
pings were constructed directly by supervised learning, other work shows
that it is possible to exploit Hebbian plasticity mechanisms to learn such
mappings by association of time varying inputs with stable solutions in
dynamic neural networks that represent the time course of actions
(Zhang, 1996; Markram et al., 1997; Song et al., 2000). However, such
unsupervised learning mechanisms were not the focus of the work pre-
sented in this paper.

The input distribution of the neural field defined by Equation (3) was
given by the position-specific inputs with the maximum amplitude, ef-
fectively realizing a competition between the inputs with different retinal
position specificities. Discrete sampling of the function s	(
, x, t) with
respect to the variable 
 defines the position-selective input vectors s	(x, t).
The input of the field encoding hand action type 	 was then given by
s	(t) � s	(x*, t) with x* � argmaxx s	(x, t). The model assumes thus a
complete position-invariance of the encoding of sequences of hand
shapes. This assumption has the advantage that it avoids a combinatorial
explosion of neurons due to a replication of the competitive set of neural
fields for each represented spatial position. However, it seems likely that
in the brain this assumed perfect decoupling of a (position invariant)
encoding of hand shape sequences, and of the relative position of hand
and object is much less strict and potentially not clearly separated. Fur-
ther quantitative physiological data will be necessary to clarify this point.

Consistent with previous models for the recognition of non-transitive
actions (Giese and Poggio, 2003), the highest level of the sequence-
selectivity circuit is given by neural detectors that integrate the output
signals of the individual neural fields over time. These motion pattern
neurons become activated during the occurrence of particular hand ac-
tions, but only if the corresponding image frames appear in the correct
temporal order and specify an approximately natural speed of the action.
However, their activity is strongly reduced if the corresponding hand
shapes occur in wrong temporal order or with unnatural speeds. The
motion pattern neurons are defined by the differential equation:

�mṁv�t� � � mv�t� � max




g�uv�
, t�� � hm. (5)

The constant hm determines the resting activity level, and �m � 40 ms is
the time constant of the leaky integrator dynamics.
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We assume further the existence of position-selective motion pattern
neurons (Baker et al., 2000; Jellema et al., 2004; Vangeneugden et al.,
2009) that integrate the outputs of the motion pattern neurons and of the
corresponding position-selective hand shape neurons multiplicatively.
These neurons form an activation map that shows an activity peak at the
retinal position of the hand only if the hand shapes arise in the right
temporal sequence. Mathematically, the activation of the corresponding
detectors was defined by the equation

mv�x, t� � mv�t� � �1TSv�X, t��, (6)

where s	(x, t) signifies the position-dependent input distribution for
hand action type 	, evaluated at receptive field center x (see above).
Again, a variety of mechanisms is suitable for the implementation of
the same computational function, some of them assuming a less strict
separation of position-selective and sequence-selective neural
representations.

In general, it seems possible that local motion features, such as ex-
tracted by neurons in the medial temporal area (MT), might also con-
tribute to the recognition of the effector motion. Our present model does
not contain a motion pathway that is suitable for the analysis of the
complex optic flow patterns that are associated with hand deformations.
It seems plausible that such patters are exploited by the visual system, and
it remains an interesting experimental question whether this is the case.
In the domain of biological motion recognition (of non-transitive ac-
tions) from point-light displays a vivid discussion has emerged about the
question how form and local motion features are integrated, where re-
cent evidence points to a flexible integration of both cues (Giese and
Poggio, 2003; Casile and Giese, 2005; Lange and Lappe, 2006; Vange-
neugden et al., 2009; Thurman et al., 2010).

Representation of the hand-object interaction. The recognition of goal-
directed actions requires an association of the extracted information
about the effector (hand) movement and the shape and position of the
goal object. Our model proposes a simple physiologically-inspired mech-
anism that accounts for this association. Opposed to other models that
solve the same problem by an analysis of the three-dimensional structure
of object and effector (Oztop and Arbib, 2002; Bonaiuto and Arbib,
2010), a computationally quite challenging problem especially for mon-
ocular stimuli, our model shows that action recognition can also be
accomplished by view-specific mechanisms without an explicit recon-
struction of three-dimensional structure.

As central mechanism for the analysis of the hand-object interaction
we postulate a relative position map (RPM), a two-dimensional neural
activation map that represents the two-dimensional position of the hand
relative to the goal object in an image frame of reference by a localized
activity peak (Fig. 1 B). Exploiting the fact that the shape-selective neu-
rons in our model are tuned to the retinal position of the recognized
shapes, this activation map can be computed by a simple feed-forward
network from the responses of the detectors on the highest level of the
shape recognition hierarchy.

We present in the following a mathematical formulation of this step in the
spatial continuum limit, while in the real implementation the network was
based on a discretization of the two-dimensional spatial position x using
1500 model neurons whose receptive field centers were arranged within a
rectangular grid. Let a�(x, t) signify the activation distribution of the shape
recognition neurons for goal shape �, and m	(x, t) the activation map that
corresponds to the position-selective motion pattern neurons for hand ac-
tion 	 (Eq. 6). Assuming that we have learned relevant combinations of
objects and actions, the relative position map representing combinations of
hand action 	 and goal shape � was defined by a simple feed-forward net-
work that combines both variables multiplicatively:

rv��d, t� � �mv�X � d, t��hand a��X, t�1��hand dX. (7)

The multiplication corresponds to a generalized weighted geometric
mean. The integral implements a summation over the whole two-
dimensional visual field. The vector d signifies the two-dimensional po-
sition of the hand relative to the object in the RPM (Fig. 2 A). The

parameter �hand determines in how far the model neurons defining the
RPM are selective for the shape of the hand compared with the shape of
the object. Differences in the input selectivity of action-selective neurons
for effector and object shapes have been reported in the literature (cf.
Perrett et al., 1989).

The proposed mechanism is equivalent to a gain field (Zipser and Ander-
sen, 1988; Salinas and Abbott, 1995; Pouget and Sejnowski, 1997), and real-
izes a coordinate transformation from retinal to object-centered
coordinates. Gain fields are an established model for the neural realization of
coordinate transformations in parietal cortex and have been also discussed
elsewhere in the context of invariant object representations (Deneve and
Pouget, 2003; Crowe et al., 2008). Physiological data suggest the existence of
goal-centered neural representations in parietal cortex (Fogassi et al., 2005;
Bonini et al., 2011) and the STS (Perrett et al., 1989), comparable to the
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Figure 2. Integration of information about the relative position and motion of effector and
object. A, The position of the effector (hand) is encoded by an RPM as a localized activity peak
within a two-dimensional coordinate system (white lines) that is centered on the image posi-
tion of the goal object. Relative motion neurons pool the output responses of motion energy
detectors (relative speed neurons) that analyze the motion of the activity peak in the RPM.
Different weights for the pooling result in different types of relative motion neurons: Pooling
motion responses toward the center of the coordinate system results in a detector that responds
if the hand approaches the goal object. Pooling of motion responses away from the center
defines a relative motion neuron that the hand moves away from the goal object (moving
apart). B, Computational necessity of the affordance neurons: If a normal grasping stimulus
(black arrow and bars) is compared with a grasping action for which the hand does not reach the
goal object (light gray arrow and bars) a model with only affordance neurons can distinguish the
two stimulus types. This is not the case for a model with only relative motion neurons. The plot
shows the activity of a neuron trained with normal grasping at the highest level of the recog-
nition hierarchy. C, Computational necessity of the relative motion neurons: A model without
relative motion neurons cannot distinguish the two different phases of a pushing stimulus
(approaching: hand approaches the stationary goal object (gray), and moving apart: the hand
stops and the object moves away from it (black)). Neurons at the highest level of the model were
trained to recognize these two events (an: approaching phase; man: moving apart phase). Only
the model with relative motion neurons, but not the version with only affordance neurons
reliably distinguishes between the two phases of pushing. (Black and gray bars show the activ-
ity of neurons at the highest level of the hierarchy, trained with the two events. Activities are
normalized relative to the activity for the same stimulus in the normal model with both infor-
mation channels.)
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object-centered representations in the ventral stream (Jellema and Perrett,
2006; Connor et al., 2007). However, some data points also to the existence of
effector centered representations (Buneo et al., 2002; Ochiai et al., 2005;
Pesaran et al., 2006). We have tested successfully versions of the model with
both types of transformations, showing that both relative position represen-
tations result in similar computational performance.

