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Abstract The peristimulus time histogram (PSTH) and itsto the onset of a stimulus is often one of the first steps in
more continuous cousin, the spike density function (SDF}he analysis of neurophysiological data. It is an easy way
are staples in the analytic toolkit of neurophysiologistse  of visualising certain characteristics of the neural resgo
former is usually obtained by binning spike trains, whereasuch as instantaneous firing rates (or firing probabilitias)

the standard method for the latter is smoothing with a Gaugencies and response offsets. These measures also itgplicit
sian kernel. Selection of a bin width or a kernel size is of-represent a model of the neuron’s response as a function of
ten done in an relatively arbitrary fashion, even thougihghe time and are important parts of their functional descriptio
have been recent attempts to remedy this situation (DiMa&telfet PSTHs are frequently constructed in an unsystematic
2001 Shimazaki and Shinomoto 2007¢,b,a; Cunningham etnanner, e.g. the choice of time bin size is driven by result ex
2008). We develop an exact Bayesian, generative model apectations as much as by the data. Recently, there have been
proach to estimating PSTHs. Advantages of our scheme irmore principled approaches to the problem of determining
clude automatic complexity control and error bars on itshe appropriate temporal resolution (Shimazaki and Shatom
predictions. We show how to perform feature extraction or20070,0,a).

spike trains in a principled way, exemplified through latenc We recently developed an exact Bayesian, generative model
and firing rate posterior distribution evaluations on répéa approach to estimating PSTH/SDEs (Endres et al'2008). Our
and single trial data. We also demonstrate using both simmodel encodes a spike generator described by an inhomo-
ulated and real neuronal data that our approach providesgeneous Bernoulli process with piecewise constant (intime
more accurate estimates of the PSTH and the latency thdiing probabilities. We demonstrated that relevant maafin
current competing methods. We employ the posterior disdistributions, e.g. the posterior distribution of the nwenb
tributions for an information theoretic analysis of the neu of bins, can be evaluated from the full posterior distribu-
ral code comprised of latency and firing rate of neurons inion over the model parameters efficiently, i.e. in polyno-
high-level visual area STSa. A software implementation oinial time. Extending earlier dynamic programming schemes
our method is available at the machine learning open sourq&ndres and &ldiak [2005), we also showed that expected
software repository (www.mloss.org, project 'binsdfc’).  values, such as the predictive firing rate and its standard er
ror, are computable with at most cubic effort.

Here we extend the performance comparisons in (Endres et al
2008) and illustrate the usefulness of our method. We also
demonstrate how to use our Bayesian approach for princi-
pled feature extraction from spike trains. Specifically we
examine latencies and firing rates, since previous studies

Plotting a peristimulus time histogram (PSTH), or a Spike(R|chmond and Optican 1987b; Tovee et al 1993) indicate

) . ) . . that much of the stimulus-related information carried by-ne
density function (SDF), from spiketrains evoked by andradg rons is contained in these measures (see (Orarr et al 2002)

D. Endres, M. Oram for a review). We give a 'minimal’ definition of latency and
School of Psychology, University of St. Andrews, KY16 9JP, UK show how the latency posterior distribution and the firing
E-mail: {dme2,mwg @st-andrews.ac.uk rate posterior density can be evaluated. These posteriers a
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then employed for an information theoretic analysis of the ‘

neural code comprised of latency and firing rate. Note that A s 30 7 W o T
we do in no way claim that a PSTH is a complete generative i W b Ll
description of spiking neurons. We are merely concerned L m
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be described by a PSTH in a Bayes-optimal way. This paper @& [ i i g ‘
tries .to appeal 'Fo computatlonal neurosu_entlsts and Reuro B 15 ‘ Shimazaki-Shinomoto bag
physiologists alike. While the former require sound deriva- i| |.=Shimazaki-Shinomoto lin
tions to accept a method’s validity, the latter need to be con 10 §
vinced of a method’s superiority through demonstrations if 50 !
they are to adopt it. We attempt to present a balanced mix of 3
both. 0 ‘
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2 The model
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The traditional approaches to estimating firing probdbdit

or firing rates from neurophysiological data can roughly be
divided into two classes: binning and smoothing. The former
yields PSTHSs, whereas the latter produces SDFs (Richmamhd
1987a). Both are instances of regularisation procedurgshw
try to deal with the ubiquitous noise and data scarcity by
making various implicit assumptions. From a generativeehod
perspective, binning basically presupposes that the fimiob-
abilities are constant within each bin, whereas smoothingig. 1 Predicting a PSTH/SDF with 3 different methodsthe dataset
imposes the prior belief that high-frequency fluctuatiores a used in this comparison consisted of 32 spiketrains recorded from a
mostly noise. Whether these assumptions are correct can nofSa neuron. This neuron was chosen for its clear responseeprofil

. L . Each tick mark represents a spil&.bar PSTH (solid line), optimal
be decided a priori, but must be evaluated by comparing thﬁnsizez 26ms, and line PSTH (dashed line), optimal binsizé8ms,

predictive performances of all models in question on reatomputed by the methods described in_(Shimazaki and Shinbmoto
neurophysiological data (see secfion 3.4). 20070.b).C: SDF obtained by smoothing the spike trains with a 10ms

An intuitive understanding of the relative merits and drav2aussian kerneD: PSTH inferred with our Bayesian binning method.

. . The thick line represents the predictive firing rate, the timas show
backs of these two approaches can be obtained fropj fig. e predictive firing rate-1 standard deviation. Models withdM <

panel A shows a rastergram of 32 spiketrains recorded from were included on a risk level of = 0.1 (see eqri{17)).The vertical
an STSa neuron in response to a stimulus. Each tick reprdashed line indicates the mode of the latency posterior (seesgc

sents a spike, with the spiketrains (rows) aligned to stimand fid5).

ulus onset. Panel B shows a PSTH with a fixed bin du-

ration, optimised for the data by the method described in Finally, both binning and smoothing are often employed
(Shimazaki and Shinomato 2007c,b). While a bin PSTH could compute point estimates of the instantaneous firing rate.
in principle model sharp transients, the location of the bingjyen the typically small sample sizes in neurophysiologi-
boundaries are determined by the constant binwidth. Thergs| experiments, reliable point estimates are hard to nptai
fore, the precise onset of the transient is often not cagturegnq measures of posterior uncertainty and variabilityn bot
well. In addition, the constant bin duration also forces thi petween and within trials, should be a part of the estimation

method to put many bins into time intervals where the spikey gcedure. Our Bayesian binning method ig.1, D) achieves
trains appears relatively constant, e.g. in [200ms,400ms}ig goal.

Panel C depicts the SDF obtained by smoothing these spike-

trains with a Gaussian kernel of 10ms width. Compared to

the rastergram, high frequency fluctuation in the spikegrai 2.2 Bayesian binning

is reduced to some degree, as can be seen e.g. in the interval

[200ms,400ms]. However, the sharp transientzat00ms  We propose a compromise between binning and smoothing
(indicated by the dashed vertical line across panels B-D}o deal with the problems described in the previous section:
becomes blurred. Thus, relevant timing information mightkeep the bins to allow for rapid changes in the instantaneous
be lost. firing rate, but allow for varying bin durations. This enable

100 0 100 200 300 400 500 600
post-stimulus time [ms]

firiﬂg riai:[e [Hz]
o a1
Q<

a1
S




A | I L i | © M is the number of bin boundaries insii@n, trex] - The
ot At probability of a spike trairz' of independent spikes/gaps is
Z'=11,0,0,1.1,1,0,1,0,1,0,0,1,0] =0,
N then
B - s i M s(Z,m) i
e f 200 P [{fm}, {km},M) = [] fm" ™ (1~ fr)9= ™ )
g — . o .
= v BN SR mvwvm Y 01 T wheres(z',m) is the number of spikes ang(z',m) is the
0 k Kk k, k=T number of non-spikes, or gaps in spiketrainin bin m,

. . . . ) i.e. between intervalky_1 + 1 andky, (both inclusive). In
Fig. 2 A: A spike train, recorded between timigg, andtmax is rep- . . .
resented by a binary vectar. B: The time span betwedmi, andty ~ OtN€r WOrds, we model the spiketrains by an inhomogeneous
is discretised intdl intervals of duratiomAt = (tmex — tnin)/T, such  Bernoulli process with piecewise constant probabilitiéf.
that intervalk lasts fromk x At +tyin to (k+1) x At +tmin. Atis cho-  also defingk_; = —1 andky = T — 1. Note that there is no
sen such that at most one spike is observed/einterval for any  pingmig| factor associated with the contribution of eaah bi
given spike train. Then, we model the firing probabilitRpikelt) . . L
by M + 1 — 4 contiguous, non-overlapping bindf (is the number of ~P€CaUSe we doot want to ignore the spike timing informa-
bin boundaries inside the time spéfin, tmax]), having inclusive up-  tion within the bins, but rather, we try to build a simplified
per boundariekm andP(spikelt € (tmin+At(km-1+1),tmn+At(kn+  generative model of the spike train. Therefore, the prdbabi
1)]) = fm. C: model posterioP(M|{z'}) (see eqnl.{16)) computed from ity of a (multi)set of spiketrain$zi} ={z,...,2n}, assum-
imately exponential decay. Even though a maximunof 699 would P({Z'}H fm}7 {km}, M)
text. m=0

the data shown in figl1. The shape is fairly typical for model pamte ing independent generation, is
have been possibl®(M > 23/{Z }) < 0.001. Thus, we can accelerate
. N . . N .
wheres( {2}, m) = 5, s(z. m) andg({z}.m) = 51 g(Z'm)

computed from the neural data used in this paper: a sharp rise at-a mo
erately lowM followed by a maximum (here & = 6) and an approx- N IMl fS(Zi m) (1—1 )g(zi m)
m — Im ’
iIJm:O
the averaging process for quantities of interest (e.g. theigtiee fir- M i i
ing rate) by choosing a moderately small maximMnFor details, see = I_l £S4ZHm (1— f)9Zhm(3)
us to put the bin boundaries at only those time points wherg 3 The priors
the changes in firing rate happen. As a consequence, time

intervals in which the firing rate does not change can nowye make a non-informative prior assumption for the joint
be modelled by one (or a few) bins, which reduces the rislgrior of the firing probabilitieq f,,} and the bin boundaries
of overfitting noise. Uncertainties and variabilities whi¢ {k{n} given the total number of bin boundariys name]y

computed in an exact Bayesian fashion. The resultant ex- f M) — £ VMP M 4
pected firing rates (complete with their uncertainties) wil)_i)({ m {km}[M) = P({ fn} [M)P({k}[M). @

therefore have a more continuous appearance, similar to thé- We h.ave no a priori prgferences for the f'””g rates based
results yielded by a smoothing technique on the bin boundary positions. Note that the prior of the

being continuous model parameters, is a density. Given the
Details of the formal model have been described in (Endfamebf eqn(2) and the constraifi, € [0,1], it is natural to

