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Abstract This paper proposes a novel application of Formal Concept Analysis
(FCA) to neural decoding: the semantic relationships between the neural represen-
tations of large sets of stimuli are explored using concept lattices. In particular, the
effects of neural code sparsity are modelled using the lattices. An exact Bayesian
approach is employed to construct the formal context needed by FCA. This method
is explained using an example of neurophysiological data from the high-level visual
cortical area STSa. Prominent features of the resulting concept lattices are discussed,
including indications for hierarchical face representation and a product-of-experts
code in real neurons. The robustness of these features is illustrated by studying the
effects of scaling the attributes.
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1 Introduction

Mammalian brains consist of billions of neurons, each capable of independent elec-
trical activity. From an information-theoretic perspective, the patterns of activation
or response of these neurons can be understood as the codewords comprising the
neural code. The neural code describes which pattern of activity corresponds to what
information item. We are interested in the (high-level) visual system, where such
items may indicate the presence of a stimulus object or the value of some stimulus
attribute, assuming that each time this item is represented the neural activity pattern
will be the same or at least similar. Neural decoding is the attempt to reconstruct the
stimulus from the observed pattern of activation in a given population of neurons
[1–4]. Popular decoding quality measures, such as Fisher’s linear discriminant [5]
or mutual information [6] capture how accurately a stimulus can be determined
from a neural activity pattern (e.g., [4]). While useful, these measures provide little
information about the structure of the neural code, which is what we are concerned
with here. Furthermore, we would also like to elucidate how this structure relates to
the represented information items, i.e., we are interested in the semantic aspects of
the neural code.

To explore the relationship between the representations of related items, Földiák
[7] demonstrated that a sparse neural code can be interpreted as a graph (a kind
of “semantic net”). Each codeword can then be represented as a set of active
units (a subset of all units). The codewords can now be partially ordered under
set inclusion: codeword A ≤ codeword B iff the set of active neurons of A is a
subset of the active neurons of B. This ordering relation is capable of capturing
semantic relationships between the represented information items. There is a duality
between the information items and the sets representing them: a more general class
corresponds to a smaller subset of active neurons, and more specific items are
represented by larger sets [7]. Additionally, storing codewords as sets is especially
efficient for sparse codes, i.e., codes with a low activity ratio (i.e., few active units
in each codeword). Here, we apply Formal Concept Analysis (FCA) [8, 9] to these
data because this duality can be interpreted as a Galois connection. The resulting
concept lattices are an interesting representation of the relationships implicit in the
code.

We would also like to be able to represent how the relationship between sets of
active neurons translates into the corresponding relationship between the encoded
stimuli. In our application, the stimuli are the formal objects, and the neurons are
the formal attributes. The FCA approach exploits the duality of extensional and
intensional descriptions and allows visual exploration of the data in lattice diagrams.
FCA has shown to be useful for data exploration and knowledge discovery in
numerous applications in a variety of fields [10, 11].

For the benefit of the FCA community, we provide more details on sparse coding
in Section 2. As FCA is not (yet) a standard analysis technique in neuroscience, we
also provide a short introduction to FCA in Section 3. A full account can be found
in [9]. We demonstrate how the sparseness (or denseness) of the neural code affects
the structure of the concept lattice in Section 4. Section 5 describes the generative
classifier model which we use to build the formal context from the responses of
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neurons in the high-level visual cortex of monkeys. Finally, we discuss the concept
lattices so obtained in Section 6.

2 Sparse coding

One feature of neural codes which has attracted a considerable amount of interest is
its sparseness. As detailed in [12], sparse coding is to be distinguished from local and
dense distributed coding. At one extreme of low average activity ratio are local codes,
in which each item is represented by a separate neuron or a small set of neurons. This
way there is no overlap between the representations of any two items in the sense that
no neuron takes part in the representation of more than one item. An analogy might
be the coding of characters on a computer keyboard (without the Shift and Control
keys), where each key encodes a single character. It should be noted that locality of
coding does not necessarily imply that only one neuron encodes an item, it only says
that the neurons are highly selective, corresponding to single significant items of the
environment (e.g. a “grandmother cell”—a hypothetical neuron that has the exact
and only purpose to be activated when someone sees, hears or thinks about their
grandmother).