The RPM represents a useful neural representation that permits to
verify if the spatial relationship between hand and object is compatible
with a functional, successful grasping action, exploiting simple neural
circuits. In our model we assume neural detectors for two types of fea-
tures that can be easily computed from the RPM: The first feature is the
position of the hand relative to the goal object. We assume the existence
of affordance neurons whose receptive fields include all (relative) hand
positions that are consistent with successful grips. Their spatial receptive
fields were learned from training stimuli, and they were defined mathe-
matically by regions G	� that included all hand positions that elicited at
least 75% of the maximum activity in the RPM for a given combination of
action and object. In addition, we assume in the model that affordance
neurons integrate information over time. Their response dynamics is
described by the following differential equation:

�AȦv��t� � � Av��t� � max

d�Gv�

rv��d, t�, (8)

where 	 signifies the action, � the goal shape, and where �A � 160 ms is
the time constant of the temporal integration. The affordance neurons
respond only if the stimulus shows the right combination of hand shape
and object shape, combined with their correct spatial arrangement. Neu-
rons with similar selectivity for interactions have been found in the STS
and the ventral premotor cortex (Perrett et al., 1989; Gallese et al., 1996).

The second feature that we computed from the RPM is the relative motion
of the hand in relationship to the object. This feature turned out to increase
substantially the robustness of our recognition results. Local motion at each
location of the RPM was computed by simple correlation-based detectors
(Adelson and Bergen, 1985; cf. Bayerl and Neumann, 2004), referred to as
relative speed neurons in the following. Our model contains 49 detectors
(per position) detecting different combinations of horizontal and vertical
speed components, covering a speed regime of approximately 	 2.4° per
second in both directions. In particular, our model includes detectors for
zero relative speed (Bayerl and Neumann, 2004), which were important to
detect actions without relative movement between hand and effector (e.g.,
placing of an object with the hand).

Detectors for meaningful relative motion events in the context of ac-
tions were constructed from these local detectors responses by weighted
summation, where we assumed four classes of relative motion neurons
(detectors for “moving apart,” “approaching,” and “moving together”).
Figure 2 A shows schematically how the detectors for abstract relative
motion events can be constructed from the responses of the relative speed
neurons. [Similar circuits have been proposed as models for optic-flow-
selective neurons in area MST (Koenderink, 1986; Saito et al., 1986;
Zemel and Sejnowski, 1998; Beardsley and Vaina, 2001)].

More precisely, the response of the relative motion neuron for motion
type � was obtained by weighting the responses of the relative speed
neurons e	�(�, v, d, t) by a function w � and pooling them over the
positions d in the RPM and relative motion direction � (using summa-
tion), and over relative motion speed v and position-tuning directions of
the relative motion neurons �p (by maximum computation). The result-
ing sum activity is smoothed over time by a leaky integrator with time
constant �M � 160 ms, resulting in the equation:

�MṀv�
� �t� � � Mv�

� �t� � max
v, �p

�
�, d

w���, v, �p, d� ev���, v , d, t�.

(9)

For the approaching and moving apart detectors the weight function
w �(�, v, �p, d) was proportional to the expression

exp� �
upud � 1

�d
2 � exp� �

�upu� � 1

��
2 � (1 � �v), (10)

(where ud, u�, and up are unit vectors in the directions of the vector d, the
preferred direction � of the relative speed neuron, and a direction that
defines the position selectivity of the relative motion neuron. The last
term suppresses input signals from relative motion neurons with relative
speed v � 0, �y signifying the Kronecker function that is one for y � 0 and
zero otherwise.) The function w � specifies direction templates (compare
Fig. 2 A), where � � 1 specifies a detector for expanding motion and � �
�1 a detector for contracting motion. (Tuning width parameters: �d �
0.25 and �� � �/2).

For the moving together detectors the function w �(�, v, �p, d) was
proportional to the term

exp� �
up

Tuu � 1

�d
2 � exp� �

v2

2�v
2�, (11)

that specifies the same position selectivity, combined with a speed-
dependent term that decays gradually for increasing speeds (with �v � 1).

The information of the affordance neurons and the relative motion
neurons is finally combined by neural detectors for transitive action
that are described in Transitive action-selective neurons and
view-independence.

The position- and shape-based information processed by the affor-
dance neurons, and the relative motion information encoded by the
relative motion neurons provide two separate channels that represent
critical information about goal-directed action stimuli. Which of these
features contributes more reliable information depends on the stimulus
class.

More detailed simulations show that both pathways are computa-
tional beneficial for the processing of natural action stimuli. To demon-
strate this we created two additional versions of the model, one which
contains only the channel realizing action analysis with affordance neu-
rons, and another one that includes only the channel realizing relative
motion analysis. Figure 2 B shows that a model with only the affordance
neuron pathway, opposed to the model with only relative motion analy-
sis, can distinguish successful and non-successful grasping actions, where
the hand either correctly touches the object, or where it grasps next to the
object (“mimicked action”). Clearly, the distinction of these two action
types is critical for the correct recognition of normal grasping. By con-
trast, the model version with only relative motion processing and no
affordance neurons can distinguish different phases during pushing ac-
tions, such as the approach of the object by the hand, or the movement of
the object after the pushing (Fig. 2C). The same distinction is not possible
with the model that contains only the processing channel with the affor-
dance neurons. Likewise, we have shown elsewhere that such a model can
be used to derive judgments of “perceived causality” from abstract mo-
tion displays (Fleischer et al., 2012). This provides a demonstration that
both pathways fulfill important computational functions.

In some sense this relevance of form and motion features parallels the
integration of form versus local motion features for the recognition of
non-transitive body motion, which has been extensively discussed in the
field of biological motion processing (Giese and Poggio, 2003; Casile and
Giese, 2005; Lange and Lappe, 2006). However, opposed to this discus-
sion the relevant motion here is the relative motion between effector and
object, not the local motion in the image.

Transitive action-selective neurons and view-independence. Neurons
with selectivity for transitive actions, whose responses are modulated by
the exact relationship between the effector movement and goal objects,
have been found in multiple regions of the monkey cortex, including the
STS (Perrett et al., 1989; Jellema and Perrett, 2006; Barraclough et al.,
2009), parietal areas (Fogassi et al., 2005; Rozzi et al., 2008; Bonini et al.,
2010), and the premotor cortex (Rizzolatti and Sinigaglia, 2010). One
subgroup of these neurons that has recently received particular interest in
cognitive neuroscience are the mirror neurons, which also show selective
motor tuning during action execution (Di Pellegrino et al., 1992; Gallese
et al., 1996; Umiltà et al., 2001; Bonini et al., 2010; Caggiano et al., 2009;
Kraskov et al., 2009). Functional imaging studies have suggested that
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action-selective regions exist also in human cortex (Iacoboni et al., 1999,
2005; Buccino et al., 2004; Chong et al., 2008; Kilner et al., 2009). While
fMRI adaptation studies have revealed partially inconclusive results
about the presence of mirror neurons in human cortex (Chong et al.,
2008; Dinstein et al., 2008; Lingnau et al., 2009), single-cell recordings in
humans demonstrate the existence of action-selective and mirror neu-
rons in various areas in the human cortex, including the supplementary
motor area (SMA) (Mukamel et al., 2010). Detailed fMRI studies on
action recognition that compare human and monkey cortex suggest a
partial homology between the relevant areas in both species (Buccino et
al., 2004; Nelissen et al., 2005, 2006; Jastorff et al., 2011).