2008). Briefly, we model a PSTH dithin, tmax| discretised  choose a conjugate prior

into T contiguous intervals of duratiofit = (tmax — tmin) /T M

(see fid.R, A and B). We select a discretisation fine enougl({ fm}|M) = [] B(fmi om. ¥m)- (5)
m=0

(here 1ms) so that we will not observe more than one spike = _ ) }
in a At interval for any given spike train. Spike traircan The Beta density is defined in the usual way (seele.g. (Berger

then be represented by a binary vectoof dimensionality 1985)):
T.We model the PSTH by + 1 contiguous, non-overlapping B(p.0,Y) = r(o+y) o-1(1_ p)¥-1, (6)
bins having inclusive upper boundariks, within which r(o)r(y)

the firing probability f, = P(spikelt € (tmin + At(km_1 + There are only finitely many configurations of tkg. As-
1),tmin + At(km+ 1)]) is constant. Importantly, the bin size suming we have no preferences for any of them, the prior
(distance between bin boundaries) is not figepriori but ~ for the bin boundaries becomes
can vary depending on the observed data. The relationshm({km}“w) — ;.
between the firing probabilitie, and the instantaneous fir- <T - 1)
ing rates is given by M
where the denominator is just the number of possibilities in
which M ordered bin boundaries can be distributed across
T — 1 places (bin boundany! always occupies positiof —

- f
firing rate= ZT (1) 1, seefidR, B, hence there are offily- 1 positions left).

@)



2.4 Computing the evidence and other posterior where the indicator functio (x) = 1 iff xis true and 0 oth-

expectations erwise. Thus, the sum will have exactly one nonzero contri-
bution from that bin which contairts Multiplying the r.h.s.

To calculate quantities of interest for_a given number of binof eqn.[12) with the r.h.s. eqhl(8) and marginalisifnig, }

boundariesV and a set of spiketrainZ'}, e.g. predicted fir-  and{kq} yields the predictive firing probability aigivenM

ing probabilities, their variances and expected bin boanda and the datdzi}:

positions, we need to average the quantity of interest ove<rP i 13

the posterior of the firing rates in the bifi$y,} and the bin (spikeft)) (13)

boundariegky}: where(...) denotes a posterior expectation. The necessary
) 2, {fm}, {km}|M summations/integrations can be done by a modified version

P({ fm}, {km} /M, {Z'}) = P }P&{{;;I;{/I) M) (8)  of the algorithm described in appendix A: since €gd.(12)

which requires the evaluation of the evidence, or marginaﬁ)mS a factorfm into the bin which containf we only need
' 0 add an 'extra’ spike in this bin in eqn.(A-5), run the al-
likelihood of a model withM bins: P d )

gorithm and divide the result by the evidence to obtain the
=2 11 predictive firing probability.
To compute the standard deviation of the firing probabil-
ity, we need the posterior expectation of

P({Z}IM) =

Kv_1=M—1ky_s=M—2

ky—1 _
Y PUZ}{km}, M)P({km} M) 9) _ M
koz=o P?(spikelt, { fm}, {km}, M) = 3 2.7 (t € {km-1+1,kn})(14)
where the summation boundaries are chosen such that the m=0
bins are non-overlapping and contiguous and The factorf?2 amounts to puttingwo spikes in the bin which

P({Z'}Hkﬁ]}, M) _ containg. Then,

| | Var (P(spikelt)) = (P?(spikelt, {z'},M))
:/0 d{ fm}P({Z }[{fm}, {km}, M) p({ fm}M). (10) —(P(spikelt, {z'},M)?) (15)
with

1 1 1 -1
/0 d{fm} :/o dfo/0 dfl.../o dfu. (11) 2.5 Model selection vs. model averaging: how many bins

5
Computing the sums in egl (9) might seem difficMtsums do we need

over O(T) summands suggest a computational complexityrg ohgose the best given{z'}, or better, a probable range
of O(TM), which is impractical. To appreciate why, let's of Ms, we need to determine the model posterior
consider an example: In a typical neurophysiological sce-

nario, we might want to estimate the PSTH iff & 700ms  p(y|71}) — P({Z}|M)P(M) (16)
time window withAt =1ms. If we tried to model this distri- > mP({Z'}m)P(m)

699 whereP(M) is the prior oveiM, which we assume to be uni-
10 form. The motivation for this choice is simply that we have

configurations, i.e. the number of possibilities to disitéh o .
10 ordered bin boundaries across 699 places. Thislig?! no a priori preferences for any model complexity, but we
) *would rather drive the choice &fl as completely as possi-

Even if we checked 10 configurations per microsecond, "Ble by the data. The sum in the denominator runs over all

would take more than 20 million years to finish. : .
However, we can expedite this process. As previousl yalues omwhich we choose o include, at mosts T — 1.
' b P : P y OnceP(M|{Z'}) is evaluated, we could use it to select

! -
dgmonstrated (Enc_jres stal 2305.3)' using dynamic progzrarr%he most probabl®l’. However, making this decision means
ming the computational complexity can be reduce@MT=). , N . .

. . contriving’ information, namely that all of the posteriprob-
In the above example, the time to compute the evidence re- ... . ,
S . ability is concentrated a¥l’. Thus we should rather aver-
duces tox 0.5 s, which is fast enough to be useful. We give L . . .
o . . . . . age any predictions over all possilg even if evaluating
a description of the algorithm in appendix A. This algorlthmSuch an average has a computational cosD@3), since
is also the basis for the latency calculations in sedfioh 4.1 ;

. . . - M < T —1. If the structure of the data allow, it is possible,
Posterior expectations can be evaluated in a similar fash-

jon. For example, given the model parametékg}.{ f} and useful given a large enoudh to reduce this cost by

andM, the predictive firing probability at time indexcan finding & range oM ’.SUCh that the rlsk.of.excludlng a mgdel
. even though it provides a good description of the data is low.
formally be written as

In analogy to the significance levels of orthodox statistics
we shall call this riska. If the posterior ofM is unimodal
(which it has been in most observed cases, sdd fig.2, C, for

bution byM +1 = 11 bins, we would have to chegk

M
P(spikelt, { fm}, {km},M) = fn7 (t € {km-1+1,kn})(12)
m=0



an example), we can then choose the smallest intenkisof generator and the inferred PSTH/SDF at tim@spectively.

around the maximum d?(M|{Z'}) such that The KLd between them atis
P(Mmin <M < Mmax|{Z}) < 1—a (17) _ 'D(t)) _ (1—P<U>
( {z'}) KLd(t) = P(t) log (Q(t) +(1—P(t))log =) (18)

and carry out the averages over this rang®lddfter renor-
malising the model posterior. We use= 0.1 unless stated
otherwise.

KLd has several interpretations, the one most relevant for
our purposes is the following: if we had observed a spike at
timet, log (%) =log, (P(t)) —log(Q(t)) would measure
how much more (log-) probable that spike would have been
3 Simulations and comparison to other methods given the generator versus the inferred PSTH/SDF. Like-
wise, if we had observed no spike, Iéé:é—%) tells us how
3.1 Predicted PSTH convergence to simulated generator ,.,ch more (log-) probable this event would have been. To
get the expected gain in (log-)probability, we need to av-
erage these terms over the spike/no spike generating-distri

150 150 bution att, which is given byP(t) and 1— P(t), respectively.
moo 100 AL 1vial This averaging yields egb.{lL8). It can be shown (Cover amahi¥ds
< 5q A \ L 5 At A 1991) that KLd> O with equality only if P(t) = Q(t), i.e.
Rl =={aba===ra g NS, the expected log probability of spike/no spike is maximised
2100 : 2100 by the generating distribution. We average Kt)dacross
S50 [ b 30trials | = 50ﬁ0 trials all time indexes of interest to yield the time-averaged KLd

970100200 300 400 509 O~ 0100 200 300 400 500  (tKId]):
post-stimulus time [ms] post-stimulus time [ms]
i 1 T-1
o ° tid =3 5 tkid(D) (19)
200 200 t=
% ~_ % The top panels in figl3 show typical PSTH/SDFs inferred
g0 S e | g0 from 1 and 30 trials. "Typical’ means that the tKLd is close
0,000 m 0,000 to the average tKLd for a given number of trials. The Bayesian
TS e St o, 100 L berf i 190 binning PSTH is computed from the predictive firing prob-

ability (P(spiket)), the dashed lines represent posterior
Fig. 3 Performance comparsion on artificially generated spiketrainsstandard deviation (from eqn.{15)), the prior parametgrs
The generators (thick, square-wave (left) and smoothed square-  andy;,, were equal for all bins and set to their maximum a-