The other extreme (approximate average activity ratio of 0.5) corresponds to
dense, or holographic coding. Here, an information item is represented by the
combination of activities of all neurons. For N binary neurons this implies a represen-
tational capacity of 2N . Given the billions of neurons in a human brain, 2N is beyond
astronomical. As the number of neurons in the brain (or even just in a single cortical
area, such as the primary visual cortex) is substantially higher than the number of
receptor cells (e.g. in the retina), the representational capacity of a dense code in
the brain is much greater than what we can experience in a lifetime. Therefore the
greatest part of this capacity is redundant.

Sparse codes (small average activity ratio) appear to be a favourable compromise
between dense and local codes [13, 14]. The small representational capacity of local
codes can be remedied with a modest fraction of active units per pattern because
representational capacity grows exponentially with average activity ratio (for small
average activity ratios). Thus, distinct items are much less likely to interfere when
represented simultaneously. Furthermore, it is much more likely that a single layer
network can learn to generate a target output if the input has a sparse representation.
This is due to the higher proportion of mappings being implementable by a linear dis-
criminant function. Learning in single layer networks is therefore simpler, faster and
substantially more plausible in terms of biological implementation. By controlling
sparseness, the amount of redundancy necessary for fault tolerance can be chosen.
With the right choice of code, a relatively small amount of redundancy can lead to
highly fault-tolerant decoding. For instance, the failure of a small number of units
may not make the representation undecodable. Moreover, a sparse distributed code
can represent values at higher accuracy than a local code. Such distributed coding is
also referred to as coarse coding.
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Sparse codes seem to be employed in the mammalian visual system [15] and
are well suited to representing the visual environment we live in [16, 17]. It is also
possible to define sparseness for graded or even continuous-valued responses (see
e.g. [4, 12, 18]).

3 Formal concept analysis

Central to FCA[9] is the notion of the formal context K := (G, M, I), which is
comprised of a set of formal objects G, a set of formal attributes M and a binary
relation I ⊆ G × M between members of G and M. In our application, the members
of G are visual stimuli, whereas the members of M are the neurons. If neuron m ∈ M
responds when stimulus g ∈ G is presented, then we write (g, m) ∈ I or gIm. It is
customary to represent the context as a cross table, where the row(column) headings
are the object(attribute) names. For each pair (g, m) ∈ I, the corresponding cell in
the cross table has an “×”. Table 1, left, shows a simple example context.

The prime operator for subsets A ⊆ G is defined as A′ = {m ∈ M|∀g ∈ A : gIm},
i.e., A′ is the set of all attributes shared by the objects in A. Likewise, for B ⊆ M,
B′ is defined as B′ = {g ∈ G|∀m ∈ B : gIm}, i.e., B′ is the set of all objects having all
attributes in B.

Definition 1 ([9]) A formal concept of the context K is a pair (A, B) with A ⊆ G,
B ⊆ M such that A′ = B and B′ = A. A is called the extent and B is the intent of
the concept (A, B). IB(K) denotes the set of all concepts of the context K.

In other words, given the relation I, (A, B) is a concept if A determines B and
vice versa. A and B are sometimes called closed subsets of G and M with respect to
I. Table 1, right, lists all concepts of the context in Table 1, left. One can visualise
the defining property of a concept as follows: if (A, B) is a concept, reorder the
rows and columns of the cross table such that all objects in A are in adjacent rows,
and all attributes in B are in adjacent columns. The cells corresponding to all g ∈ A
and m ∈ B then form a rectangular block of “×”s with no empty spaces in between.
In the example above, this can be seen (without reordering rows and columns) for

Table 1 Left: a simple example context, represented as a cross-table

n1 n2 n3
monkeyFace × ×
monkeyHand ×
humanFace ×

spider ×

concept extent (stimuli) intent (neurons)

0 ALL NONE
1 spider n3
2 humanFace  monkeyFace n1
3 monkeyFace  monkeyHand n2
4 monkeyFace n1 n2
5 NONE ALL

The objects (rows) are 4 visual stimuli, the attributes (columns) are 3 (hypothetical) neurons
n1,n2,n3. An “×” in a cell indicates that a stimulus elicited a response from the corresponding neuron.
Right: the concepts of this context. Colours correspond to Fig. 1



An application of formal concept analysis to semantic neural decoding 237

concepts 1,3,4. For a graphical representation of the relationships between concepts,
one defines an order on IB(K):

Definition 2 [9] If (A1, B1) and (A2, B2) are concepts of a context, (A1, B1) is
a subconcept of (A2, B2) if A1 ⊆ A2 (which is equivalent to B1 ⊇ B2). In this
case, (A2, B2) is a superconcept of (A1, B1) and we write (A1, B1) ≤ (A2, B2). The
relation ≤ is called the order of the concepts.