In our model such neurons are modeled by detectors for transitive
actions that integrate the information from the previous processing lev-
els. We assume that this integration is first accomplished in a view-
specific manner, and finally view-invariance is accomplished by pooling
at the highest level of the model. The second-highest layer of our model
hierarchy is formed by view-dependent transitive action neurons that
integrate the responses from the affordance neurons and the relative
motion neurons in a multiplicative way. We assume a multiplicative
integration according to the equation (where we assume that the relative
motion type � is chosen in accordance with the recognized action-object
combination, so that this index can be dropped in the output variables):

Tv��t� � Av��t�
1

2 � Mv�
� �t�

1

2. (12)

The whole architecture described up to this level is based on learned
example views of shapes. Correspondingly, the activity of the transitive
action neurons is selective for the view from which a particular action has
been observed during the training of the system. Many classical theories
have assumed that visual parameters, such as the view, are not relevant on
cortical processing levels that represent the relationship between effec-
tors and objects for action. Recent electrophysiological data, however,
shows that the view angle of observed actions has a strong influence on
the responses of the majority of the tested mirror neurons in premotor
cortex (area F5) while only a minority is view-invariant (Caggiano et al.,
2011). This strongly suggests that view parameters are cortically repre-
sented even in premotor cortex and by neurons that have well-defined
motor properties. Consistent with this physiological result, our model
assumes an organization in terms of view-based modules whose outputs
are integrated only at the highest level of the processing hierarchy (com-
pare Fig. 1C). The responses of the view-independent transitive action
detectors are obtained by pooling (again by maximum computation) of
the outputs of the view-dependent action detectors whose output signals
are given by Equation 12. The view-independent transitive action detec-
tors show responses to transitive actions independent of the point of
view. Properties consistent with the transitive action detectors in the
model have been observed in neurons in the STS and area F5 in macaque
cortex (Perrett et al., 1989; Jellema and Perrett, 2006; Caggiano et al.,
2011).

Video stimuli and simulation procedures
Datasets. For the evaluation of the model we recorded sets of video stim-
uli showing a hand grasping objects. Videos were recorded using a
CANON XL1-S camera with a frame rate of 25 Hz. A subset of these
stimuli was also used in physiological experiments with monkeys, par-
tially testing hypotheses derived from the proposed model (Caggiano et
al., 2011). All video frames were converted to gray-scale and prepro-
cessed by removing low-intensity background noise using intensity
thresholds. Typical example frames are shown in Figure 1.

The first data set (dataset A) consisted of 270 videos with a resolution
of 360 
 176 pixels, depicting side views of grasps (view direction 90°
relative to the facing direction of the actor, all actions being executed by
the same actor). Videos showed a hand grasping balls with different
diameters (4, 8, and 12 cm) with either a power or a precision grip. The
stimulus set was derived from 50 original movies by video manipulation,
where the original videos included power grips of large and middle-sized
balls and precision grips of all tested ball sizes. For the original movies the
hand started at a resting position 30 cm in front of the object on the table
and moved naturally, grasping the object. The manipulated videos were

generated by color segmentation of the hand, the object and the back-
ground. The manipulated set included movies showing only the hand, or
only the object. Another set of movies showed spatially shifted versions of
the action scenes (9 different positions displaced by maximum 	 4°,
again for precision and power grip). Testing was based on tenfold cross-
validation using a leave-one-out strategy: always, the data from nine
repeated conditions was used for the fitting of the model parameters, and
the remaining additional trial was used for validation. Data was averaged
over all possible 10 partitions of the data in training and test set. (Repe-
tition refers to an independent execution of the same action by the same
actor).

The second set (dataset B) contained 150 videos (resolution 405 
 364
pixels), showing different views of power grips, performed either from
the top or to the side of a cylindrical goal object (height 10 cm, diameter
4 cm). This action was recorded from 19 different view angles, differing
by �10°, and the grips being executed by the same actor. This angle set
included specifically the first person perspective (0°) and the opposite
view (“third person perspective”; corresponding to 180°). Each grip was
repeated three times. An additional data set contained examples of the
same action shown with three view angles (0, 90, and 180°) by two addi-
tional actors, again with three repetitions. Evaluation was based on leave-
one-out cross-validation over the repeated trials.

A third dataset (dataset C), created by video edition, was a subset of the
videos from dataset A. These data set contained videos showing grasping
and placing actions, similar to the stimuli used in the studies by Barra-
clough et al. (2009) and Nelissen et al. (2005). In these movies, the hand
entered the scene, grasped a small ball with a precision grip, and moved
out (grasping). A second set of sequences was generated by reversing the
order of the frames of the original videos, so that the hand entered the
scene with the ball and left it after releasing the ball (placing). Additional
control stimuli showed only the hand (pantomimed action) and only the
object. Additional views for the test of view dependence were generated
by mirror-reflecting the grasping and placing stimuli along the vertical
axis, resulting in movies showing the opposite hand interacting with the
object from the opposite side (cf. Barraclough et al., 2009). This data set
was based on nine repetitions of each condition, and cross-validation was
based on training of the relevant model parameters with the data from
eight repetitions, testing on the remaining one, and appropriate averag-
ing over all partitions in training and test set.

Learning of the model parameters and simulation procedures. The pa-
rameters of the model were learned from a set of 137 training stimuli, and
generalization to novel stimuli was tested on at least nine independent
cross-validation runs. The training set consisted of 85 sequences from
dataset A and 52 sequences from dataset B, including different view
angles that differed by 30°. The remaining sequences and in particular all
sequences from dataset C were used for testing. From each training se-
quence we extracted images containing only the hand or only the object
using color segmentation, as well as frames with typical hand-object
interactions, presented in the center of the images. These data was spe-
cifically used to estimate the parameters of the model in Equations 1 and
3, and for the learning of the linear mappings according to Equation 2.

The results in the following section are all based on cross-validation
data sets that were disjoint from the training stimuli. Model parameters,
estimated by the previously described procedure, were identical for all
simulations presented in this paper. The model provides thus a unifying
quantitative account for the experimental results shown in Results.

To account for the fact that some electrophysiological and fMRI stud-
ies present results that average cell classes with different computational
properties (Nelissen et al., 2005; Barraclough et al., 2009; Caggiano et al.,
2011), we specified two additional parameters in the simulation of those
results that account for the fractions of the different cell populations in
these studies. The first parameter �trans determines the contributions of
neurons that are selective for transitive (goal-directed) and non-
transitive actions to the population activity, which were different in the
simulated studies investigating neurons in areas F5 and STS. In the rele-
vant simulations the population activity including both types of action-
selective neurons, for hand action 	 and goal object �, was modeled by
the linear combination:
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Ttr/intr, �v � �trans Tv� � �1 � �trans�mv. (13)

Likewise, some reported experimental data mixed contributions of neu-
rons with different degrees of selectivity for object shape and hand shape.
For the simulation of these data we fitted the parameter �hand from
Equation 7 using a least-squares procedure. For the other simulations,
the values of the parameters were �trans � 1 and �hand � 0.5.