(right) lines in top panels) are the rate profiles from which spike L - .
trains were drawnlop panels show typical PSTH/SDFs obtained from posteriori value. The generating rate profile in the left bél

datasets containing 1 and 30 trials. 'Typical’ means that the-i figl3 is comprised of bins. Hence, Bayesian binning should
averaged Kullback-Leibler divergence (tKLd) between teaerator model it with increasing accuracy and reduced uncertainty
and the estimated PSTH/SDFs is close to the average tKLd foea giv as the dataset grows. An indication for that can be seen by

number of trialsDashed: smoothing with a Gaussian kernel of 10ms ; ola- .
width, Solid: Bayesian binningBottom panels. average tKLd between comparing the PSTH/SDFs from 1 and 30 trials: the gen

generator and estimated PSTH/SDFs across 100 simulations as a furfating rate profile is followed much more closely for 30
tion of trials per dataset. The generator on the left is comgiaédins,  trials than for 1 and the posterior standard deviations also

which Bayesian binning should be able to model perfectly giienge  decrease noticeably as the number of trials increases. Fur-

enough dataset size. Thus, the tKLd at 100 trials is much smaller fo{hermore the Bavesian binnina PSTH is closer to the gen-
Bayesian binning. More importantly, Bayesian binning is consitdy ’ y ) 9

better than Gaussian smoothing even for very small numbers of triai€rator than the SDF computed by smoothing the spiketrains
The generator on the right is smoothed with a 10ms wide Gaussiawith a 10ms wide Gaussian kernel, which is displayed for
kernel. While Bayesian binning can no longer model it perjesttha  comparison.
finite number of bm_s, itis still a better estimator than kernel siniogt Importantly, Bayesian binning is doing well even if the
up to at least 100 trials. .
generator cannot be modelled by a small number of bins: the
right half of fig[3 shows simulation results for a generator
We first tested our method by inferring PSTH/SDFs fromthat was smoothed with a 10ms wide Gaussian kernel. Here,
artificial data. We generated spiketrains from inhomogaseothe Gaussian kernel smoothing gives expectably good re-
Bernoulli processes with the rate profiles shown in the togsults (at least for 30 trials), but note that Bayesian bigtién
panels of fig.B. To quantify the difference between the generdoing apparently equally as well. More quantitative perfor
ator and an inferred PSTH/SDF, we employed a time-averageance comparison results are shown in the bottom panels of
version of the Kullback-Leibler divergence (KLd) (Covemahhiignifds/\Ve repeated the simulation 100 times for a given num-
1991). LetP(t) and Q(t) be the spiking probability of the ber of trials per dataset, thus obtaining the average tKldd an



its standard deviation. For the bin generator, Bayesian bir2004). Details of the stimulus selectivity of these neurons
ning outperforms Gaussian kernel smoothing for all datasdtas been reported elsewhere (Oram et al 200Rli&k et &l
sizes. For the smoothed generator, Bayesian binning sti#l004| Edwards etlal 2003; Barraclough et al 2005; Edwardks et a
outperforms Gaussian kernel smoothing, while the differ2003). The anterior-posterior extent of the recorded cells
ence between the two methods shrinks as the number of tnivas from 7mm to 10mm anterior of the interaural plane, in
als per dataset increases. But even for 100 trials, Bayesidghe upper bank (TAa, TPO), lower bank (TEa, TEm) and
binning is as good as Gaussian kernel smoothing. We havendus (PGa, IPa) of the superior temporal sulcus (STS)
thus reason to hope that Bayesian binning might outperforrand in the anterior areas of TE (AIT of [Tanakal1991]), ar-
other PSTH/SDF estimation methods on real neural dataas which we collectively call the anterior STS (STSa, see
This will be shown in the next subsections. (Barraclough et al 2005) for further discussion). The rdedr
firing patterns were turned into distinct samples, each of
which contained the spikes from300 ms to 600 ms after

3.2 Data acquisition the stimulus onset with a temporal resolution of 1ms.

The experimental protocols have been described beforen @tal
2002; van Rossum etial 2008). Briefly, extra-cellular single 3 3 |nferring PSTHs
unit recordings were made using standard techniques from
the upper and lower banks of the anterior part of the supefo see the method in action on real neural data, inferred a
rior temporal sulcus (STSa) of two monkeys (Macaca muPSTH from 32 spiketrains recorded from one of the avail-
latta) performing a visual fixation task. The subject reediv able STSa neurons (seelfig.1, A). We discretised the inter-
a drop of fruit juice reward every 500ms of fixation while val from —100ms pre-stimulus to 600ms post-stimulus into
static stimuli (10 by 125°) were displayed. Static images At = 1ms time intervals and computed the posterior (Egh.(16))
were presented centrally on the monitor. Stimuli consisfed for models with varying number of bind (see fid.2, C). The
256 gray scale pictures of familiar and unfamiliar objectsprior parameters were equal for all bins and setp= 1
heads, body parts and whole bodies. Visual stimuli wereindy;, = 32. This choice corresponds to a firing probability
presented in a random sequence for 333ms with a 333m ~ 0.03 in each 1 ms time interval (30 spikes/s), which is
inter-stimulus interval centrally on a black monitor seree typical for the neurons in this stdﬁyl\/lodels with 4< M <
(Sony GDM-20D11, resolution 25.7 pixels/degree, refreshi3 (expected bin sizes between23ms-148ms) were in-
rate 72Hz), 57cm from the subject. Stimulus contrast wasluded on ara = 0.1 risk level (eqn[(1l7)) in the subsequent
determined using foreground regions of the image. The 100&alculation of the predictive firing rate (i.e. tieepected fir-
Michelson contrast % wherelL is the luminance, ing rate, hence the continuous appearance) and standard de-
was formed by normalising the foreground pixel values suchiation (fig[d, D). For comparison, fig.1, B, shows a bar PSTH
that they occupied the monitor full luminance range afterand a line PSTH computed with the recently developed meth-
adjusting the initial greyscale image to have mid (50%) lu-ods described in (Shimazaki and Shinomoto 2007¢,b). Rgughl
minance. Other contrast versions (75%, 50%, 25%, 12.5%gpeaking, these methods try to optimise a compromise be-
were achieved by systematically varying the width of thetween minimal within-bin variance and maximal between-
distribution of the foreground pixel values of the 100% con-pin variance. In this example, the bar PSTH consists of 26
trast version while maintaining the average foreground lupins. Panel C in fig]l depicts a SDF obtained by smoothing
minance. All manipulations were performed after corregtin the spiketrains with a 10ms wide Gaussian kernel, a stan-
for the measured gamma function of the display monitor. dard way of calculating SDFs in the neurophysiological lit-
Stimulus presentation began after 500ms of fixation cenerature.
trally on the screen (fixation deviations outside the fixatio All tested methods produce results which are, upon cur-
window lasting<100ms were ignored to allow for blink- sory visual inspection, largely consistent with the spikiets.
ing). Fixation was rewarded with the delivery of fruit juice However, Bayesian binning is better suited than Gaussian
Spikes were recorded during the period of fixation. If thesmoothing to model steep changes, such as the transient re-
subject looked away for longer than 100ms, both spike recokhonse starting at 100ms. While the methods from (Shimazaki and SI
ing and presentation of stimuli stopped until the subje€t re2007¢,b) share this advantage, they suffer from two draw-
sumed fixation for 500ms. The results from initial screenpacks: firstly, the bin boundaries are evenly spaced, hence
ing (Edwards et al 2003) were used to select stimuli thathe peak of the transient is later than visual examination of
elicited large responses from the neuron (effective sfdmul the rastergrams would suggest. Secondly, because the bin
and to select stimuli that elicited small or no responsef{ine — Altermatively, one could search for ey which maximise
f_ectlve_ stlr_n_ull). For d|_fferent neurons effective and fieef of P({Z}|0mn Vm)’: S PUZ }M)P(M| 0, Vm): v?herep({zi}\lvl) i
tive stimuliincluded different views of the head (Perrétae  given by eqnl(d). Using a unifor®(M|om, ym), we foundom ~ 2.3
1991), abstract patterns and familiar objectsifiak et dl  andym, ~ 37 for the data in figll, A




duration is the only parameter of the model, these methodmable 1 Average log prediction error differences to Bayesian bignin
are forced to put many bins even in intervals that are relfrom 5 fold crossvaligiation on 336 datasets. A positive _value means
atively constant, such as the baselines before and after t}q@t our method predicts the data better than the competitor.
stimulus-driven response. In contrast, Bayesian binrngng i Method CV error diff.
able to put bin boundaries anywhere in the time span of in- Shimazaki and Shinomoto (2007b) bar (2.35+0.23) x 10 3
terest and can model the data with less bins — the model Shimazaki and Shinomoto (2007b) line (1.22+0.10) x 103

(

posterior has its maximum &1 = 6 (7 bins), whereas the Gauss 10ms 129+0.11) x10°°
bar PSTH consists of 26 bins. Local likelihood fit (Loader 1997) (7.34+0.48) x 10°*
Shimazaki and Shinomoto (2007a) kernel3.1440.39) x 10~*
BARS (DiMatteo et al 2001) (0.8+1.6) x 10°
Bayesian binning 0

3.4 Performance comparison by cross-validation

demonstrated that Bayesian binning outperforms SDFs ob-

0,4 . . . . . .
Bo.a | | [Shim-Shin. bar PST ég,g:m SARS tained by Gaussian smoothing, and the bin and line his-
gy , , ; Tl ‘ ‘ ‘ togram methods from (Shimazaki and Shinomoto 2007c,b).
ggv;‘: Shim-Shin_line PST 38,‘2‘: Gaussian kernel_ T0mis _ We also testeq Baygsmn _blnnlng agamst.the kernel smooth-
g g , , ; S , e ing method described in_(Shimazaki and Shinomoto 2007a),
0.6 T0,4- o . . .
003 | | [Shim-Shin kerne ©0.4 | | Hocarikelirood fit a Ioca] likelihood gdapth{e fit (Loader 1999) and Bayesian

0 6 0’605 0"01 0_1015 0 d 0’605 0:01 0"‘015 Adaptlve Regl’eSSIOH Spllnes (BARS) (D|Matte0 et al 2001)

CV error relative to Bay. bin. CV error relative to Bay. bin.

