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Abstract. Natural body movements are temporal sequences of individ-
ual actions. In order to realise a visual analysis of these actions, the
human visual system must accomplish a temporal segmentation of ac-
tion sequences. We attempt to reproduce human temporal segmentations
with Bayesian binning (BB)[8]. Such a reproduction would not only help
our understanding of human visual processing, but would also have nu-
merous potential applications in computer vision and animation. BB
has the advantage that the observation model can be easily exchanged.
Moreover, being an exact Bayesian method, BB allows for the automatic
determination of the number and positions of segmentation points. We
report our experiments with polynomial (in time) observation models on
joint angle data obtained by motion capture. To obtain human segmenta-
tion points, we generated videos by animating sequences from the motion
capture data. Human segmentation was then assessed by an interactive
adjustment paradigm, where participants had to indicate segmentation
points by selection of the relevant frames. We find that observation mod-
els with polynomial order ≥ 3 can match human segmentations closely.
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1 Introduction

Temporally segmenting (human) action streams is interesting for a variety of
reasons: firstly, if we had a model which reproduced human segmentations closely,
might reveal important insights in human action representation. Previous work
in this direction has studied in detail the segmentation of sequences of piecewise
linear movements in the two-dimensional plane [23,1]. Secondly, a good temporal
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segmentation would have numerous applications in the field of computer vision.
Worth mentioning in this context is the Human Motion Analysis (HMA) [24].
HMA concerns the detection, tracking and recognition of people from image
sequences involving humans and finds its application in many areas such as smart
surveillance and man-machine interfaces. Thirdly, extraction of important key
frames by improved motion segmentation would not only contribute to computer
vision research but also to computer graphics and motion synthesis. Animations
of human motion data can be done with less computational costs if the key
frames are defined optimally (e.g. [6,5]).

While most researchers base their temporal segmentation approaches on real
video data and focus on the computer vision problem to analyse human motion
data by tracking of skeleton models or feature sequences [21,2,13], we address
here specifically the problem of the segmentation of action streams based on
motion capture data. We compare Bayesian binning (BB) for segmentation of
human full-body movement with human responses, which were assessed in an
interactive video segmentation paradigm.

BB is a method for modelling data with a totally ordered structure, e.g. time
series, by piecewise defined functions. Its advantages include automatic complex-
ity control, which translates into automatic determination of the number and
length of the segments in our context. BB was originally developed for density
estimation of neural data and their subsequent information theoretic evaluation
[8]. It was later generalised for regression of piecewise constant functions [14]
and further applications in neural data analysis [10,9]. Concurrently, a closely
related formalism for dealing with multiple change point problems was developed
in [11].

We give a concise description of the data recordings in section 2, since these
data have not been published before. The psychophysical experiments and their
results are described in section 3. We use BB for the segmentation of joint angle
data obtained by motion capture in section 4. Furthermore, we show how to use
BB with non-constant observations models in the bins. In section 5 we present
the segmentations achieved by BB and compare them with the psychophysical
results. Finally, we discuss the advantages and limitations of our approach and
give an outlook for further investigations in section 6.

2 Kinematical Data

The action streams we studied are solo Taekwondo activities performed by ten
internationally successful martial artists. Each combatant performed the same
fixed sequence of 27 kicks and punches, forming a so called hyeong. A complete
hyeong had a full length of about 40 seconds. The kinematical data was obtained
by motion capture using a VICON 612 system with 11 cameras, obtaining the 3D
positions of 41 passively reflecting markers attached to the combatants’ joints
and limbs with a 3D reconstruction error of below 1 mm and at a sampling
frequency 120 Hz.



The use of the obtained kinematical data was twofold. First, joint angle tra-
jectories were computed from a hierarchical kinematic body model (skeleton)
which was fitted to the original 3D marker positions. The rotations between ad-
jacent segments of this skeleton were described by Euler angles, defining flexion,
abduction and rotations about the connecting joint (e.g. [19,22]). Second, from
the derived joint angle trajectories we created movie clips showing computer
animations of the Taekwondo movements. Those videos served as stimuli in our
psychophysical experiment to obtain human segmentation ratings.

3 Human Action Segmentation

To test the validity of the segmentation results obtained using our algorithmic
approach we conducted a psychophysical study to achieve action segmentations
of human observers.