The parameters of the model presented in this paper were largely
determined by supervised learning from labeled example patterns. A
biologically more plausible theory would require the acquisition of the
relevant patterns by unsupervised or partially supervised learning. Un-
supervised learning of hierarchies in object recognition, and recently also
in action recognition, is an actual topic in computer vision and machine
learning. A variety of approaches has successfully realized learning of
recognition hierarchies by applying sparseness constraints to multi-layer
architectures, such as convolutional hierarchies (Kavukcuoglu et al.,
2010) or compositional representations (Fidler et al., 2009). Unsuper-
vised learning of spatiotemporal feature hierarchies has also been real-
ized by independent subspace analysis (Le et al., 2011) and slow feature
analysis (Nater et al., 2011). Another dominant approach has been the
learning of deep architectures (Hinton, 2007; Bengio, 2009), e.g., using
deep belief nets with successful application to the recognition and mod-
eling of human gait trajectories (Taylor et al., 2010). Another approach
for the learning of hierarchical dynamical models that has been applied
for the modeling and recognition of actions and other complex spatio-
temporal patterns uses recurrent neural networks as generative models in
combination with a variational Bayesian framework (dynamic expecta-
tion maximization) (Yildiz and Kiebel, 2011; Bitzer and Kiebel, 2012).
For many of these approaches it is largely unclear how they relate to
plastic mechanisms in real neural systems. However, it has been dis-
cussed that unsupervised learning algorithms, such as PCA, independent
component analysis (ICA), or sparse learning, might be realized in phys-
iologically plausible ways by combining Hebbian and anti-Hebbian
learning rules with intrinsic adaptation mechanisms within individual
neurons (Földiák, 1990; Falconbridge et al., 2006; Gerhard et al., 2009).

Special simulation procedures for individual experiments. For the simu-
lation of the experimental data by Nelissen et al. (2005), we evaluated the
response of the model to grasping stimuli and the corresponding control
stimuli from dataset C. Following the experimental study, we also used
static control stimuli, each presenting one single frame extracted from
the middle of each test sequence (no hand-object contact). We approxi-
mated the changes of the BOLD signal in the relevant areas by summa-
tion of the activity of the model neurons on the corresponding hierarchy
level over the whole stimulus duration. For comparison with the exper-
imental data from the action-selective area F5a we used an average activ-
ity value that weighted contributions from neurons that are selective for
transitive and for intransitive actions (compare Eq. 13).

To simulate the results of the study by Barraclough et al. (2009), we
tested the model on the complete dataset C. The processing of the data
follows closely the description in Barraclough et al. (2009). The sequence
length was down-sampled to 800 ms (20 frames) to match the stimulus
conditions in the study. We evaluated only model neurons showing a
strong response to the action stimuli used in the experimental study, i.e.,
action detectors encoding precision grips of small objects. Responses of
the model neurons were aligned with the time course of the stimulus
following the alignment procedures described in Barraclough et al.
(2009). For comparison with the experimental data the response of each
model neuron was renormalized, setting the maximum response over all
test sequences to one and the baseline activity to zero.

For comparison of the model’s performance with the electrophysio-
logical data reported by Perrett et al. (1989), we used the video stimuli
from dataset A that showed power grips of a medium sized ball. We
created additional similar control stimuli, following the physiological
study, from the original videos using color segmentation (hand panto-
miming the action, presentation of only the object, hand mimicking the
action at a distance of 4 cm from the object). To model the results of the
experiment, we evaluated only the responses of transitive action-selective
model neurons that responded to power grip actions without motion of
the hand relative to the object (zero relative speed).

Results
Neurons with visual selectivity for goal-directed actions have
been described in the superior temporal sulcus (Perrett et al.,
1989; Barraclough et al., 2009), the parietal cortex (Fogassi et al.,
2005; Rozzi et al., 2008; Bonini et al., 2010, 2011), and in premo-
tor cortex, especially in ventral area F5 (Di Pellegrino et al., 1992;
Gallese et al., 1996; Umiltà et al., 2001; Caggiano et al., 2009), as
well as in dorsal premotor cortex and even in area M1 (Tkach et
al., 2007). It seems likely that computational levels of processing
do not exactly map onto individual areas in cortex. Instead, it
appears that neurons with quite similar computational properties
sometimes exist in multiple cortical areas. For example, it has
been described that neurons in the STS parallel a lot of properties
of mirror neurons in area F5 (Keysers and Perrett, 2004). We thus
define here neuron classes according to their functional proper-
ties, being aware that the same class of neurons might simultane-
ously exist at multiple levels of the cortical processing hierarchy,
e.g., in the STS and in area F5. A well-established dissociation
between STS and F5 is that the superior temporal sulcus does not
contain motor neurons. Motor properties are not captured by
the proposed model, which focuses on the visual processing
mechanisms.

The proposed model provides a unifying account for a variety
of visual properties of action-selective neurons that have been
reported in single-cell recordings in the superior temporal sulcus
and area F5 in macaques. We focus in the following on effects that
highlight important computational properties.

Tuning for action type and critical relevance of the goal object
Many action-selective neurons in premotor cortex are selective
for the type of the observed goal-directed action (e.g., precision vs
power grip). This is illustrated in Figure 3 that shows data from
the study by Gallese et al. (1996) from mirror neurons in area F5
of the premotor cortex of macaque monkeys. These neurons
show selective motor responses during the execution of hand
actions (such as grasping, placing, or object manipulation) and,
at the same time, they respond selectively to visually observed
actions of other agents (monkeys or humans). Due to the simul-
taneous presence of visual and motor selectivity, these neurons
have been termed mirror neurons. Approximately half of the
mirror neurons in this area that were selective for grasping
showed also selectivity for the grip type (precision vs power grip),
as illustrated in the left and middle panel of Figure 3A. The neu-
ron responds strongly to a precision grip and fails to respond
almost completely to a power grip. The rightmost panel shows
the response for a mimicked action without a goal object. While
the hand performed the same movement the neuron remained
silent. Such selectivity for the presence of a goal object is typical
for many action-selective neurons in premotor cortex (Gallese et
al., 1996).

The recognition of action type from real video stimuli is a
challenging vision problem since the grip type depends on subtle
variations of the finger position, corresponding to changes of
only a few pixels in the images. In addition, varying object shapes
cause clutter and occlusion for the recognition of the finger con-
figuration. Despite these computational challenges the proposed
model accomplishes this recognition task, reproducing the
action-type selectivity of cortical neurons. This is shown in Figure
3B that shows the response of the view-independent transitive
action detectors at the highest level of the model that have been
trained with different types of grips of goal objects with different
sizes (dataset A, see Materials and Methods). The different line-
styles and colors indicate different types of grips. The gray thin

8 • J. Neurosci., April 10, 2013 • 33(15):xxx–xxx Fleischer et al. • Model for the Recognition of Transitive Hand Actions

rich3/zns-neusci/zns-neusci/zns01513/zns3601p13z xppws S�3 3/26/13 6:10 Art: 4129-12 Input-MH

AQ: G

AQ: H

F3



curves indicate the neural activity for individual trials of the pre-
ferred action. The thick curves indicate the average activity over
trials for different action types. The action-selective model neu-
rons show a robust selectivity for the different grip types, and the
model is able to discriminate robustly precision and power-grip
stimuli. The time course of the activity is similar to the neural
data, showing a weak initial response that increases when the
hand approaches the goal object and when grip-specific hand
shapes become distinguishable. Consistent with the neural data,
the action-selective model neurons respond only weakly if the
same stimuli are presented without goal object (Fig. 3C).