To compare the performances between the different meth-
ods directly, we calculated the difference in CV error for
Fig. 4 Comparison of Bayesian Binning with competing methodseach neuron/stimulus configuration. Here a positive value
by 5-fold crossvalidation. The CV error is the negative expedog- i, jicareq that Bayesian binning predicts the test data more
probability of the test data. The histograms show relative feegu . )
cies of CV error differences to our Bayesian binning approgef: ~ accurately than the alternative method. [Big.4, shows the re
Shimazaki's and Shinomoto’s methods_(Shimazaki and Shinomotative frequencies of CV error differences between the other
2007|33)nght, top Bayesian Adaptive Regression Splines (BARS) methods and our approach. In the |arge majority of cases we
(DiMatteo et al 2001)Right, middle: smoothing with a Gaussian ker- .
nel of 10ms width.Right, bottom: local likelihood adaptive fitting are a,t le,aSt_as QOOd’ but freq_u,ently better than the compet
(Loadel 1997, 1999). tors, indicating the general utility of our approach. Amsing
the competitors, BARS is the only method with a compara-
_ . _ ble predictive performance on these STSa data. The average
For a more rigorous method comparison, we split thecy error differences, summarised in table 1, support this
data into distinct sets, each of which contained the resg®ns ¢|5im: they are all significantly- 0, except for the BARS
of a cell to a different stimulus. This procedure yielded 336,3)e.

sets from 20 cells with at least 20 spiketrains per set. We the

performed 5-fold crossvalidation. The crossvalidatiomier

is given by the negative logarithm of the predicted probabil 4 Response latency

ity (eqn.[I3)) of the data (spike or no spike) in the test.sets

Letsy(t) = 1if trial nof N in the test set contains a spike at Besides the instantaneous firing rate, another frequesdigt u

time indext € {0,...,T — 1} andsy(t) = 0 otherwise. Then feature for the description of a neuron’s response is respon
gN-19T-1 latency. But unlike the former, a definition of latency seems

CV error= N Z) T Z) log((P(sn(1)[1))) - (20)  much less agreed. A wide range of methods to estimate re-

n=0 * t= sponse latency exist. Changes in phase between neuronal ac-

Thus, we measure how well the PSTHs/SDFs predict thévity and sinusoidal drifting gratings with changing stim

test data on average across time and across all test triales parameters can provide an indirect measure of response

Note that this CV error is similar to the tKLd (edn.{19)): the latency (Gawne etlal 1996b; Alitto and Usrey 2004). Direct

constant terms referring to the generator have been droppetieasures of response latency of neurons with low back-

because the generator is not known here and the averagiggound or spontaneous activity can be obtained from the

is done across the data rather than the generating distribtime of the first spike after stimulus onset (Heil and Irvine

tion for the same reason. We average the CV error over th£997] Richmond et/al 1999; Syka €t al 2000; Stecker and Mintdteks

5 estimates to obtain a single estimate for each of the 33B003; Hurley and Pollak 2006; van Rossum et al 2008).

neuron/stimulus combinations. The prior parametgfsym Statistical approaches compare activity levels at two time

were equal for all bins and MAP optimised for each indi- points. While the baseline level is usually taken from a "pre-

vidual training dataset. In_(Endres etial 2008) we alreadtimulus” period the window containing the greatest activ-



2007)). Of course, estimates of latency derived from the
SDF will vary with the width of the smoothing kernel. In-

=
a1
@

t) sp.tr.

iloo _ 8 | 4o genious methods involving estimates from multiple kernels
g signallevel S | =1, 0.2 of different widths have been developed to minimise this ef-
o 54 = M fect (Liu and Richmond 2000).
= L CR10¢ ™y  signal level S
E Thg el _
0 ,z‘o? A0 B0 | 8 o0 205800 Other methods developed to estimate response latency
post-stimulus ime [ms] post-stimulus time t [ms] include using ROC analysis of single cell recordings (Tanahd Lisbergé

2002). Estimating response latency as the time of the peak in
Fig. 5 Left: our minimal latency definition. Latendy(vertical dashed the derivative of the SDF from multi-unit and local field po-
line) is that point in time before which the firing probabilityas con- . . ; . . .
sistently below the signal level (dotted horizontal line), aftér which  tential recordings (Fries etlal 2001) relies on rapid change
the firing probability is above the signal level for at least bite This  firing rate at response onset. Taking the first time bin of the
definition has two important implications: the latency is atratimund- longest monotonic rise in activity (Liu and Richmdnd 2000)
ary, and there can be at most one latency (possibly n&gt: A- each  jieg on a large, but not necessarily fast, change in agtivi
tick mark represents a spike, recorded from the same STSa neuron as_. ' ]
fig under high-contrast viewing conditior. latency posterior. The  rinally, Luczak and colleagues (Luczak et al 2007) use the

two modes ofP(L = t) are at 83ms and 104ms after stimulus onset,mean spike time after stimulus onset as a latency measure.
indicated by the dashed vertical lin€s.expected instantaneous firing

rates (thick solid line) plus/minus one standard deviatiom(tisished Methods have also been developed that allow for esti-
lines). This signal levebis indicated by the horizontal line. For details, mation of the response latency of a single trial. Some cal-
see fext culate the trial-by-trial variability of response latenbwt
do not give the absolute latency (Nawrot et al 2003). Other

ity can be used as the reference point (Berenyi et all2007tatistical approaches, including the Poisson based migtho
Comparison of the baseline or reference activity with the ac(vaunsell and Gibson 1992; Hanes ét al 1995; Thompson et al
tivity in a sliding window using t-tests (Sugase-MiyamotwleRiohosIfry et al 2006) and the "baseline+error margin” meth-
2005), Berenyi et al 2007) can be used to determine the tim@dS, can provide |atency estimates for Sing]e trials a@hou
point at which neuronal activity changes and hence providghey may not return a latency estimate for every trial (Friad and Priebe
an estimate of response latency. 1998). The trial alignment approach from_(Ventura 2004)

Several approaches use either the PSTH or the SDF ilds on the observation that a PSTH, when normalised
determine neuronal response latency. Latency estimates Cacross time, can be interpreted as a probability distabuti
be based on peak activity, typically the time at which thefor generating spike times. Assuming that the shape of the
mean activity reaches half the amplitude of the peak (b@selipSTH does not change across trials, but may be shifted in
0.5 x (peak—baseling, e.g. (Gawne etial 1996a; Lee et al time relative to other trials, the difference between tial
2007)). A statistical method based on a Poisson model comencies must then be equal to the difference of mean spike
pares the mean activity in successive bins during stinafati times. To compute an absolute latency, (Ventura 2004) rec-
with a Poisson process estimated from the "pre-stimulusommends to align all trials to the minimal trial mean and
period (Maunsell and Gibson 1992; Nowak &t al 1995; Hanelsgta point estimation method on the aligned trials, since
1995] Thompson et/al 1996; Schmolesky et al 2006 Gabel gfeahlignment should facilitate the detection of a sharp on-
2002 Sary et al 2006) However, Friedman & Priebe (Fried@@i’]?_ﬁjﬁﬂﬂence intervals on the |atency estimates can be ob-
1998) concluded that a maximum likelihood estimation oftained via bootstrap.
parameters for a step change in Poissonian generator (rate
1 pre-latency, rate 2 post-latency) was a better methodol- We note that most of the methods listed above share the
ogy in terms of mean square error than using half-heighhotion of determining latency by estimating a point value.
(Gawne et al 1996a) and the Poisson assumption approattowever, with finite data there is always uncertainty in the
(Maunsell and Gibson 1992). estimate. For example, when latency is estimated as 100ms

Some statistical approaches to estimating response l#-could be 99ms or 101ms with almost as much certainty but
tency use measures of the variability obtained from the dats relatively unlikely to be 90 or 110ms. If we want to search
rather than assume Poisson statistics. Simple methods der patterns or changes in response latency more exacting
timate response latency as the time point at which activitynalysis techniques should thus incorporate the uncgrtain
exceeds baseline plus some error margin (e.g. 1.96 or 2.38 a principled fashion. We also want a single method that,
standard error of mean (SEM) of baseline, (Oram and Perrettithout any change to parameters or code, works with indi-
1992 Oram and Perfet 1996; Tamura and Tahaka 2001; Ediadkteals, with a set of trials to a single stimulus andtwi
2003; Eifuku et al 2004; Kiani etlal 2005; van Rossum let alll trials from a neuron. We now develop and evaluate la-
2008). Such thresholding can also determine if a visually intency estimation using our Bayesian binning technique and
duced response is present (e.g. baseline+3.72 SEM, (Lé&e etlaow it meets these two criteria.