It can be shown [8, 9] that IB(K) and the concept order form a complete lattice.
The concept lattice of the context in Table 1, with full and reduced labelling, is shown
in Fig. 1. Full labelling means that a concept node is depicted with its full extent
and intent. A reduced labelled concept lattice shows an object only in the smallest
(w.r.t. the concept order of Definition 2) concept of whose extent the object is a
member. This concept is called the object concept, or the concept that introduces the
object. Likewise, an attribute is shown only in the largest concept of whose intent
the attribute is a member, the attribute concept, which introduces the attribute. The
closedness of extents and intents has an important consequence for neuroscientific
applications. Adding attributes to M (e.g. responses of additional neurons) will
very probably grow IB(K). However, the original concepts will be embedded as a
substructure in the larger lattice, with their ordering relationships preserved.

The lattice diagrams make the ordering relationship between the concepts graph-
ically explicit: concept 3 contains all “monkey-related” stimuli, concept 2 encom-
passes all “faces”. They have a common lower neighbour, concept 4, which is
the “monkeyFace” concept. The “spider” concept (concept 1) is incomparable to
any other concept except the top and the bottom of the lattice. Note that these
relationships arise as a consequence of the (here hypothetical) response behaviour
of the neurons. We will show (Section 6) that the response patterns of real neurons
can lead to similarly interpretable structures.

0 humanFace
monkeyFace
monkeyHand

spider

1 spider n3

2 humanFace
monkeyFace

n1 3 monkeyFace
monkeyHand

n2

5 n1 n2 n3

4 monkeyFace n1 n2

0

1 spider n3

2 humanFace n1 3 monkeyHand n2

5

4 monkeyFace

Fig. 1 Concept lattice computed from the context in Table 1. Each node is a concept, arrows
represent superconcept relation, i.e., an arrow from X to Y reads: X is an upper neighbour of
Y. Colours correspond to Table 1, right. The number in the leftmost compartment is the concept
number. Middle compartment contains the extent, rightmost compartment the intent. Left: fully
labelled concepts, i.e., all members of extents and intents are listed in each concept node. Right:
reduced labelling. An object/attribute is only listed in the extent/intent of the smallest/largest concept
that contains it. Reduced labelling is very useful for drawing large concept lattices
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From a decoding perspective, a fully labelled concept shows those stimuli that
have activated at least the set of neurons in the intent. In contrast, the stimuli
associated with a concept in reduced labelling will activate the set of neurons in the
intent, but no others. The fully labelled concepts show stimuli encoded by activity
of the active neurons of the concept without knowledge of the firing state of the
other neurons. Reduced labels, on the other hand show those stimuli that elicited a
response only from the neurons in the intent.

4 Concept lattices of local, sparse and dense codes

In the case of a binary neural code, the sparseness of a codeword is inversely related
to the fraction of active neurons. The inverse of the average fraction of active neurons
across all codewords is the sparseness of the code [12, 14]. To study what structural
effects different levels of sparseness would have on a neural code, we generated
random codes, i.e., each of 10 stimuli was associated with randomly drawn responses
of 10 neurons, subject to the constraints that the code be perfectly decodable and
that the sparseness of each codeword was equal to the sparseness of the code.
Figure 2 shows the contexts (represented as cross-tables) and the concept lattices
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Fig. 2 Contexts (represented as cross-tables) and concept lattices for a local, sparse and dense
random neural code with reduced labelling. Each context was built out of the responses of 10
(hypothetical) neurons (n1, ..., n10) to 10 stimuli (s1, ..., s10). Each node represents a concept
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of a local code (activity ratio 0.1), a sparse code (activity ratio 0.2) and a dense code
(activity ratio 0.5). In a local code, the response patters to different stimuli have no
overlapping activations, hence the lattice representing this code is an anti-chain with
top and bottom element added. Each concept in the anti-chain introduces (at least)
one stimulus and (at least) one neuron. In contrast, a dense code results in a larger
number of concepts which introduce neither a stimulus nor a neuron. The lattice of
the dense code also contains substantially longer chains between the top and bottom
nodes than in the case of sparse and local codes.