Similar selectivity for action type and the presence of the goal
object has also been observed in monkey fMRI experiments (Ne-
lissen et al., 2005). In general, the relationship between neural
activity at the single-cell level (spikes and local field potentials)
and the BOLD signal measured in fMRI experiments is quite
involved and dependent on the specific brain area (for review, see
Logothetis, 2002, 2008; Logothetis and Wandell, 2004; Nir et al.,

2007; Ekstrom, 2010). However, some
studies have successfully linked functional
imaging results and behavior of groups of
neurons at the level of single cells in higher
visual areas (Op de Beeck et al., 2008) (for
review, see Tsao and Livingstone, 2008).
Here we make the strongly simplifying as-
sumption that fMRI responses in the rel-
evant areas might be modeled by the sum
activity of the corresponding neural levels
of the model. Consistent with the single
cell data, visual selectivity for transitive
action stimuli was found in area F5 of the
premotor cortex. While selective activa-
tion during the observation of transitive
actions in the caudal part of the premotor
cortex (area F5c) was found only for stim-
uli showing the whole upper body of the
acting agent, more anterior regions (areas
F5a,p) were also selectively activated by
stimuli showing only the hand and the
goal object. Since our model focuses on
the recognition of hand actions we mod-
eled the activity in these subregions.

Figure 4A shows the BOLD activity
relative to fixation baseline from two sep-
arate fMRI experiments. The first experi-
ment contrasted the full action stimulus, a
static picture of the action from the mid-
dle part of the stimulus sequence, and
movies showing only the moving hand or
the static object. High activation emerges
only for the full stimulus. Substantially re-
duced activation was observed for moving
and static object stimuli. For the static
hand-alone stimuli almost no activation
was observed at all. The second experi-
ment contrasted dynamic and static stim-
uli, and stimuli showing the normal
action with correct contact between hand
and object and mimicked actions, where
the hand executed the same movement in
absence of a goal object. Compared with
the normal action dynamic mimicked ac-
tion stimuli induced a reduced response.

The static stimuli (derived from normal and mimicked action
movies) induced almost no response.

For the simulation of the BOLD responses in this study, we
computed the sum activity over all neurons in the two highest
levels of the recognition model (view-dependent and the view-
invariant transitive-action detectors). For the simulations with
the model we used a visual stimulus set that closely matched the
properties of the stimuli in Nelissen et al. (2005) (see Materials
and Methods, stimulus set C). Since the relevant premotor areas
contain a mixture of neurons with selectivity for transitive and
intransitive actions, we optimized the parameter �trans that deter-
mines the relative influence of neurons with selectivity for tran-
sitive and non-transitive actions on the sum signal (choosing
�trans � 1/3). Likewise, the parameter �hand that determines the
relative contributions of hand- and object-selective shape detec-
tors to the activity of the neurons in the RPM was chosen to be
�hand � 4/5 since this resulted in the best fit of the BOLD data.
The sum activities derived from the model were normalized and
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Figure 3. Tuning of real and model neurons for transitive actions. A, Example response of a cortical neuron from area F5 in
premotor cortex for (I) a precision grip, (II) a power grip, and (III) to a pantomimed precision grip in the absence of a goal object
[from the study of Gallese et al. (1996)]. The vertical bars indicate the contact time of effector and object. B, Response of the
view-independent transitive-action detectors of the model for five different grip types with goal objects of different size (a– e) as
a function of time for five model neurons that were trained with different grasping actions. Thick lines indicate the average
responses over multiple trials of the same type, where the different colors and line types indicate different action stimuli. Thin gray
lines indicate responses for different realizations of the optimal action stimulus for the individual detectors, which were contained
in our test data set. C, Response of model neurons for the same actions performed in the absence of the goal object (“pantomimed
actions”). (Conventions as in B).
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scaled with a constant factor, to simplify comparison with the
experimental data.

The resulting normalized sum activities, shown in Figure 4, B
and D, are qualitatively highly similar to the experimentally ob-
served BOLD activities (A and C). As for the real fMRI data, the
activations for static stimuli are strongly reduced. Mimicked ac-
tions induce a substantial response, which however does not
reach the level of the normal actions. Presentation of the object
alone induces a weak response that is bigger for moving objects.
The model reproduces thus, at least qualitatively, a variety of
effects that have been observed in this fMRI experiment in
monkeys.

Neurons that are selective for the visual observation of transi-
tive actions have not only been found in the premotor cortex, but
also at lower cortical levels, such as the STS. The STS, through
parietal areas, projects to area F5 in the premotor cortex (Seltzer
and Pandya, 1978; Matelli et al., 1986; Keysers and Perrett, 2004).
The action-selective neurons in this area show a number of prop-
erties that resemble closely those of the neurons on area F5 (Per-
rett et al., 1989; Barraclough et al., 2009). We tried to reproduce
data from a study by Barraclough et al. that compared the re-
sponses of single cells in the STS for grasping and placing with
(transitive), and without goal object (non-transitive actions), and
to stimuli presenting the goal object alone.

Figure 5A shows the original data from the study by Barra-
clough et al. (2009), where neural responses (spike density func-
tions) were temporally aligned by the response latencies for the
individual stimuli and are displayed with a default latency of 100
ms. Normal transitive actions induced, on average, substantially
higher activity in the recorded hand action-selective neurons
than stimuli showing the hand action without a goal object.

However, also actions without goal object (intransitive) in-
duced significant activity. Stimuli showing the goal object alone

resulted in rather small activity, and clearly activity below the
level that is induced by stimuli presenting only the moving hand.

The corresponding simulation results are shown in Figure 5B
and provide a good qualitative match of the experimental data. In
the experimental study, neurons with selectivity for transitive and
non-transitive actions had not been distinguished. For the simu-
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from a study of Barraclough et al. (2009) that compares the responses of grasping and placing
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Figure 6. Selectivity for the correct relationship between effector and object. A, Average cell
response of a hand interacting with an object from the study by Perrett et al. (1989). The
presented action was either natural, pantomimed (only the hand was visible), or mimicked, the
hand reaching next to the object. In addition, the static object was presented alone. Error bars
indicate SE. B, Corresponding simulation results for a hand grasping a ball with a power grip,
and corresponding control stimuli. Error bars indicate SE over 10 independent simulations.
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Figure 4. BOLD responses in area F5 measured by monkey fMRI. A, Results are from the study
by Nelissen et al. (2005). The experiment compared responses for normal actions and reduced
stimuli that were either static, or showed the goal object only (moving or static). The figure
shows the BOLD activity against fixation baseline. B, Corresponding simulation results showing
the normalized sum activation at the highest level of the model (view-dependent and view-
invariant transient-action detectors). C, Results from another experiment in this paper that
compared the activity for normal actions and mimicked actions, again in comparison with static
stimuli. D, Corresponding simulation results. Error bars indicate SEs.
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lation of this STS data the sum activity was a weighted sum of the
motion pattern neurons, which also respond to non-transitive
actions, and of the transitive action detectors. The parameter
�trans that controls the contribution of these two detector popu-
lations on the sum activity was set to 2/3 since this matched the
approximate ratio of non-transitive and transitive action-
selective neurons in the electrophysiological study. In addition,
for the simulation of this STS data we chose the value �hand � 3/4
for the parameter that determines the strength of the influences
of object and hand shape on the RPM activity.