4.1 A minimal definition of response latency

iy &

3% =0
Most people interested in latency would probably agree with g = 2o,
the notion that 'latency is where the signal starts’. Sigrsal ~ ~ 2§ : ao,
no signal can usually be translated into firing rate above or 75 -1=811:28 ®o,
below a threshold, which we will call thegnal level (see Toh

50 100 150 0 20 40 60 80 100

fig[3, left). In other wordslatency is that point in time prior post-stimulus time t [ms] signal separation level S [Hz]

to which there was no signal, and after which thereisa sig- _ _ _ _ _
Fig. 6 Latency posterior and signal separation levetft: 10 spike-

nal for at least some duration. This is the ‘minimal’ latency trains were drawn from generators with 80Hz and 30Hz peatdfiri

definition which we will employ in the following. rate. Both generators had a baseline of 10Hz and a latencynas 80
For given bin boundarie$kyn} and firing probabilities  after stimulus onset. The dashed lines show the generating rages, t
{fm}, latency must be at a bin boundary, because firing probsolid lines represent the predictive firing rate of the Bayebianing

P e . PSTHs. The resulting latency posterior distributions are shdvwhea
abilities are constant within each bin. Note that our lagenc bottom, including the latency expectatiotisl posterior standard de-

definition implies that there can be at most one latency&lf th yjation. The posterior uncertainty in the 30Hz peak rate dmrdis
firing probabilities are below the signal level in every iin,  significantly larger than in the 80Hz conditioRight: determination

if fo, the firing rate in the first bin is already above the signalef signal separation leve. P(L existg is the probability that the la-
level, then there will be no latency. tency was somewherelln the latency search interval ([EE@Qm;

. . o after stimulus onset) giveB8. The symbols are located at the points
To obtain a latency posterior distribution, we formally \herep(L existy was evaluated by a golden section maximum search

define the probability that the latentyis at time indext  (Press et El 1986). Th@was chosen to be the firing rate which max-
given {kn},{fm},M and the signal leveS € [0,1] (Sis a imises the probability that a latency exists. In the 30Hz coouljtihere
firing probability. Division by the discretisation stepsiat is a relatively clear maximum at17Hz, whereas in the 80Hz condi-

tion, the maximum is much broader. This is due to the largerriffee

yields firing rate) as between baseline and peak firing rate in the latter conditean for
. . this relatively small dataset (10 trials), there is a range of aitiyigood
P(L - tHkm]” {fm}’ M, S) - signal separation levels that allow for the distinction betweaseline
1if 3IKj_1 € {km} i Kj_1+1=t and peak firing. For details, see text.
= andf; > Sandvm< j: fn<S (21)
0 otherwise

which can be exactly averaged over the posterior [egn.(8) byhe firing rate stayed at this value for 50ms, then dropped
a dynamic programming algorithm similar to that used forto 45Hz and 20Hz for 200ms before returning to the 10Hz
the evidence evaluation, as detailed in appendix B. We thusaseline. In both conditions, most of the probability méss o
obtainP(L =t,{Z'}|M,S) and hence, noting th& {Z }|M) = the latency posterior (fig.6, left bottom) is concentrated i
P({Z}|M,9S): the vicinity of the generator’s latency. The best signalsep
P(L=t,{Z}|M,S) a_ration IeV(_eIS (fig,. right) for each condition reflects the

PUZTIM) (22)  difference in peak firing rates: for 30H8,~17Hz, where

as for 80 Hz,S~39Hz. In both casess is roughly in the

What remains to be determined is the signal l&éissum-  mjiddle between baseline and peak firing rate. Latency was

ing that the data span the response range of the neuron (i€arched in the intervéd, 200ms after stimulus onset.
the data contain responses to at least one effective stinulu

one can proceed as follows: for a givéhmarginalise the In addition to the location of the latency, the latency
latency posterior across the time interval of interestahy ~ POSterior distributions (figl6, left bottom) also contanfor-
obtaining the probability?(L exists that a latency exists at Mation about uncertainty. It is evident that a smaller step
thatS. Repeat this procedure for differeBuntil the maxi- 11 firing rate leads to a wider latency posterior, which can
mal P(L exists is found. We use 10 golden section refine-aS0 be captured by computing the standard deviation from
ment steps (Press ellal 1986) for the maximum search wifjiat posterior. This observation is not particularly sisipg,

an initial interval of[0Hz, 100HZ, thereby achieving an ac- but nevertheless important: virtually all other latencyi-es
curacy of<1Hz. mation methods ignore uncertainty due to their point esti-

mation nature. As a consequence, the latency posterior con-

tains information about the change in firing rate, which is a
4.2 Properties of latency posterior distributions point that we will return to later (sectidd 5) when we anal-

yse latency and firing rate with information-theoretic meth
Fig[§ illustrates the consequences of our latency defmitioods. Note also that the latency posteriors are far from Gaus-
on simulated data. We generated 10 spiketrains from inhcsian: a description in terms of mean and standard deviation
mogeneous Bernoulli processes with a step in firing ratés therefore inadequate for an information-theoretic ygsial
10Hz—80Hz or 10HZz+30Hz at 80ms after stimulus onset. and might distort conclusions drawn from it.

P(L=t|{Z},M,9 =
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Non-Gaussian latency posteriors are also observed in the, 8 100
real data. Fi§l5, right, has two distinct peaks, the lower on & [s——

at= 83 ms, the higher one being=t104 ms after stimulus %l
onset. The location of these peaks can be understood fron% o LL .

ao0F
wof
o

[NIE’_Z[HZ]

[
post-stim. time [ms}

T eof

the height of the PSTH (fig.5, right, C) relative to the signal Q2 len] soBay
level: at 83 ms, one can be fairly certain that the PSTH was® 1} pesiZim ime [mslwsggmra\ﬂ
below the signal level prior to this time index, and there is i ‘ ‘
a nonzero probability (albeit not nearly certainty) thag th

coBay.Bin

RMS error [ms]

3 10 3 10
number of trials number of trials

. : . c o D =
PSTH is above the signal level directly afterwards. At 104 T L .l =
. . . . gk | 100 [y —
ms, the PSTH is above the signal level with near certainty £ RS g1 N =
. . . 5] post-stim. time [ms] 5 ~_post-stim. time [ms]
directly after the peak in the latency posterior, whereas on = 2
can not be quite sure that the PSTH was below the signalg " B ~
. . . . . . . coBay.sin
level the interval immediately before this point in time.eTh x ; 2 1015588,
expected latency= SEM is (94+ 10)ms. A conventional i 3 1o R 10 %0
number of trials number of trials

interpretation of these values would suggest that the bulk o

the prabability mass can be found close to the mean, WthEig. 7 Comparison of latency estimates. RMS errors were computed

IS not true. from 100 repetitions of the simulation for a given number ofisrizer
dataset. 'HH’ are the results from the half-height method (Gaeirel
1996a), '2SD’ determines latency to be the first time where igtiv

4.3 Simulation results exceeds baseline rate plus 2 SEM of baseline rate (Oram aretiPerr
1992), "Ventura’ is the trial alignment method froin_(Veniur@0z)

For a quantitative evaluation of the accuracy of our latency@nd 'Bay.Bin" shows the RMS errors using the expected lateray f

. . . . our method. Insets show generating rate proflleff: generators com-
detection method, we generated spiketrains from Inhornorirised of bins with latency at 80ms. Bayesian binning latenoyaliein

geneous Bernoulli processes with the rate profiles showpytperforms the other methods for all dataset sizes. The higterflat
in the insets of fifl7. Root-mean-square (RMS) errors wereor curve of the 2SD method in the 80Hz peak firing rate condlitio

computed from 100 repetitions of the simulation for a givenis due to a consistent underestimation of latency, which is afaart
number of trials per dataset, seelflg.7. We used the ex eCtof Gaussian kernel smoothing combined with a baseline SEM that is
P ’ 9.7 P g%all in comparison with the firing rate step at the lateRight: gen-

latency as the prediction of Bayesian binning for each @taserator with sloping response onsets. We measured the RMS against an
(similar results were found using a MAP estimate). To fur-assumed latency of 80ms, even though latency is no longer well de-
ther illustrate the performance of out approach, we comfined in these conditions. Our Bayesian binning method is stitebet

than the competitors, despite the fact that a slope is hard to maithel

pared it to three other ways of latency detection: the half'bins. Its increase in RMS between 10 trials and 30 trials in igh h

height method (Gawne etlal 1996a) (‘HH' in fi).7), latency peak firing condition is due to a flat signal separation maximum (see
= the first time where activity exceeds baseline rate pluslso figi, right).

2 SEM of baseline rate (Oram and Perrett 1992) ('2SD’ in

. o 3

f|gIZ]) andthe tna_l alignment _approach fram (Ventura "004)0f Swhich allow for an almost equally certain separation be-
This approach yields a relative latency for each trial, abso

. ) _tween 'firing rate abov& and ’firing rate belowS. Since
lute latency can be determined by a suitable change-pm%e search for a single maximum, this maximum’s location

method applied to the aligned trials. We used the half—heigqull then mostly be determined by noise, and not by differ-

method here, since it gives good estimates of the Iatencgnces in signal quality. If we wanted to bring thecloser

W'thSUt allgtrrlmdept. te than the others in all test té)the first rate inflection point, we would have to optimise
urmethod is more accurate than Ine otners In atl teste compromise between larg¥L existg and smallS. This

conditions. This is true even if the generator has a slopghg r could be accomplished by adding a weak prior daihich
sponse onset (fi@.7, right) and can no longer be easily moci)'refers smalb. However, this is no longer a 'minimal’ def-

elled by bins. In this case, latency is not as clearly defirzed Snition of latency, so we will continue to use our original
for a step response onset. We took the point of the first rat&efinition

inflection at 80ms to be the 'true’ latency. Note that thisris a

additional condition which is not a part of our latency defi-

nition. If we had certain knowledge of the generating firing4.4 Trial-by-trial latency and firing rate estimation

rates, anys € (10Hz 80Hz) would be suitable as a separa-

tion level. A consequence of choosing the first point of in-So far, we computed the model posteriors and all quanti-
flection as 'true’ latency is an increase in RMS of Bayesiarties derived thereof on the assumption that there is a sin-
binning between 10 and 30 trials for the 80Hz peak, slopingyle 'correct’ PSTH from which the data were generated. In

onset condition. This is due to a very flat signal separatiomther words, we presupposed that the experimentally con-
maximum (see also f[d.6, right), i.e. there are many valuesrolled parameters (e.g. stimulus identity and presesati
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0.0 0.0 rate f; depends on the latency only through the signal level