The most obvious differences between the lattices is the total number of concepts.
A dense code, even for a small number of stimuli, will give rise to a large number of
concepts, because the neuron sets representing the stimuli are very probably going
to have non-empty intersections. These intersections are potentially the intents of
concepts which are larger than those concepts that introduce the stimuli. Hence, the
latter are found towards the bottom of the lattice. This implies that they have large
intents, which is a consequence of the density of the code. Determining these intents
thus requires the observation of a large number of neurons, which is unappealing
from a decoding perspective. The local code does not have this drawback, but is ham-
pered by a small encoding capacity (maximal number of concepts with non-empty
extents): the concept lattice in Fig. 2 is the largest one which can be constructed for
a local code comprised of 10 binary neurons. Which of the above structures is most
appropriate depends on the conceptual structure of the environment to be encoded.

5 Building a formal context from responses of high-level visual neurons

To explore whether FCA is a suitable tool for interpreting real neural codes, we
constructed formal contexts from the responses of high-level visual cortical cells in
area STSa (part of the temporal lobe) of monkeys. Characterising the responses of
these cells is a difficult task. They exhibit complex nonlinearities and invariances
which make it impossible to apply linear techniques, such as reverse correlation [19],
that were shown to be useful in understanding the responses of neurons in early visual
areas [20, 21]. The concept lattices obtained by FCA might enable us to display and
browse these invariances: if the response of a subset of cells indicates the presence of
an invariant feature in a stimulus, then all stimuli having this feature should form the
extent of a concept whose intent is given by the responding cells.

5.1 Physiological data

The data were obtained through [22], where the experimental details can be found.
Briefly, spike trains were obtained from single neurons within the upper and lower
banks of the superior temporal sulcus (STSa) of an awake and behaving monkey
(Macaca mulatta) via standard extracellular recording techniques [23]. During the
recordings, the monkey had to perform a fixation task. This area contains cells which
are responsive to faces and other complex shapes. Extracellular voltage fluctuations
were measured, and the stereotypical action potentials (i.e., ‘spikes’) of the neuron
were detected and their temporal sequence was recorded resulting in a ‘spike train’.
These spike trains were turned into distinct samples, each of which contained the
spikes from −300 ms before to 600 ms after the stimulus onset with a temporal
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resolution of 1 ms. The stimulus set consisted of 1704 images, containing colour and
black and white views of human and monkey head and body, animals, fruits, natural
outdoor scenes, abstract drawings and cartoons. Stimuli were presented for 55 ms
each without inter-stimulus gaps in random sequences. While this rapid serial visual
presentation (RSVP) paradigm complicates the task of extracting stimulus-related
information from the spike trains, it has the advantage of allowing for the testing of
a large number of stimuli. A given cell was tested on a subset of 600 or 1200 of these
stimuli, each stimulus was presented between 1–15 times.

The data were previously analysed with respect to the stimulus selectivity of
individual cells only. Previous neural population decoding studies were aimed at
identifying stimulus labels (e.g. [2, 3]) only. This paper presents the first analysis of
the semantic structure of neural data with FCA.

5.2 Bayesian thresholding

In order to apply FCA, we extracted binary attributes from the raw spike trains.
We will experiment with many-valued attributes to describe the neural response,
but first we employ a simple binary thresholding. This binary attribute should
be as informative about the stimulus as possible, to allow for the construction
of meaningful concepts. We do this by Bayesian thresholding, as detailed below.
This procedure also avails us of a null hypothesis H0 = “the responses contain no
information about the stimuli”.

The usual way of obtaining binary responses from neurons is thresholding the
spike count within a certain time window. This is a relatively straightforward task,
if the stimuli are presented well separated in time and a large number of trials
per stimulus are available. Then latencies and response offsets are often clearly
discernible and thus choosing the time window is not too difficult. However, under
RSVP conditions with few trials per stimulus, response separation becomes more
tricky, as the responses to subsequent stimuli will tend to follow each other without
an intermediate return to baseline activity. Moreover, neural responses tend to
be rather noisy. We will therefore employ a simplified version of the generative
Bayesian Bin classification algorithm (BBCa) [24], which was shown to perform well
on RSVP data [25].