A similar result was obtained in a classical study on visual
neurons with selectivity for hand actions in the lower bank of the
STS (area TEa) (Perrett et al., 1989). This study not only tested
normal transitive action stimuli and stimuli showing only hand
or the object. It also included a condition showing mimicked
actions, where the hand did not touch the object correctly, while
it was moving in a very similar way as in the normal stimulus. Like
before, the responses to stimuli showing only the hand or the
object were strongly reduced (Fig. 6). The same applies to the
condition with the mimicked stimuli, where the hand failed to
touch the object, the distance between hand and object in the
image frames being �0.55°. This implies a high spatial selectivity

of the underlying neural mechanisms that
detect the hand-object contact.

The model nicely reproduces this high
selectivity for the relationship between ef-
fector and goal object (Fig. 6B). This se-
lectivity is a consequence of the receptive
field properties of the affordance neurons,
which are selective of the retinal effector
position relative to the object (Fig. 2). The
fact that for this experiment the activity of
the action-selective neurons for stimuli
without goal object is lower than for the
simulation results in Figure 5 is a conse-
quence of the different fractions of transi-
tive action-selective neurons included in
the population averages, which we tried to
match with the experimental data (see
Materials and Methods).

Summarizing, the model reproduces
the high selectivity for different hand ac-
tion types and the precise tuning for the
spatial relationship between effector and
object, as observed for action-selective
single cells in multiple cortical areas. The
high selectivity for the action type is ex-
plained by the shape-selectivity of the
hand detectors in the shape recognition
pathway. The high selectivity for the rela-
tionship between effector and object is a
consequence of the tuning properties of
the affordance neurons, whose response
depends on the relative positions of effec-
tor and object.

Position invariance
Despite the high selectivity of cortical
action-selective neurons discussed in the
last section, such neurons show a remark-
able degree of invariance with respect to
the position of transitive action stimuli in
the image. This is illustrated in Figure 7A

that shows the response of a mirror neuron in area F5 to grasping
stimuli presented in the left hemifield, the center, or in the right
hemifield [adapted from the study by Gallese et al. (1996)]. The
red disc illustrates the stimulus position in the visual field. The
response of the neuron is largely unaffected by the retinal posi-
tion of the stimulus. Since this physiological study did not include
a control of eye movements it seems likely that a substantial part
of the observed invariance is due to the foveation of the stimulus
by the monkey. However, substantial amounts of invariance with
respect to stimulus position, even with a control of eye position,
have been shown for shape-selective neurons in the inferotempo-
ral cortex as well as for shape-selective neurons in the dorsal
stream (Op De Beeck and Vogels, 2000; Janssen et al., 2008).

Our model is able to reproduce a high degree of position
invariance. This is illustrated in Figure 7B that shows the re-
sponses of a view-invariant transitive motion detector (selective
for power grip) in the model for nine different retinal positions of
the action stimulus, where the distance between neighboring
stimulus positions corresponds to 4° of visual angle. (The stimu-
lus size was approximately 8°.) Responses for different retinal
positions are almost identical, demonstrating almost perfect po-
sition invariance. The model is able to accomplish even much
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Figure 7. Position invariance of neurons with visual selectivity for transitive actions. A, Response of an example neuron from
area F5 from the study Gallese et al. (1996) to similar grasping actions, performed at different positions of the stimuli within the
visual field (indicated by the gray discs in the insets). B, Corresponding simulations showing the response of view-independent
transitive action detectors with selectivity for a power grip for visual stimuli (power grips and precision grips) with different retinal
positions. (The dashed lines indicate the time of hand-object contact).
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larger spatial invariance regimes, and we tested successfully with
up to 	30°, as observed in physiological experiments.

In the model, position invariance is accounted for by the com-
bination of two mechanisms: (1) The maximum pooling opera-
tions in the form processing pathway, which makes the shape
detectors at the highest level of the form recognition pathway
partially position invariant (Fukushima, 1980; Riesenhuber and
Poggio, 1999b); and (2) the computation of the relative position
of the effector and the goal object in the RPM, which explicitly
computes a coordinate transformation.

View tuning
View-dependent coding is a well-known property of shape-
selective neurons in the inferotemporal cortex (Logothetis et al.,
1995; Tarr and Bülthoff, 1998), as well as of shape and action-
selective neurons in the STS (Perrett et al., 1982, 1989; Oram and
Perrett, 1996). In a recent study, Barraclough et al. (2009) have
tested the view dependence of the responses of action-selective
neurons. The tested neurons were selective for visually observed
grasping and placing actions, and they were tested with views of
hands interacting with an object either from the left or from the
right side relative to the viewpoint of the monkey. The corre-
sponding average responses, as function of time, are shown in
Figure 8A. Neurons showed a strong selectivity for the preferred
view (black symbols). The presentation of the non-preferred ac-
tion from the preferred view resulted in higher responses than the
presentation of the preferred action with the non-preferred view.
View preference, thus, modulated the (average) responses of the
neurons more than the type of the action.

Figure 8B illustrates the corresponding simulation results ob-
tained with our model. The figure shows the average responses of
the view-selective transitive action detectors at the second-
highest processing level. Modeling results are qualitatively quite
similar to the real data from the STS. Like for the other simulation
of the STS data, the parameter we chose �hand � 3/4 for the
parameter that determines the influence of hand versus object in
the RPM. Since the population of cells underlying this study of
STS neurons seemed not to be identical with the one underlying
the data shown in Figure 5, we refitted the value of the parameters
�trans � 0.9 (fraction of transitive action-selective neurons).
However, fitting both simulations from Figures 5B and 8B with
joint identical parameters leads to qualitatively very similar
results.

Since our model, such as other biologically-inspired models of
form and action recognition (Poggio and Edelman, 1990; Oram
and Perrett, 1994; Riesenhuber and Poggio, 1999b; Giese and
Poggio, 2003), is organized in terms of view-specific modules, it
can reproduce the view-selectivity of action-selective cortical
neurons. However, it is not necessarily expected that it also re-
produces the fact that the stimulus view has a stronger influence
on the tuning of these neurons than the action type. In the model,
this behavior is explained by the fact that stimulus views are
processed separately up to a very high level of the processing
hierarchy, while different actions observed with the same views
share many low and mid-level features. The presentation of a
non-preferred action thus induces some rudimentary activity in
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Figure 9. A, View tuning of transitive action neurons in macaque premotor area area F5.
Left, Average peak-normalized response of view-selective mirror neurons using the data from
Caggiano et al. (2011), who presented the same grasping action from three different perspec-
tives [third-person view (180°)), side view (90°), and first person perspective (0°)]. Right, Av-
erage normalized response of the view-dependent transitive-action detectors in the model
using the same type of action stimuli. Error bars indicate SEs. B, Realization of view-
independence with a small number (7) of view-dependent modules for the distinction of top
and side grips of a cylinder. Gray lines indicate the activity of the view-specific transitive action
neurons that belong to different view-specific modules. The black lines show the activity of a
view-invariant transitive action neuron at the highest hierarchy level that was trained with a
top grip, and tested with real videos of top and side grips with 19 different view angles.
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Figure 8. View dependence of neurons in the STS that are selective for transitive actions. A,
Average response of 23 neurons from the study Barraclough et al. (2009) (reproduced with
permission of the authors and MIT Press from Journal of Cognitive Neuroscience). Two actions
(grasping and placing) were shown either from the right from the monkey’s point of view, or
from the opposite view (rotated by 180° about the vertical). B, Average response of the view-
dependent transitive action detectors in the model that was trained with grasping and placing
actions using the same action stimuli as in the experiment. Shaded areas indicate standard
errors averaged over nine trials.
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neurons that encode different actions that are observed with the
same view.