0,028 — high contrast 0.0 _ S becausd; > S(see eqnl.(21)). Thus, we can compute the
_ 0,02 oo camtraar 2t ool —_highcontrast joint probability (density) of 'latency. = t’ and "firing rate
4001 S low contrast is f* by multiplying the r.h.s of eqri.(23) with the r.h.s of
& 00 eqn21) iff > s

0'00 v~

Spoost-é%%ulagotiméoto[msz]so 0 firinlg(j)(?ate f%ag] 200 p(f(t) = f, L =t|{kn},{fm},M,S =
e T y _ _ P (1) = {kin}. { fn}. M) x
Fig. 8 Trial-by-trial latency and firing rate posteriors for threarst _ ><P(L _ t|{km}>{fm}7 M,9)if f>S (24)

ulus contrastsLeft: a latency posterior was computed for each trial )
and then marginalised across all trials for a given contrast.Hidjie 0 otherwise

contrast posterior was calculated on the same data as the |qtescy ; ; i ; ;
terior in fig[8, right. While the posterior uncertainty isieased dueto . Averaging this PrObat.)lllt.y density over the posterior ¢g.
the trial-by-trial evaluation, the bulk of the probabilityin the same 1S done by an algorithm similar to the one used for latency, as

post-stimulus time rangey{(75ms-110ms) as before. Reducing stimu- detailed in appendix C. This yield f (t) = f,L=t,{Z'}|M, S).
lus contrast clearly increases latenciight: firing rate posterior den-  Therefore we have
sities in the first bin after the latency. p(f(t) = FlL—t {Zi}|M S

PO = flL=t.{z}.M.9 = =5 =g,

time) were enough to specify the spike train generating pror.e. the probability density of the firing rate beirfggiven
cess up to a random element, which is fully modelled bythat the latency is 4t the signal level iSand the datdz'}

the firing probability. One might object to this model. It for a model withM bins. Averaging this firing rate density
is certainly conceivable that for instance latencies and firacross trials yields figl8, right. Here, firing rates wererfou
ing rates of the generator vary between trials. Therefore, ko decrease with stimulus contrast. Furthermore, the poste
would be desirable to be able to compute the posterior disiors are unimodal — this indicates that modelling the rial
tributions of these parameters on a trial-by-trial badiss | py-trial variations in firing rate by e.g. a mixture of binaahi

possible to do that with our method, as indicated by the sinwith a unimodal mixing distribution might be a viable strat-
gle trials performances in simulations (see[dig.3 anﬁ]fig.?)egy_

Fig[8, left, shows a trial-by-trial latency posterior dilsti-

tion marginalised across all trials to stimuli of high (100%

medium (50%) and low (12.5%) contrast. The high contrasp Information-theoretic analysis of latency and firing
latency posterior was calculated on the same data as tho&¥€

used in fid.b, right. While the posterior uncertainty is in-

creased due to the trial-by-trial evaluation, the bulk af th It IS often interesting to quantify the amount of informatio

probability is in the same post-stimulus time range76ms- which a neural response carries about various stimulus pa-
110ms, withS~ 47Hz) as before. Moreover, it is appar- rameters. Information theory (Shanhon 1948) provides the
ent that latency increases with decreasing stimulus csttra Mathematical framework to address this questiautual in-
which was also observed ih (Oram éf al 2002) using a stdormation I(U;C) (Cover and Thomés 1991) measures how

tistical approach (Oram and Perrett 1992; Oram and Perr&fUch we can expect to learn about a (discrete) stimulus pa-
1996). rameteiC from a (discrete) neural response measdiyand

vice versa. Given a joint probability distributidR(U,C),

(25)

To calculate the posterior distribution of firing rates asro
trials, one can proceed in a fashion similar to that used fot(U:C) is defined as

latency: define the probability density that the firing rate a 1(U;C) = P(U,C) Iog( P(U,C) > (26)
t, f(t), is f given the model parameters as P(U)P(C)

p(f(t) = f{kn},{fm},M) = whereP(U) = ScP(U,C) and likewise folP(C). If a second
S(fi—f)iftefki1+1,... .k} negral response.meas.ufeanq t.he join.t probabiliy dis.tri—

- { 0 Ot]herwise : e (23)  butionP(U,V,C) is available, it is possible to defirmendi-

tional mutual information | (U;C|V) andjoint mutual infor-

whered(x) is the Dirac delta function. In words, this proba- mation I (U,V;C) (Cover and Thomés 1991):

bility density is concentrated at the firing rateof that bin P(U,CV)

which contains the time indebif f; = f. By adding the con- 1(U;CIV) = Zggp (U,V,C)log ( PUN P (CV)>(27)

dition that the lower bound of bifj is equal to the latency,

we can compute the probability density of the firing rate inj (U,V;C) Zggp (U,V,0)l ( P(U,V.C) )

the first bin after the latency, i.e. in the strong transieart p P(U,V)P(C)

of the response. lfky} and{ fy} are given, then this firing = [(U;C|V)+1(V;C) (28)
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I(U;C|V) can be understood as the amount of informatiorat the latency. To illustrate this point, we performed aoinfation-
we expect to gain abo@ by observingU if we knewV,  theoretic analysis of a two-stimulus scenario on simulated
wheread (U,V;C) is the expected information gain ab@lit data. Each stimulus evoked a 50ms long transient response,
if we learned the values of bothh andV. Extending these followed by a sustained response (duration 250ms) with a
definitions to continuous variables is straightforward€@uandfifingnnate between the transient and the 10Hz baseline. In
1991). the 'no difference’ condition, the two simulated responses
In sections 4]1 and 4.4, we developed the formalism tdad the same underlying generator. We also varied just the
compute the posterior distribution of the latehcfeqn.[22))  firing rate (transient: 100Hz vs. 30Hz), just the latencyn(80
and the posterior density of the firing réft@) in the firstbin ~ vs. 90ms) or both firing rate and latency. Each dataset con-
after latency (egri.(25)), providing the joint density tained 10 trials per stimulus and was analysed trial-taj-tri
p(f(t)=f.L=t|{Z},M,9 = (i.e. one PSTH inferred per trial). The average results from
— p(f(t) = f~“_ _t, {z‘}, M,S) P(L = t\{zi}, M,S)  (29) 10 repetitions of the simulations are summarised in table 2.

) 7 - _ This table shows the mutual informations between stimulus
which we need to compute joint, conditional and marg'”alidentityc, and the variables:

mutual informations betweel, f(t) and any stimulus pa- L

rameter. Note that these distributions/densities are icond ~— E: latency exists, i.el. € {30ms,..., 250ms}. .

tioned on the signal lev& So far, we described a procedure ~ L L =tfort € {30ms, Y ZSOTEf}’ see _eqrE(ZZ). Addi-

to determineSfor a single stimulus conditio@ (see end of tionally, L he_ls a special valu_g indicating that a Iat_ency

sectiorZ1L). We defing for multi-valuedC based on two does not exist (i.e. no transition from below the signal
thresholdSto aboveS).

tions: .
assumpfions: - . — f:firing probability  (t) — f in the first bin after latency
1. the signal leveSis a property of the cell, not of the stim- for f e S 1], see eqri(@5)f also has a special value

ulus. In other words, there |§a5|ng$@er 'ceII across all indicating that a firing probability in the first bin after
C. If Swas allowed to vary witkZ, the choice oSwould latency does not exist
inject stimulus-related information into the information '
estimates which is not present in the data.

2. Sis determined by maximising the marginal probability
of latency existenc®(L existgS) (and therefore, signal
existence)

P(L existgS) = Z P(L exist$S,C)P(C) (30)

Note that both_ and f determinek: if latency is some-
where in the latency search interval or if the firing rate ia th
first bin after latency is somewhere above the signal level,
thenE is true, otherwisekE is false.E can also be read as
firing rate went above the signal levBlsomewhere in the
latency search interval’, and might therefore be viewed as a
firing rate related variable, rather than a property of leyen

dition, which is controlled by the experimenter. This ambiguity highlights the difficulty of separating fign

3. We assume that there is agriori dependency between rate and latency related information, which is due to lagenc
Sandc being defined by a firing rate based criterion. We choose to

A tior D i fth . tal desi interpretE as carrying firing rate information, since latency
SSUMPUOTLE 1S a consequence of the experimental desiql ., cerned with thé ming of response onset, rather than

which we are about to analyse. Cells a_nd stlmull_were S€ustthe presence or absence of aresponse. Thus, informatio
lected such that there was at least one stimulus which evok

outC in L is given by the conditional mutual information
a strong response, and at least one that evoked a weak rl?'L'C|E).
sponse (possibl_e none). Maximising the marginal p_robabil— ,The values in the 'no difference’ condition in table 2 rep-
ity of latency emstenpe thus has .the effect of c_hoosmg;an resent the overestimation biases of our method in this sce-
such that as many stlmulps conditions as possible hav<_a a dﬁélrio. Overestimation of mutual information (and the clgse
tectable atency. If ther € is astrong and a weak (b‘%‘ sl derelated underestimation of entropy) from small datasets is
tectable) response, this prpce_dure chooses a relatlvesly SM well-known problem, and many remedies have been de-
Ssuch thaiP(L exist$S,C) is high for bothC. However, if vised for it (Optican et al 1991; Panzeri and Treves 1996;
there is a strong and a non-detectable response, the valuggh o van et Al 2004; Panirski 2004; Endres aidigk

Swill be higher, s_ince it will be (_jrivgn only by the strong 2005). However, most of these methods assume a set of dat-

response. It remains to be seen i thls_procedure needsto BBOiI"ItS as a starting point, not a set of posterior distidiist

adapted for different cell/stimulus choices. Hence, they can not be applied to our analysis unaltered.
Further work will be needed to understand how best to pro-

5.1 Results on simulated data vide, within our analysis framework, information estingte
whose overestimation is as small as possible.