BBCa was designed for the purpose of inferring stimulus labels g ∈ {0; . . . ; S − 1}
from a continuous-valued, scalar measure z of a neural response. The range of z is
divided into a number of contiguous bins. Within each bin, the observation model for
the g is multinomial with S possible stimulus labels (outcomes), i.e., g assumes value
l with probability pl such that

∑S−1
l=0 pl = 1. Furthermore, because the pl in each bin

are unknown a priori, we employ a Dirichlet prior [26] to express this ignorance:

p(p0, . . . , pS−1) =
�

(∑S−1
l=0 αl

)

∏S−1
l=0 �(αl)

∏

l

pαl−1
l (1)

The Dirichlet prior is chosen for analytical convenience: it is conjugate to the
multinomial observation model. Thus the posterior is Dirichlet too, and inference
of the pl can be done in closed form by adjusting the parameters αl . For details,
the reader is referred to [24, 26]. We show in [24] that one can iterate/integrate
over all possible bin boundary configurations efficiently, making exact Bayesian



An application of formal concept analysis to semantic neural decoding 241

inference feasible. Moreover, the marginal likelihood (or model evidence) becomes
thus available, which can be used to infer the posterior distribution over all spike
counting windows. We make two simplifications to BBCa: 1) z is discrete, because
we are counting spikes and 2) we use models with only 1 bin boundary Z0 in the
range r of z, i.e.,

P(g = li|z = zi) =
{

pli if zi ≤ Z0

qli otherwise
(2)

S−1∑

l=0

pl = 1 ,

S−1∑

l=0

ql = 1 (3)

p(p0, . . . , pS−1) =
�

(∑S−1
l=0 αl

)

∏S−1
l=0 �(αl)

S−1∏

l=0

pαl−1
l (4)

p(q0, . . . , qS−1) =
�

(∑S−1
l=0 βl

)

∏S−1
l=0 �(βl)

S−1∏

l=0

qβl−1
l (5)

p(Z0) = 1

|r| . (6)

We have no a priori preferences for any stimulus label, thus we choose ∀l : αl =βl =1.
The bin membership (in the higher bin) of a given neural response can then serve

as the binary attribute required for FCA, since BBCa weighs bin configurations
by their classification (i.e., stimulus label decoding) performance. We proceed in
a straight Bayesian fashion: since the bin membership is the only variable we
are interested in, all other parameters (counting window size and position, class
membership probabilities, bin boundaries) are marginalised. This minimises the risk
of spurious results due to “contrived” information (i.e., choices of parameters) made
at some stage of the inference process. Afterwards, the probability Pu that the
response belongs to the upper bin is thresholded at a probability of 0.5, i.e., if the
probability is larger than 0.5, then there will be a cross in the context.

In addition to this simple binarisation, we also experimented with attribute scaling
[9] to investigate the robustness of the prominent features of the resulting lattices.
The attributes of our contexts are derived from probabilities, so 0.5 is the natural
discretisation point if one wants to minimise the chance of misclassifying a neural
response as ‘above threshold’ when it really is below, and vice versa. However, this
discretisation inevitably injects noise into the attributes. One might wonder how
much our results are affected by this noise. We addressed this question by scaling
the bin membership probability Pu ordinally at Pu > 0.4, Pu > 0.5 and Pu > 0.6,
thereby creating three attributes for the three response levels of each neuron. This
scaling has e.g. the effect that stimuli which evoked a response with Pu > 0.6 from a
given neuron would be introduced below a stimulus which evoked a response with
0.4 ≤ Pu < 0.6 from the same neuron.

Since BBCa yields exact model evidences, it can also be used for model com-
parison. Running the algorithm with no bin boundaries in the range of z effectively
yields the probability of the data given the “null hypothesis” H0: z does not contain
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� Fig. 3 Left/top: a lattice with reduced labelling on the attributes which are the cells, i.e., cells (e.g.
‘202l9’) are only shown in their attribute concepts. A small circle denotes a concept which introduces
no cells. All edges originating at a concept have the same colour to facilitate visual determination
of the ordering relations between concepts. The colours have no meaning beyond that. The majority
of cells are introduced in lower neighbours of the top concept. Right/bottom: the same lattice as on
the right with reduced labelling on the stimuli, i.e., stimulus images are only shown in their object
concepts. The ∅ indicates that an extent is the intersection of the upper neighbours’ extents, i.e., no
new stimuli are introduced by this concept. This lattice shows an emphasis on “face” and “head”
concepts, with cartoon faces introduced towards the top and monkey faces towards the bottom. For
details, see text

any information about g. We can then compare it against the alternative hypothesis
described above (i.e., the information which bin z is in tells us something about g) to
determine whether the cell has responded at all.