View dependence of action-selective neurons has not only
been observed in primarily visual structures, such as the STS, but
also at higher representation levels. A recent study, which was
partly motivated by this model, tested the view dependence of
mirror neurons in area F5 of the premotor cortex, exploiting
well-controlled video stimuli instead of real actions executed in
front of the monkey (Caggiano et al., 2011). Since area F5 is
functionally very close to motor cortex, we expected to find a
large number of neurons that encode visually observed actions in
a body-centered frame of reference independent of the stimulus
view. However, presenting the same action from three different
views, we found a quite large fraction (74%) of mirror neurons
with clear view tuning. Only a smaller fraction (26%) showed
view-independent responses. In addition, we failed to find a clear
preference for the first person view, as might be expected if the
monkey learned particularly well the relationship between own
actions and the associated visual feedback signals. The left panel
in Figure 9A shows the normalized activity of the measured F5
mirror neurons for the three tested views, different line types
referring to the subsets of neurons that showed a significant pref-
erence for the individual views. The right panel shows the corre-
sponding simulation result (average responses computed with
the same normalization procedure as for the electrophysiological
data) for the view-dependent transitive action detectors, which
form the second-highest hierarchy level of our model. Clearly,
the simulation result nicely matches the experimental data from
the view-dependent subset of mirror neurons.

Due to the limited recording time, in the physiological exper-
iment the number of stimulus views that could be tested was quite
limited. In simulations with the model we could test, however,
how many stimulus views are required to accomplish robust
view-independent recognition at the highest layer of the model
for real video stimuli. This is an important question, since a
mechanism that requires a storage of huge numbers of stimulus
views would be computationally inefficient or even infeasible.

Quantitative simulations showed that with as few as seven
view-specific modules we could accomplish a robust view-
independent recognition of goal-directed hand actions from real
videos, at the same time achieving high selectivity for the distinc-
tion of different action types. This is illustrated in Figure 9B,
which shows the responses of the view-dependent transitive-
action detectors in gray and the resulting response of the corre-
sponding view-invariant detector in black. The model was
trained with seven views of one action (grasping a cylinder from
the top) and was tested with 19 different views, differing by view

angle steps of 10° between the views (da-
taset B, see Materials and Methods). The
tuning width of the view-dependent de-
tectors was approximately 50°, coarsely
consistent with data about view-
dependent neurons in area STS and IT
(Perrett et al., 1991; Logothetis et al.,
1995). (Precise data about the view depen-
dence of transitive action-selective neu-
rons is presently still unavailable.) For the
trained action the responses of the view-
dependent detectors degrade gradually
with the distance between the training and
the test view. For the distractor action the
responses of the view-dependent detec-
tors remain weak for all tested views.

The response of the view-independent detectors remains high
for all views. Even though their response still varies slightly
with the stimulus view, it robustly discriminates for all views
between the trained action (solid line) and the distractor ac-
tion (dashed line).

Prediction: temporal sequence selectivity of transitive
action-selective neurons
A central assumption for the proposed mechanism for the recog-
nition of hand actions was the temporal sequence-selectivity of
the motion pattern neurons, which form the basis for the associ-
ation of information about hand postures over time. Reversing
the temporal order of the stimulus frames substantially reduces
the responses of the motion pattern neurons, and as consequence
also the responses of action-selective neurons at higher process-
ing levels. The temporal sequence selectivity of action-selective
neurons at lower levels is consistent with recent electrophysiolog-
ical data from neurons in the STS (Vangeneugden et al., 2009,
2011; Singer and Sheinberg, 2010). The model predicts that se-
quence selectivity should also be observed at the highest level of
the neural processing hierarchy, for neurons that are selective for
transitive actions. This prediction can be easily tested in an elec-
trophysiological experiment by showing the same action movie
in normal and reverse temporal order.

Figure 10A illustrates the relevant stimulus set, two movies
showing the frames of a grasping actions in normal and reversed
order. Reversely played grasping looks like the placing of an ob-
ject (the hand coming in and leaving the scene without the ob-
ject). Following the conventions by Barraclough et al. (2009), we
refer to reverse grasping as “placing” in the following. The acti-
vation of the transitive action detectors in our model (pooled
over view-dependent and view-independent model neurons), af-
ter training with grasping respectively placing, for both types of
stimuli are shown in Figure 10B. Clearly, the transitive action-
selective neurons in the model show a very strong degree of tem-
poral sequence selectivity. This selectivity is not only a
consequence of the neural field dynamics discussed before. It is
further augmented by the fact that stimuli played in reverse tem-
poral order also reverse the relative motion vectors between ef-
fector and goal object, which are detected by the relative motion
neurons. Both influences are combined multiplicatively by the
transitive action detectors of the model.

Motivated by this model prediction, these stimuli were really
tested in an electrophysiological experiment, recording the activ-
ity of mirror neurons in area F5. Consistent with the prediction, a
significant fraction of the measured neurons (63%) showed
strong sequence selectivity, and the quantitative results look

Figure 10. Sequence selectivity of transitive action neurons in the model. A, Video stimuli, showing a hand grasping an object
(pepper) and leaving the scene together with it. The same sequence shown in reverse order creates the impression of a “placing”
action. B, Average responses of the populations of view-dependent and view-independent transitive action neurons that are
selective for grasping and placing (temporally reversed grasping). Responses are highly selective for temporal order (solid vs
dashed curves). The two dashed vertical lines indicate the approximate interval during which the hand touched the object for the
first time in the grasping stimulus (respectively last touched the object for the placing stimulus).
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strikingly similar to the simulations shown in Figure 10B (V.
Caggiano, J. Pomper, F. Fleischer, M. A. Giese, and P. Thier,
unpublished observations).

Performance limitations of the model
While the proposed model successfully accomplishes recognition
on real videos of hand-object interactions, we want to stress here
that the main purpose of the work was the reproduction of data
from neurons and not the maximization of the computational
performance in the sense of computer vision. We acknowledge
that many not biologically-inspired algorithms have been devel-
oped in this field (for review, see Pavlovic et al., 1997; Mitra and
Acharya, 2007; Weinland et al., 2011), which certainly would
outperform our model on challenging data sets, which for exam-
ple include substantial amounts of background clutter. The effec-
tive processing of complex scenes with complex clutter likely
necessitates improved dictionaries of detectors for the
intermediate-level features. The learning of such detector hierar-
chies has been a core problem of the fields of shape and action
recognition in computer vision in the last decade (Moeslund et
al., 2006; Serre et al., 2007b), and the principle architecture of our
model would not change by inclusion of such improved hierar-
chies of shape detectors.

Another important major addition that seems necessary for
the processing of complex realistic scenes with many objects and
potentially multiple acting effectors (e.g., from multiple agents) is
attentional control and the tracking of attended objects and ef-
fectors. Neural mechanisms supporting such computational
functions have been extensively studied in the context of neural
models for attention (Deco and Rolls, 2004; Hamker, 2006; Tsot-
sos, 2011). Such mechanisms could be integrated in our model by
adding a network dynamics to all layers of the hierarchy and by
introducing appropriate backward connections. In fact, first at-
tempts to integrate such mechanisms in action processing models
related to ours have been made (Layher et al., 2012).

Concluding, the present model clearly has strong computa-
tional limits, some of which might be mitigated by including
other physiologically plausible mechanisms. However, the per-
formance limits for the processing of complex real action scenes
using such neural architectures will have to be explored after
adding such extensions to the present architecture.