Stimulus Preparation: short video clips displaying the Taekwondo move-
ments served as stimuli in the psychophysical paradigm. Volumetric grey puppet
constructed from simple geometric shape elements were animated with the com-
batants’ movements. An illustration of the puppet’s appearance is shown in fig.
(1)A. To avoid stimuli of uncomfortable length each complete hyeong was split
into five sub-sequences of comparable length each containing between three and
eight separate Taekwondo actions. We restricted the number of stimuli in the
experiment in order to prevent the participants from experimental fatigue and
frustration. Thirty video clips corresponding to the complete hyeong of six rep-
resentative combatants served as stimuli in this study. The puppet within the
stimuli subtended approximately 4 x 8.6 degrees of visual angle and was pre-
sented on a computer screen viewed from a distance of 50 cm.

Experimental Procedure: the experiment started with a training phase in
which participants familiarised themselves with the procedure. Five video clips
corresponding to the complete hyeong of one combatant were only shown dur-
ing this training phase. The remaining 25 movies served as test stimuli. Each
was shown three times resulting in 75 segmentation trials per subject. Human
observers watched video clips displaying the Taekwondo movements animated
as puppets and segmented the complete hyeong into actions. In every trial the
current video clip was first presented twice to enable the subjects to acquaint
themselves with this action sequence. During the third presentation of the ani-
mation participants segmented the action sequence by pressing a marked key on
the keyboard at each point which they perceived as the endpoint of one single,
separable action. The segmentation was then replayed and if the participants felt
insecure about their responses they had the opportunity to correct themselves
up to two times. Noteworthy, it was completely left to the participants’ own
judgement what exactly defines one single action and the corresponding end-
point. They never received feedback regarding their segmentation neither during
training nor during testing.

Participants: thirteen näıve subjects (mean age 26 years 6 month, ranging
from 21 years 11 month to 38 years 11 month, 10 female) participated in this



study. None of them had experience performing Taekwondo or other sports re-
lated to martial arts. All participants had normal or corrected-to-normal vision,
gave informed written consent and were paid for their participation.

Segmentation Results of Human Observers: the results of the human
action segmentation for the hyeong of one representative Taekwondo combatant
are shown in fig. (1)B. Each single black dot represents one key press indicating
the perception of an intersection between two Taekwondo actions. The 39 rows
correspond to the three segmentation repetitions of each of the thirteen partic-
ipants. The lack of feedback and explicit definitions of a single action resulted
in differences in the interpretation of one separable action between participants.
Most participants (11) tended to divide the action sequences on a very fine-
grained level resulting in many endpoints (mean number of segmentation points
= 25.36, standard error = 2.49). Though, two subjects concentrated only on
the coarse separation of the hyeong by setting only 5 respectively 8 segmenta-
tion points. In direct comparison with the timing of the 27 expected endpoints
as defined by the Taekwondo combatants themselves (see coloured bars in fig.
(1)B), naıve participants placed 47.1% of the segmentations (standard error 5%)
accurately within a very tight time window of +/-250 ms around the expected
time point. Although a hit rate of 47.1% seems low at a first glance the follow-
ing has to be taken into account. First, the complete hyeong was presented in 5
video clips. Each video ended at one expected endpoint. Some participants did
not indicate a segmentation point at the video boundaries because they thought
it would be redundant. Second, human observers tended to set the endpoint of
the actions slightly to early compared to the expected endpoints. This happened
especially when the combatant remained still for a longer time after he has com-
pleted an action. Shifting the accuracy time window from +/-250 ms to -380 ms
to +120ms and excluding the video boundaries from the hit rate analysis results
in a hit rate of 56.6%. Despite the slightly shift in timing compared to the ex-
pected time points the set segmentations are consistent across subjects (see fig.
(1)C and D for the segmentation density). These results are in accordance with
previous findings about the agreement of human raters on boundary placing in
movement sequences [7,18,25].

4 Bayesian Binning for Action Segmentation

We now briefly specifiy the BB model used for the segmentation of joint angle
data. The following sections describe the prior over bin boundaries (section 4.1)
and the used observation models (section 4.2). The algorithmic details of eval-
uating posterior expectations are only outlined schematically, they are detailed
in [8].