We mentioned in sectidn 4.2 that the latency posterior in-  If there is only a difference in firing rates, theff;C) >

evitably contains information about the change in firingrat I (L;C|E) but | (L;C|E) is still significantly greater than in

whereP(C) is the prior probability of each stimulus con-



13

Table 2 Mutual informationl in [bit] for simulated neurons with a
baseline firing rate of 10Hz, trial-by-trial analys3is stimulus iden-
tity, there were two stimuliL is latency,f is firing rate in the first bin  contrast viewing conditions. Entropy of stimulus iden@tjs H (C) ~1
after latency and latency existenceEisThe latter is the truth value of bit for all cells.E, L and f have the same meaning as in tdble 2. Fir-
the proposition 'Latency is somewhere between 30ms and 250ms afténg ratef in the first bin after latency carries slightly more information
stimulus onset'. Difference ii means that the peak firing rates were about stimulus identit than latency. For details, see text.

30Hz for one stimulus and 100Hz for the other, duration of peak r
sponse 50ms, latency 80ms after stimulus onset. In the 'difference in

Table 3 Average trial-by-trial mutual informations and standard er-
rors of the mean (SEM) computed from 29 STSa neurons under high-

Mutual information betwee@ and average- SEM [bit]

condition, both neurons had a peak firing rate of 100Hz for 50vith, signal existenc& I(E;C) 0.0594+0.0191
a latency of 80ms for one stimulus and 90ms for the other. 'No miffe latencyL givenE I(L;C|E) 0.0650+0.0075
ence’ means that both peak firing rates (100Hz) and laten8ras) firing rate f I(f;C) 0.0730+0.0205
were equal. Errors are SEM computed from 10 repetitions o$itime firing rate given latency 1(f;C|L) 0.0136+ 0.0020
ulations. For details, see text. latency given firing rate 1(L;C[f) 0.0649£0.0077
Difference in | I(E;C) I(L;CIE) 1(;C) joint code I(f,L;C) 0.1379+0.0074
no difference | 0.002+0.001 | 0.045+0.004 | 0.008+0.002
f:100/30Hz | 0.255+0.023 | 0.079+0.014 | 0.314+0.023
f'fl%cgg%mHs 0.007:£0.002 | 0.084+0.010 | 0016+0.004 a5 the sum of the individual codes,f,L;C) ~ I (f;C) +
L 80/90m§' 0.20640.026 | 0.0724+0.007 | 0.265+0.023 I(L;C|E). This is also indicated by(L;C|f) ~ I(L;C|E):

the stimulus identity information in firing rate which is re-
dundant with latency is almost completely containedin
) . In other words, the most informative firing rate feature is
the "No difference’ condition. In other words, even though,,hether the firing rate crosses the signal threshold or ot. T

the simulated cells were designed to have the same latengy ., e stimulus identity, we should therefore answer ques-
(80ms), the latency posterior distributions inferred fraft ;g ahout latency and firing rate in the following order

nite sample carry information about the magnitude of the fir—of importancehas the cell fired aboves, when has it fired

i',ﬁ'g rate change —a large response allows for the determingboves how much has it fired abov&? While these conclu-
tion of latency with greater certainty than a small one. CoMyions are certainly conditioned on our small stimulus set (2

pare this to the ‘difference i’ condition: whilel (L;C[E)is  g4imy per cell), the values of the mutual informations are

aboutas large as befoilgl;C|E) > I(f;C), i.e. ourmethod g5 compared to the theoretical maximum of 1 bit. This
is able to distinguish between (un)certainty related amd va makes ceiling effects unlikely.

ability related latency information via the information fn

Furthermore, in both 'difference ifi conditions,E contains

a large fraction of the firing rate information, i.e. knowing g Summary
whether the signal threshold was crossed is the most infor-

mative aspect of. We have extended our exact Bayesian binning method (Entees e
In summary, our method yields the results one would ex2008) for the estimation of PSTHs. Besides treating uncer-

pect for each condition: if the stimulus ident®)is encoded tainty —a real problem with small neurophysiological datas

in f, thenl (f;C) is maximal, if changes i€ cause changes _in 3 principled fashion, it also outperforms several compe

inL, I(L;C|E) is maximal. If bothL andf are influenced by  jng methods on real neural data. Amongst the competitors,

C, then both can be used together to deterrine we found that only BARS (DiMatteo et al 2001) offers com-

parable predictive performance. However, BARS requires

sampling to compute posterior averages, which can poten-

tially take very long or even get stuck, a problem which

. , . we observed on data sets containing only a small number
Itis known that stimulus contrast influences latency of STSa spikes. Bayesian binning allows for the exact evaluation

neurons (Oram etlal 20(_)2: van Rossumetal 2_008)' We noy posterior averages (within numerical roundoff errors) i
examine responses to high-contrast presentations to astkerly, o jent of the contents of the data set. It also offers au-

latency changes convey stimulus identity related Informafomatic complexity control because the model posterior can

Eon i.n lthe albsgnc? of conltra?t chaqge. The resulctjsfof a triabe evaluated. While its computational cost is significant, it
y-trial analysis o mutu.a n ormatlon_s cgmpute rom 29is still fast enough to be useful: evaluating the predictive
STSa neurons under h|gh-c0_ntrast viewing conditions arSrobability takes less than 1s on a moder@R@th a small
sh?wn 'IT taﬁIEB: Entrcf)Py of s'umylus 'df?ntws H]EC,) T] memory footprint £ 10MB for 512 spiketrains). We showed

bit for all cells. Sincd (f;C) > 1(L;C|E), firing ratef in the how our approach can be adapted to extract characteristic

first bin after latency carries slightly more informatioroab features of neural responses in a Bayesian way, e.g. respons
C than latencyL, but the difference is not significant. The

joint code of latency and firing rate is almost as informative 2 3.2 GHz Intel Xeo®™, SuSE Linux 10.1

5.2 Results on STSa data
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latencies or firing rate distributions. But we are notrestd  |2007) and a recent Gaussian process model (Cunningham et al
these features: we can use our method to compute expec2B08). We have not yet directly compared our method to ei-
tions of any function of the PSTH, subject to the conditionther of them. Comparisons to (Cunningham et al 2008) and
that the function depends on the PSTH in a bin-wise fashion(Shinomoto and Koyama 2007) will be interesting future work
A free software implementation is available at the machinence the authors of these works release their code.
learning open source software reposiB)ﬂ]his implemen- Finally, we used our approach to compute exact (up to
tation contains a short tutorial, computes expected PSTlbundoff errors) expectations of information-theoretiag-
and posterior standard deviations, separation level and laities, e.g. mutual informations between latency, firingera
tency posterior. It also allows for the optimisation of theand stimulus identity. We demonstrated that STSa neurons
prior hyperparameters. The code for the information theoeonvey most of the information about stimulus identity thgh
retic calculations is available from the authors on requestthanges in firing rate. Specifically, we found that the cross-
but it requires a cluster computer to run efficiently: theint ing of a signal threshol8is the most informative firing rate
gration over the posterior distribution of the firing rateeds  feature. However, extra information about stimulus idgnti
to be done numerically and is time consumirgX-2 days can be gained by looking at the response latency.
per processor per spiketrain for a trial-by-trial analysis

The latency alignment procedure of Ventura (2004) wascknowledgements D. Endres was supported by a Medical Research
developed to quantify trial-by-trial variation of the resize  Council (UK) special training fellowship in bioinformatics 601319.
|atencieS, and as such was not intended to determine an &pth authors W9U|d like to thank Pokliak and J. Schi_ndelin for stim- )
Solue atency estmate. However, Ventira (2004) sugdesté 21" S5cissons and comments on e manuscrot. bt oo
that the minimal latency estimate from the individual tri- thank the unknown reviewers for their clarifying suggestiand ref-
als could be used. We find this yields a poor estimate oérences.
absolute latency which tends to get worse with increasing
number of trials. We therefore used the half height method
from (Gawne et al 1996a) on the aligned spiketrains to imAppendix A: Computing the evidence with dynamic
prove the absolute latency estimate. This appears to malggogramming
the estimate largely independent of the number of triaks (se
fig[7). In the majority of cases, this procedure still undere The evidence, or marginal likelihood of a model withbins is given

. . . . b 9)):
timates the absolute latency, since the trials are aligoed t y (see eqrif9))
the minimal trial latency. To counter this systematic under _, T2 kel
estimation, we experi ith shifti Il ali Igi PUzIM) = % 2
, perimented with shifting all aligned|gia koM 1Ky M2
by the difference between the total pre-alignment and post- k1
alignment means, thereby restoring the original total mean oy PUZ}{km}, M)P({kn}/M) (A-1)
ko=0

spike time. However, this did not improve results notably.
Aligning trials by mean spike time works well on relatively where the summation boundaries are chosen such that the bingiare no

regular spiketrains (such as the gamma order 8 IS distri2verapping and contiguous and

bution simulations used in_(Ventura 2004)). In our simula-_, 1 i
tions with short transients and Bernoulli spike generatibn Pz (k) M) = /o A{fm} P2} [{ T} {kim}, M)P({ T} [M)-(A-2)
appears not to work. We would therefore conclude that th@ecall that the probability of a (multi)set of spiketraiizs} = {z., ..., zn},
poor performance of this method is due to poor estimates afssuming independent generation, is given by Ehn.(3):
the mean spike time of each trial. , NM ,