5.3 Cell selection

The experimental data consisted of recordings from 26 cells. To minimise the
risk that the computed neural responses were a result of random fluctuations, we
excluded a cell if 1) H0 was more probable than 10−6 or 2) the posterior standard
deviations of the counting window parameters were larger than 20 ms, indicating
large uncertainties about the response timing. Cells which did not respond above the
threshold included all cells excluded by the above criteria (except one). Furthermore,
since not all cells were tested on all stimuli, we also had to select tuples of subsets of
cells and stimuli such that all cells in a tuple were tested on all stimuli. Incidentally,
this selection can also be accomplished with FCA, by determining the concepts of a
context with gIm =“stimulus g was tested on cell m” and selecting those with a large
number of stimuli × number of cells. One of these cell and stimulus subset pairs
(16 cells, 310 stimuli) was selected for further exemplary analysis, but the lattices
computed from the other subset pairs displayed similar features.

6 Results

To analyse the neural code, the thresholded neural responses were used to
build stimulus-by-cell-response contexts. We performed FCA on these with
ColibriConcepts,1 created stimulus image montages2 and plotted the lattices.3 In
these graphs, the images represent the formal objects.

Figure 3, right/bottom, shows a lattice which has an emphasis on “face” and
“head” concepts. The concepts in the right half of the lattice introduce predominantly
different views of faces and heads, with ‘back of the head’ stimuli concentrated in the
middle of the lattice, whereas front and side views are grouped together towards the
right. The concepts introducing human and cartoon faces (i.e., with extents consisting
of general “face” images) tend to be higher up in the lattice and their intents tend

1Available at http://code.google.com/p/colibri-concepts/
2Via ImageMagick, available at http://www.imagemagick.org
3With Graphviz, available at http://www.graphviz.org

http://code.google.com/p/colibri-concepts/
http://www.imagemagick.org
http://www.graphviz.org
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to be small. In contrast, the lower concepts introduce mostly single monkey faces
(and faces of the monkey’s caregivers), with the bottom concepts having intents of
≥ 7 cells. We may interpret this as an indication that the neural code has a higher
“resolution” for faces of conspecifics (and other “important” faces) than for faces
in general, i.e., other monkeys are represented in greater detail in a monkey’s brain
than humans or cartoons. This feature can be observed in most lattices we generated.

Fig. 4 A subgraph of a lattice with full labelling. Bin membership probabilities Pu were scaled
ordinally (see Section 5.2). Ordinal scaling could potentially lead to a distortion of the order between
e.g. cartoon and monkey faces (cf. Fig. 3), if the former evoked a stronger response than the latter.
However, this does not seem to be the case: monkey and caregiver faces can still be found at the
bottom of the graph, whereas cartoon face only appear at the top. The top frame of each concept
shows the cells which comprise the intent. The steps of the ordinal scaling are indicated by appending
‘X’s to the cellname. For example, ‘204l6’ means that cell ‘204l6’ had a Pu > 0.4, ‘204l6X’ indicates a
Pu > 0.5 and ‘204l6XX’ stands for Pu > 0.6
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Thus, monkey STSa cells are not just responsive to faces in general, but to specific
subclasses, such as monkey faces, in particular. Figure 3, left/top, shows the same
lattice as in the right/bottom half of the figure, but with reduced labelling on the
cells. Note that the majority of the cells are introduced in concepts directly below
the top concept, but not all of these concepts introduce stimuli. This highlights the
importance of looking at a population of cells to decode specific stimulus information
(such as ‘it’s the face of my caregiver’).

To demonstrate that this face hierarchy is not an artifact of thresholding noisy
neural responses, we selected a subset of 3 face-selective cells and ordinally scaled
the bin membership probabilities (as described in Section 5.2). A subgraph of the
resulting lattice with fully labelled extents is shown in Fig. 4. Ordinal scaling could
potentially lead to a distortion of the ordering between e.g. cartoon and monkey
faces, if the former evoked a stronger response than the latter. However, this does
not seem to be the case: monkey and caregiver faces can still be found at the bottom
of the graph, whereas cartoon faces only appear at the top.