4.1 The Bin Boundary Prior

Our aim is to model a time series D in the time interval [tmin, tmax]. We want to
be able to draw conclusions about change point estimates from small amounts of



Fig. 1. Human Action Segmentation. A) Illustration of Stimuli. Snapshots taken from
the stimuli videos showing the custom-built volumetric grey puppet performing dif-
ferent Taekwondo kicks and punches. B) Subjective Segmentation Points. Black dots
correspond to the intersection points participants perceived between two Taekwondo
actions. Results for the individual participants are shown row-wise. The coloured ar-
eas mark the time windows +/- 250 ms around the expected endpoints as defined by
experts. C) Predictive Segmentation Density I. Predictive segmentation density esti-
mated from human key presses. Estimation was carried out by Bayesian binning with a
Bernoulli-Beta observation model (see section 4.2). Color saturation indicates density
(darker = higher). D) Predictive Segmentation Density II. Same density as in C). Blue
line represents the predictive segmentation density using Bayesian binning, the shaded
grey area indicates ± one posterior std. dev.

data, let the model complexity be driven by D and handle D corrupted by (large
amounts of) noise. We therefore take a Bayesian approach. Let [tmin, tmax] be
discretised into T contiguous intervals of duration ∆t = (tmax − tmin)/T , such
that interval j is [j ·∆t, (j+1) ·∆t] (see fig. (2)). Assume that ∆t is small enough
so that all relevant features of the data are captured in the discretised version of
D. We model the generative process of D by M + 1 non-overlapping, contiguous
bins, indexed by m and having inclusive upper boundaries km ∈ {km}. The bin
m therefore contains the time interval Tm = (∆t km−1, ∆t km]. Let Dm be that
part of the data which falls into bin m. We presuppose that the probability of
D given {km} can be factorised as

P (D|{km},M) =

M∏
m=0

P (Dm|km−1, km,M) (1)



where we additionally define k−1 = −1, kM = T − 1.

t

0 1 2 3 4

k−1 = −1 k0 = 4 k1 kM−1 kM = T − 1

P (D0|k−1, k0) P (D1|k0, k1) P (DM |kM−1, kM )

P (D|{km},M) = P (D0|k−1, k0)P (D1|k0, k1) . . . P (DM |kM−1, kM )

=
∏M

m=0
P (Dm|km−1, km)

Fig. 2. Exemplary binning of a discrete time series of length T into M + 1 contiguous,
non-overlapping bins with (inclusive) upper bin boundaries km ∈ {km}. Within each
bin m, the observation model for data D is given by P (Dm|km−1, km), where Dm is
that part of the data which falls into bin m. We assume that the data are independent
across bins given the {km}and M .

Prior on {km}: since we have no preferences for any bin boundary configu-
ration (other than m′ < m⇒ km′ < km), our prior is

P ({km}|M) =

(
T − 1
M

)−1
(2)

where

(
T − 1
M

)
is just the number of possibilities in which M ordered bin

boundaries can be distributed across T − 1 places (bin boundary M always
occupies position T − 1, hence there are only T − 1 positions left).
Prior on M : we have no preference for any number of bin boundaries (which
controls the model complexity). Thus, we let

P (M) =
1

T
(3)

since the number of bin boundaries M must be 0 ≤M ≤ T − 1.
For temporal segmentation, the most relevant posterior is that of the {km} for
a given M :

P ({km}|D,M) =
P (D|{km},M)P ({km}|M)

P (D|M)
(4)



This requires the evaluation of P (D|M):

P (D|M) =

k1−1∑
k0=0

k2−1∑
k1=1

. . .

T−1∑
kM−1=M−1

P (D|{km},M) (5)

which appears to be O(TM ) since it involves M sums of length O(T ). However,
exploiting the form of P (D|{km},M) (eqn. (1)) allows us to “push sums” past
all factors which do not depend on the variable being summed over:

P (D|M) =

k1−1∑
k0=0

k2−1∑
k1=1

. . .

T−1∑
kM−1=M−1

M∏
m=0

P (Dm|km−1, km)

=

k1−1∑
k0=0

P (D0|k−1, k0)

k2−1∑
k1=1

P (D1|k0, k1) . . .

. . .

T−1∑
kM−1=M−1

P (DM |km−1, kM ) (6)

Now each sum over O(T ) summands has to be evaluated O(T ) times for the
possible values of the upper summation boundary. Since there are M sums, this
calculation has complexity O(MT 2), which is feasible. This way of computing
P (D|M) is an instance of the sum-product algorithm [16]. As detailed in [8],
the expectation of any function of the model parameters (e.g. bin boundary
position, bin width or probability of a bin boundary at a given point in time)
can be evaluated with a similar approach, given that the function depends only
on the parameters of one bin for any given {km}.