Discussion
In this paper we have presented a physiologically inspired neural
model for the visual recognition of transitive hand actions, de-
fined by interactions between a moving hand and a goal object.
The model is based largely on well-established neural principles,
all of which can be implemented by physiologically plausible cir-
cuits. The model provides a unifying account for a variety of
physiological results about action-selective neurons at the single-
cell level, as well as for results about the population activity in
relevant areas in macaque cortex. To our knowledge, this is the
first model for the visual recognition of transitive actions that
provides such detailed comparisons with neural data.

The proposed model has been shown to be computationally
powerful enough to recognize actions from real video sequences.
This gives credibility to the computational feasibility of the pos-
tulated neural principles as basis of the processing of natural
action stimuli. This also distinguishes our action recognition
model from many others that assume abstract visual input sig-
nals, not specifying exactly how they can be derived from real
images by physiologically plausible mechanisms. In addition, this
property made it possible to test the model with original stimuli

that have been used in physiological experiments. However, the
model would need several substantial extensions to deal, for ex-
ample, with substantial amounts of clutter, or scenes that include
multiple possible goal objects or observed effectors. Some possi-
ble extensions and performance limitations of the model were
discussed in Results, Performance limitations of the model.

Our model not only provides a unifying account for a number
of physiological results from action-selective neurons in monkey
cortex. It also leads to several important theoretical insights.

First, it shows that the recognition of goal-directed actions
and visual tuning properties of action-selective neurons can be
accounted for by established mechanisms, which are based on
learned view-specific neural representations, and without the ne-
cessity of an accurate reconstruction of the three-dimensional
structure of the effector and the object. Since the estimation of
joint angles, especially from monocular images, is a challenging
computer vision problem (for review, see Wu and Huang, 1999;
Erol et al., 2005), our model suggests that the brain might bypass
this computational step using, at least to a substantial degree,
representations that are based on two-dimensional views. In ad-
dition, such a solution seems theoretically attractive since it pos-
tulates that the brain uses similar neuro-computational
principles for the processing of static and dynamic three-
dimensional stimuli (compare Materials and Methods, Relation-
ship to other models). In addition, it is at least an interesting
observation that the majority of robust algorithms for action
detection and classification exploits example-based (view-
specific) representations (Gavrila, 1999; Moeslund et al., 2006).
The focus on visual processing mechanisms makes our model
complementary to many other models for the visual recognition
of hand actions that focus on the role of motor representations,
making simplifying assumptions about the visual processing (see
also Materials and Methods, Relationship to other models).

Second, the model proposes a set of concrete circuits for the
integration of the information about objects and dynamic effec-
tors that could be implemented with real cortical neurons. At the
same time, the model makes precise predictions about the behav-
ior of such neurons that can be validated by single-unit record-
ings. Because of space limitations, we discuss here only a few
examples can be discussed: (1) The model postulates the exis-
tence of neurons that encode the relative position of effector and
object (relative position map), and a multiplicative integration of
the relevant input signals from shape-selective representations.
Neurons with such properties might be found in the superior
temporal sulcus (Perrett et al., 1989) or the inferior parietal lob-
ule (Fogassi et al., 2005; Chafee et al., 2007; Crowe et al., 2008;
Rozzi et al., 2008). (2) The existence of affordance neurons, e.g.,
in parietal areas, with spatially organized receptive fields can be
tested. (3) The model assumes a hierarchical architecture, where
information is first processed in view-specific modules and then
integrated by pooling at the highest level of the hierarchy. This
predicts specific connections between view-specific and view-
invariant action-selective neurons, e.g., in the premotor cortex or
in the STS. Recent electrophysiological results proof the existence
of view-specific representation very high up in the processing
stream, even in premotor cortex (Caggiano et al., 2011). (4) The
model postulates neurons that are selective for the relative
motion between effector and object (relative speed and mo-
tion neurons). Contrasting with regular motion detectors,
e.g., in area MT, such neurons process motion in the RPM, and
thus they should be characterized by a high degree of shape
selectivity. Neurons of this type might be present in the STS or
parietal areas.
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Many other specific predictions follow from the proposed ar-
chitecture. Some predictions, such as the view dependence and
sequence-selectivity of mirror neurons, have been confirmed by
electrophysiological experiments that were partially motivated by
this theory (Caggiano et al., 2011). In addition, the model makes
also predictions about the population activity in cortical areas
that are associated with the different postulated computational
modules. Such predictions seem ideally suited for comparisons
with fMRI data. Additional simulations addressing such aspects
are in progress and might help to develop a more complete theory
that links corresponding mechanisms in the brains of human and
non-human primates.

Undoubtedly, our model makes a number of very strong sim-
plifications, some of which violate known facts about the mod-
eled cortical structures. In addition, many fundamental aspects
about the model have to be refined in future work. Again only a
few fundamental limitations can be discussed here: (1) The
model focuses purely on the visual processing of actions and lacks
completely interactions with motor representations. Especially, it
does not account for the motor properties of some action-
selective neurons in parietal and premotor cortex, and especially
of mirror neurons. A large body of literature suggests, in addition,
interactions between visual and motor representations, and the
mirror neuron system might play a central role in establishing
such interactions (Rizzolatti and Craighero, 2004; Kilner et al.,
2007; Schütz-Bosbach and Prinz, 2007). The existence of feed-
back connections from motor to visual representations (e.g., be-
tween premotor areas, area PFG and the STS) is strongly
suggested by anatomical data (Rizzolatti and Craighero, 2004;
Rizzolatti and Sinigaglia, 2010). An adequate theoretical frame-
work to capture such feedback influences are hierarchies of pre-
dictive (neuro-)dynamical representations (Demiris and
Simmons, 2006; Kiebel et al., 2008), such as neural fields. It seems
straight forward, and has been successfully established in previ-
ous work in robotics, to couple such neural field representations
for motor programs (Erlhagen and Schöner, 2002; Cisek, 2006)
with ones for visual input sequences (Erlhagen et al., 2006). (2)
Beyond the top-down connections from motor representations,
the visual pathway is characterized by strong feedback connectiv-
ity (Felleman and Van Essen, 1991; Salin and Bullier, 1995) that is
not captured by our model. In the context of action recognition,
such connections might support especially the dynamic tracking
of objects and effectors in the scene, and the attentional selection
of individual objects in complex or cluttered scenes with multiple
possible targets by attentional mechanisms. (See Results, Perfor-
mance limitations of the model, for further details.) (3) As for
previous models for the recognition of non-transitive actions
(Giese and Poggio, 2003; Jhuang et al., 2007; Escobar et al., 2009)
one might consider a second primary visual pathway that pro-
cesses local motion and optic flow features instead of form fea-
tures. In how far form versus motion features influence the visual
recognition of goal-directed actions is, to our knowledge, largely
unclear, and seems to define an interesting question for future
research. (4) A further important shortcoming of the proposed
model is the complete lack of disparity features. Many neurons in
the dorsal as well as in the ventral stream are disparity-selective
(Shikata et al., 1996; Janssen et al., 1999; Taira et al., 2000; Durand
et al., 2007; Srivastava et al., 2009; Orban, 2011. Also, some recent
evidence shows the existence of disparity-selective neurons in
cortical areas that are involved in action processing, such as the
premotor area F5 (Joly et al., 2009; Theys et al., 2012). It seems
possible to extend the chosen example-based approach by inclu-
sion of disparity-dependent features, such as relative disparity.

Similar approaches have been proposed for object recognition
from stereo images in computer vision (Helmer and Lowe, 2010).
Such extensions might provide interesting insights in the compu-
tational role of disparity features in the perception and control of
actions, and the internal representation of the geometry of the
external space during action execution (La’davas, 2002).
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