Substituting our observation model efh.(2) with any othé¥({z' }[{ fm}, {km},M) = |_! [ "™ (- fm)o@ ™
distribution is straightforward, as long as the replacetien " m0
also comprised of bins. One might e.g. model each spike = [ mE™ (@ o) (A-3)
train within a bin by a separate Bernoulli process and mix m=0
these with a suitable distribution to capture the inteatttif-  wheres({Z},m) = SN, s(z',m) is the number of spikes in all spike-
ferences. Alternatively, one could use a model similar & th trains in binmandg({z'},m) = 5%, g(z',m) is the number of all non-
of (Shinomoto and Koyarha 2007): choose a Gamma proPkes or gaps. The prior of the firing rates (eign.(5)) is

cess for the inter-spike intervals and model the time-deégen o} M) = M B(hi O i) )
rate with a bin model. m rTI;l0 m; Om, Yin)-

.The're are a number Of other approaches to PSTH/SDJI;he integrals in eqi.{Al2) can be evaluated by virtue of @B) and
estimation which were notincluded in our comparisons. Peragn [a2):

haps most noteworthy (from a Bayesian perspective) ara@giovto and Koyama, Bl 14 i
P({ZI}‘{km}M): |—| (S({Z },m)+am,g({2}m)+ym) (A-S)

3 http://www.mloss.org, package ’binsdfc’. b B(0m, Ym)
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where Bx,y) = ,.&+ ) is Euler's Beta function (Davis 1972). Edn.(A-5)Table A-T1 Computing the evidences of models with upNbbin
is a product with one factor per bin, and each factor depentisan boundaries
spike/gap counts and prior parameters in that bin. To computéZd]),

we can therefore use an approach very similar to that described in

(Endres and &ldiak|2005 Endres 2006) in the context of density €s-| 1 fork:=0...T — 1 : subEk] := getlEQ0,k,0)
timation and inl(Hutter 2006, 2007) for Bayesian function apjma- 2. E[0] := subHT — 1] x pr[0] o
tion: define the function 3 form=1..M:
A ) (@) ifm=Mthenl:=T —1lelsel :=m

getIEC(kS7 ke7 m) = B(S({ZI }a kS7 kE) + Um> g({zl }a kS7 ke) + Vm) (A_G) (b) for k = T — 1 .. |

' . subEK] := YKt | subBr] x getlEQr +1,k,m)
wheres({Z'},ks, ke) is the number of spikes arg{{Z'}, ks, ke) is the (c) E[m) = subET — 1] x pr{m|
number of gaps iz } between the start interviel and the end interval 4. return g

ke (both included). Furthermore, collect all contributionsetm [A-1)
that do not depend on the data (i{€'}) and store them in the array

pr{M]:
Appendix B: Computing the posterior distribution of
M=o Bior the latency
pr{M] := % (A7)
( M ) We compute the joint probability of the latenty=t and the observed

spiketrains{z'} given the number of bins and the signal separation
Substituting eqri{A%) into eqi(A-1) and using the defimtidA-g)  levelSvia

and [A-1), we obtain ) T2  kw1-1
(L=t,{Z'}IM,S) = z
) T-2 ki—1 M km-1=M—1ky_2=M-2
P({Z'}M) O ZM -y [ 9etlEQkm-1+ 1 km,m) x ki—1 .
kv 1=M-1  ko=0m=1 o S PL=t,{Z},{kn}M,S) (B-11)
xgetlEQO0, ko, 0) (A-8) ko=0
where

with kv = T — 1 and the constant of proportionality beingi. Since P(L=t {Zi} {kn} M, S) =

the factors on the r.h.s. depend only on two consecutive bindemies L ’

each, it is possible to apply dynamic programming (Bertsekas 2000) :/ d{ fm}P(L = t| {km}, { fm}, M, S)p({Z }, { frm}, {ki}|M).(B-12)
rewrite the r.h.s. by 'pushing’ the sums as far to the right as plessib 0

Note thatP(L =t|{kn},{ fm},M,S) isthe r.h.s of eqii(21) ama({Z'}, { fm}, {km} /M)

, T2 is the numerator of the r.h.s. of edd.(8). As a consequence ofZdln
P{z}IM) O ) getlEQku-1+1,T—1,M) x the only nonzero contributions to the average are modelshatave
M-1=M-1 a (lower) bin boundary at Assumet was at the lower bound of bin
km-1—-1 j.i.e.att =kj_1+1 (the{kn} are inclusive upper bin boundaries, as
X ) zgeﬂEqu—Z +1kv-1,M—1) x defined above). Carrying out the integrals over{lfig} yields:
M—2=M— ;
k-1 P(L=t{z},{kn}|M,S)

(SRR LI DgEAOK0 0 (9 gL =t (k) M. SBU(Z), (. M)

s s 1 1 1
Evaluating the sum ovdg requiresO(T) operations (assuming that = / dfo.../ dfj,l/ dfj/ dfj+1.../ dfmp({Z'}, {fm}, {km}|M)
T >> M, which is likely to be the case in real-world applications). As 0 70 S 0 70

the summands depend also k) we need to repeat this evaluation (B-13)
O(T) times, i.e. summing oW for all possible values df; requires  The integration boundaries in the last line of €gn.(B-13)aom®nse-
O(T?) operations. This procedure is then repeated for the remaininguence of our latency definition: all bims < j will contribute to the

M — 1 sums, yielding a total computational effort ©MT?2). Thus, integral only as long a$y, < S, hence the upper bound of their inte-

initialise the array subftk] := getlIEQ0,k,0), and iterate for aln = grals is atS. Bin j contributes only iff; > S, thus the lower bound of
1,...,M: the integral ovelf; is S. The binsm > | are not affected by the latency
probability (eqn[(ZIL)) whence their integrals still runrfrd to 1. By
k-1 virtue of eqn[(B) and eqfi)(5), we obtain
SubBn[K ;== % getlEQr + 1,k m)subBy1[r], (A-10) i1
r=m-1

P(L=t,{Z}, {kn}IM,S) = ﬂ Bs(s({z'},m) + om, g({Z'}, M) + ym)
A close look at eqrl.{A19) reveals that while we sum okgr 1, we ~ i
need sublg_1[k] for k=M —1;...;T — 2 to compute the evidence of * Bs(s({Z}. 1)+ om. 9({Z }. 1) + ¥i))
a model with its latest boundary &t— 1. We can, however, compute M i
subfy_1[T — 1] with little extra effort, which is, up to a factor i — x [] B (s({z'}.m) + om,9({2'}. M) + Yn)
1], equal toP({z'}|M — 1), i.e. the evidence for a model witid — 1 m='+1
bin boundaries. Moreover, having computed syli& we do not need
subEn_1[k— 1] anymore. Hence, the array suhE k] can be reused to |_| B(Om, Y P({km}[M)
store subkK], if overwritten in reverse order. Tadle ATl shows this
algorithm in pseudo-code (] contains the evidence of a model with WhereBs(a,b) = fo t>-1(1—t)>~1dt is the incomplete Beta function
m bin boundaries insidgmin, trax] after termination). (Davis[1972) and3s(a,b) = [at21(1—t)P~1dt = B(a,b) — Bs(a,b)

(B-14)
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is its complement. Note that up to the fac®({km}|M), eqn(B-1#)
is basically eqr.{A®) with some of the Beta functions replaogih-
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complete Beta functions. Hence, the remaining summations over thalitto HJ, Usrey WM (2004) Influence of contrast on orientatioma

{km} can be carried out by using
getlEG (Ks, ke,m) :=
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ing expectations of functions of bin boundaries and firingabilities
described in(Endres andiiak|2005).

(B-15)

Appendix C: Computing the posterior density of the
firing rate

We compute the joint probability density of the firing rafté) = f,
the latencyL =t and the observed spiketraifis'} given the number
of bins and the signal separation le@lia

P(f(t) = f,L=t,{Z}M,9) =

T-2 ky-1—-1 -

k-1 )
S P = FL =t {2}, {kn} M. 9
ko=0

km_1=M—1ky_2=M-2
(C-16)
where

p(f(t) = f.L=t,{Z},{kn}|M,S) =

:/:d{fm}P(f(t) = f,L=t/{kn}, {fm},M, S p({Z'}, { fin}, {km}|M)
(C-17)

Note thatP(f(t) = f,L = t|{km},{fm},M,S) is the r.h.s of eqi.(24)
andp({Z},{fm}, {km}|M) is the numerator of the r.h.s. of eqn.(8). As a
consequence of eqn.{24), the only nonzero contributiorfsetaverage
are models which have a (lower) bin boundary. #&ssumet was at the
lower bound of binj, i.e. att = kj_1 + 1 (the{kn} are inclusive upper
bin boundaries, as defined above). Integrating ouf fhg yields

p(f(t) = F’L :tv{zi}v{km}‘M’S) =
-1 . .
ﬂOBs(S({Z'}vm) +0m,9({Z'}. M) + ¥m)

« fSEhiton—1 (1 _ F)azhi) -1

M . )
[ B(s({Z},m)+om 9({Z'},m) + yin)

m=j+1

M
X
I

P({km}M) (C-18)

1
'y B(Om, Ym)

where the second line is a result of effh.(3) and Efjn.(5) matipliith
the Dirac delta function in eqfi.(23). Hence, the remaining sutioms
over the{km} can be carried out by using

getlEC | (Ks,ke,m) :=
BS(S({Zi }7 k37 ke) + Om, g({zi }7 k37 ke) + ym) if ke <t

fs{Z b koke)tom=1 (1 — f)aU{Z b keke)tym) =1 if kg =t (C-19)
B(s({Z'} ks, ke) + Om, 9({Z'}  Ks, ke) + Yin)  if ks >t
0 otherwise

instead of getlECks,ke,m) (eqn.fA-6)) in the evidence computation
algorithm. Thus we obtaiR(f(t) = f,L =t,{Z'}|M, ).
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