4.2 Observation Models P (D|{km}) for Action Streams

We employed two different observation models. For both, conjugate priors can
be specified on their parameters which allow for an evaluation of expectations
and marginal probabilities in closed form. This enables us to compute efficiently
the marginal probability of the data given the number of bin boundaries (eqn.
(6)).

Bernoulli-Beta: human segmentation events (i.e. key presses by observers)
are binary. It is therefore natural to model these data with a Bernoulli process
having a conjugate Beta prior (one per bin). This is analogous to modelling
neural spike trains with BB [10]. Thus, for a segmentation event e(t) ∈ D at
time t in bin m, i.e. t ∈ Tm we have

P (e(t)|t ∈ Tm) = Pm (7)

p(Pm) = B(Pm; γm, δm) (8)

where B(Pm; γm, δm) is the Beta density with parameters γm, δm (see e.g. [4]).
Multivariate Gaussian with Polynomial Time-Dependence: joint an-

gles are real numbers in [−π, π). We could thus employ a multivariate von-Mises



density or generalisations thereof [17]. Instead, we chose to model joint angles
with a multivariate Gaussian whose mean has a polynomial time dependence,
because its conjugate priors are tractable analytically. The exponential family
conjugate prior on the mean µ and the precision matrix P (inverse covariance)
is then given by an extended Gauss-Wishart density (see e.g. [4]). Let Xt ∈ D
be a L-dimensional vector of joint angles at time t ∈ Tm, and S be the chosen
polynomial order. Let tm = ∆t km−1 be the start time of bin m. Then

p(Xt|t ∈ Tm) = N (X(t);µm,P
−1
m ) (9)

p(Pm|νm,Vm) =W(Pm; νm,Vm) (10)

µm =

S∑
i=0

ai,m(t− tm)i (11)

The am = (ai,m) are the polynomial coefficients in bin m. Note that this vector
has (S + 1) · L components. N (X,µ,Σ = P−1) is a multivariate Gaussian
density in X with means µ and covariance matrix Σ. W(P; ν,V) is a Wishart
density in P with ν degrees of freedom and scale matrix V. To construct a prior
which is conjugate to the likelihood (eqn. 9), we choose a vector αm = (αi,m)
with (S + 1) · L components, which are the biases on am. Furthermore, we
introduce a symmetric, positive (semi-)definite (S + 1) × (S + 1) matrix Bm,
which contains the concentration parameters on am. The prior on am given Pm

is then a multivariate Gaussian density

p(am|αm,Bm,Pm) = N (am;αm,Q
−1
m ) (12)

where the (S+1)L×(S+1)L matrix Qm is obtained by block-wise multiplication
of the entries Bm,i,j of Bm with Pm:

Qm =

Bm,0,0Pm · · · Bm,0,SPm

...
. . .

...
Bm,S,0Pm · · · Bm,S,SPm

 (13)

Lengthy but straightforward calculations confirm that the product of the
Gaussian (eqn. 12) with the Wishart (eqn. 10) does indeed constitute a conjugate
prior on the likelihood given by eqn. 9. We omit these calculations here for
brevity. Since the prior is conjugate with a known normalisation constant (i.e.
that of the Gaussian times the Wishart), the marginal likelihood of the data in
each bin can be computed, and thus Bayesian binning can be applied with this
observation model.

5 Results

We applied BB to joint angle trajectories of shoulder and elbow angles, and
combinations thereof, to determine the segmentation densities. Fig. (3), left,



Fig. 3. Left : A: fitting a part of a joint angle trajectory with Bayesian binning. Joint
angles have not been wrapped around at −π to avoid creation of artificial segmentation
points. Red lines shows predictive joint angles with a 0th order (i.e. bin-wise constant)
observation model (see section 4.2), green lines show predictions from 4th order obser-
vation model. B,C: predictive segmentation densities for these two observation models.
The 4th order model needs less segmentation points than the 0th order model, and also
yields a more faithful fit of the joint angle trajectory. Right : posterior distribution of
the number of bin boundaries M . The M -posterior of the 4th order observation model
peaks at smaller values of M than the 0th order model, indicating that the 0th order
model requires more bins to fit the data well. Note that both peaks are far from the
maximum M = 171, i.e. over-fitting is avoided.