Figure 5 shows a subgraph from another lattice with full labelling and ordinally
scaled probabilities. Full labelling is of interest in these applications because viewing
the full extent simultaneously gives an impression of “what this concept is about”.
The concepts in the left half of the graph are face concepts, whereas the extents of the
concepts in the right half also contain a number of non-face stimuli. Most of the latter
have something “roundish” about them. The bottom concepts, being subordinate to
both the “round” and the “face” concepts, contain stimuli with both characteristics,

Fig. 5 A subgraph of a lattice with full labelling. The concepts on the right side are not exclusively
“face” concepts, but most members of their extents have something “roundish” about them. The top
frame of each concept shows the cells which comprise the intent. The steps of the ordinal scaling
are indicated by appending ‘X’s to the cellname. For example, ‘204l6’ means that cell ‘204l6’ had a
Pu > 0.4, ‘204l6X’ indicates a Pu > 0.5 and ‘204l6XX’ stands for Pu > 0.6
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which points towards a product-of-experts (PoE) encoding [27]. In PoE, each ‘expert’
can be thought of as an attribute (or attribute combination) of the represented item.
These experts are expected to correspond to meaningful aspects of the information
items. Several examples of this kind can be found in the other graphs of the complete
concept lattices, which cannot be included in this paper.

7 Conclusion

We demonstrated the potential usefulness of FCA for the exploration and interpre-
tation of neural codes. This technique is feasible even for high-level visual codes,
where linear decoding methods [20, 21] fail, and it provides qualitative information
about the structure of the code which goes beyond stimulus label decoding [1–4].
The semantic structure of neural data has previously been analysed with tree-based
clustering methods [28]. Imposing a tree structure on the data may be inappropriate
for neural data that reflects a more general semantic structure, as supported by our
results.

Individual concepts have an interpretation from the perspective of both a theoret-
ical neuroscientist and also for a neuron trying to decode categories. The activation
of the neurons of a concept’s intent with reduced labelling on the stimuli show
the stimulus category encoded by these neurons assuming that all other neurons
are inactive. However, from a neuron’s perspective it is more plausible to consider
the full extent (stimuli). The category formed by the full extent can be decoded by
observing the responses of only these neurons, and the activation of all other neurons
can be ignored for this purpose. This interpretation is a useful answer to the long-
standing issue of distributed versus local neural encoding [29]. Our results suggest
that at least on our limited sample of neurons and stimuli, only a small number (e.g.
7) of neurons are needed to form quite specific concepts. One can only speculate at
this point how adding substantially more stimuli and neurons scales this result but
based on these results we would expect a relatively small number of neurons per
concept. This is consistent with the extremely limited relative connectivity of real
neurons, which on average can connect to a small fraction of other neurons (approx.
104/1011 = 10−7 in the human brain). FCA suggests that making these relatively
small number of connections to the correct subset of other neurons can lead to
the representation of useful categories, without considering the complete pattern of
neural activity within an area.

As detailed above, the majority of the cells are introduced in concepts directly
below the top concept. Thus, observing that a given cell is active does generally
not imply the activity of any other cells (though there are some exceptions, e.g.
cell ‘89l4’, which is subordinate to ‘90l1’ in Fig. 3, right). In other words, neurons
represent information items which are logically largely independent. Together with
the aforementioned ‘clustering’ of visually similar stimuli and the introduction of
more specific stimuli towards the bottom of the lattice, this observation provides
further evidence for the hypothesis that visual cortical neurons implement a product-
of-experts style code, where each code element (neuron) indicates a constraint on
what is being represented. Morevoer, the fact that many of the concepts we found
are easily interpretable suggests that these constraints explicit [29].
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Clearly, however, our application of FCA for this analysis is still in its infancy. It
would be very interesting to repeat the analysis presented here on data obtained from
simultaneous multi-cell recordings, to elucidate whether the conceptual structures
derived by FCA are used for decoding by real brains. On a larger scale than single
neurons, FCA could also be employed to study the relationships in fMRI data [30,
31]. The averaging inherent in fMRI imaging will erase some of the fine details of the
lattice, but we hope that its basic structure will be preserved.

Acknowledgements D. Endres was supported by MRC fellowship G0501319. We thank D. Xiao
and D. Perrett for making the data available to us.