Fig. 4. Comparison of human segmentation densities with those obtained by Bayesian
binning. Shown is an interval with a few, relatively clear segmentation points and good
agreement between human subjects. Note that the human segmentation density (panel
A) peaks usually closely to a peak in the density obtained by Bayesian binning. The
0th order model (panel B) predicts more segmentation points than the higher-order
models (panels C,D), and the higher-order models are in better agreement to the human
segmentation, both in number and location of the segmentation points.



Fig. 5. Hit rate performance analysis. Red line: line of no discrimination. zero-vel :
segmentation based on zero-crossings of angular velocity. Left : comparison between
observation models of different polynomial orders (S in eqn. (11)). Elbow and shoulder
angles were jointly segmented. An observation model with S ∈ {3, 4, 5} offers the best
compromise between a high hit rate and a low false positive rate. Right : performance
dependence on joint angles for a model with S = 4 and the zero-vel segmentation. We
segmented either elbow angles only, or shoulder angles only, or both together (el.+sh.
in the legend). The latter yields the best segmentation results. For details, see text.

panel A shows the predictive trajectories of an elbow angle computed with a
0th order and a 4th order observation models. Both models fit the data well,
but the 4th order model yields a better fit while needing less bin boundaries, as
indicated by the M posterior in fig. (3), right. Panels B and C in fig. (3), left,
depict the predicted segmentation densities, showing where the 0th order model
inserts the additional boundaries compared to the 4th order model.

Fig. (4) shows comparisons between human and BB segmentation densities.
Note that the human (panel A, in fig. (1)) and the BB segmentation densities
peak usually in close temporal vicinity. The 0th order model (panel B) over-
segments, this over-segmentation is already reduced for the 2nd order model
(panel C) and virtually gone for the 4th order model (panel D).

For a more quantitative evaluation of the agreement between human subjects
and BB, we performed a hit rate/false positive rate analysis. Hits and false posi-
tives were computed by thresholding the segmentation densities (see fig. (4) and
fig. (1)D), thereby yielding a binary segmentation event signal for each point
in time. Every human segmentation event in a 400 ms accuracy window after a
BB segmentation event was counted as a hit, the lack of a human segmentation
event in this window counted as a false positive. This choice of accuracy window
length was motivated by the comparison between näıve and expert human ob-
servers presented in section 3. We varied the threshold between 0.1 and 3.0 to
obtain the data shown in fig. (5). As a simple baseline for comparison, we also
computed segmentation points by searching for zero-crossings of angular velocity
(zero-vel in fig. (5)). Using angular velocity zero-crossings as a baseline method
was inspired by [15]. The zero-crossing search was carried out by computing local



(300 ms window) parabolic fits to the joint angle data at every point in time,
and checking whether the 1st order coefficient of the fit was close to 0.

Fig. (5), left shows a comparison between observation models of different
polynomial orders (S in eqn. (11)). Elbow and shoulder angles were jointly seg-
mented. Observation models with S ∈ {3, 4, 5} offer the best compromise be-
tween a high hit rate and a low false positive rate. For all orders S, BB is a lot
better than the baseline method. Fig. (5), right depicts the performance depen-
dence on joint angles for a model with S = 4 and the zero-vel segmentation. We
segmented either elbow angles only, or shoulder angles only, or both together.
Segmenting both angles together yields the best segmentation results.

The fact that models with S ∈ {3, 4, 5} provide a better match than the lower
orders indicates that humans employ (the visual equivalent of) angular accel-
eration discontinuities, rather than discontinuities in angular velocities when
segmenting action streams. This agrees with the ’minimum jerk’ hypothesis [12].

6 Conclusion

In this paper, we have shown how to extend Bayesian binning by piecewise poly-
nomial observation models and demonstrated its usefulness for action stream
segmentation. Furthermore, we have created a ground truth data set for the
evaluation of machine segmentation methods against human observers. Com-
paring our method to other automatic motion segmentation approaches, e.g. [3],
will be interesting future work.

Previously, trajectories were successfully fitted with parabolic pieces [20]. We
showed that higher orders yield a yet better agreement with human psychophys-
ical data. One might also consider using a hidden Markov model (HMM) in each
bin. The BB prior might be a feasible way of switching between HMMs, which
were used for action segmentation in [13].

Our approach does not yet include context information into the segmentation
process, we utilised only purely kinematic information. [25] reports that humans
use context information for segmentation tasks when such is available, and rely
increasingly on kinematics when context is reduced. Thus, including context can
be expected to improve performance further.
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