References

1. Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement
direction. Science 233(4771), 1416–1419 (1986)

2. Földiák, P.: The ‘ideal homunculus’: statistical inference from neural population responses.
In: Eeckmann, F., Bower, J. (eds.) Computation and Neural Systems, pp. 55–60. Kluwer, Norwell
(1993)

3. Oram, M.W., Földiák, P., Perrett, D.I., Sengpiel, F.: The ‘ideal homunculus’: decoding neural
population signals. Trends Neurosci. 21, 259–265 (1998)

4. Quiroga, R.Q., Reddy, L., Koch, C., Fried, I.: Decoding visual inputs from multiple neurons in
the human temporal lobe. J. Neurophysiol. 98(4), 1997–2007 (2007)

5. Duda, O.R., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)
6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
7. Földiák, P.: Sparse neural representation for semantic indexing. In: XIII Conference of the

European Society of Cognitive Psychology (ESCOP-2003). http://www.st-andrews.ac.uk/∼pf2/
escopill2.pdf (2003)

8. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival,
I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)
10. Ganter, B., Stumme, G., Wille, R. (eds.): Formal concept analysis, foundations and applications.

In: Lecture Notes in Computer Science, vol. 3626. Springer (2005)
11. Priss, U.: Formal concept analysis in information science. Annu. Rev. Inf. Sci. Technol. 40,

521–543 (2006)
12. Földiák, P., Endres, D.: Sparse coding. Scholarpedia 3(1), 2984. http://www.scholarpedia.org/

article/Sparse_coding (2008)
13. Földiák, P.: Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64,

165–170 (1990)
14. Földiák, P.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain

Theory and Neural Networks, 2nd edn., pp. 1064–1068. MIT Press (2002)
15. Olshausen, B.A., Field, D.J., Pelah, A.: Sparse coding with an overcomplete basis set: a strategy

employed by V1. Vis. Res. 37(23), 3311–3325 (1997)
16. Olshausen, B.A.: Learning linear, sparse, factorial codes. Technical Report AIM 1580 (1996)
17. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annu. Rev.

Neurosci. 24, 1193–1216 (2001)
18. Rolls, E.T., Treves, A.: The relative advantages of sparse versus distributed encoding for neu-

ronal networks in the brain. Netw. 1, 407–421 (1990)
19. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, London, Cambridge (2001)
20. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple

receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987)
21. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary

visual cortex. J. Neurophysiol. 88, 455–463 (2002)
22. Földiák, P., Xiao, D., Keysers, C., Edwards, R., Perrett, D.I.: Rapid serial visual presentation for

the determination of neural selectivity in area STSa. Prog. Brain Res. 144, 107–116 (2004)
23. Oram, M.W., Perrett, D.I.: Time course of neural responses discriminating different views of the

face and head. J. Neurophysiol. 68(1), 70–84 (1992)

http://www.st-andrews.ac.uk/~pf2/escopill2.pdf
http://www.st-andrews.ac.uk/~pf2/escopill2.pdf
http://www.scholarpedia.org/article/Sparse_coding
http://www.scholarpedia.org/article/Sparse_coding


248 D.M. Endres et al.

24. Endres, D., Földiák, P.: Exact Bayesian bin classification: a fast alternative to bayesian clas-
sification and its application to neural response analysis. J. Comput. Neurosci. 24(1), 21–35
(2008). doi:10.1007/s10827-007-0039-5

25. Endres, D.: Bayesian and information-theoretic tools for neuroscience. Ph.D. thesis, School of
Psychology, University of St. Andrews, U.K. http://hdl.handle.net/10023/162 (2006)

26. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2007)
27. Hinton, G.E.: Products of experts. In: Ninth International Conference on Artificial Neural

Networks ICANN 99, number 470 in ICANN (1999)
28. Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object category structure in response patterns

of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97(6), 4296–4309
(2007)

29. Földiák, P.: Neural coding: non-local but explicit and conceptual. Curr. Biol. 19(19), R904–R906
(2009)

30. Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L.: Identifying natural images from human
brain activity. Nature 452, 352–255 (2008). doi:10.1038/nature06713

31. Miyawaki, Y., Uchida, H., Yamashita, O., Sato, M., Morito, Y., Tanabe, H., Sadato, N., Kamitani,
Y.: Visual image reconstruction from human brain activity using a combination of multiscale local
image decoders. Neuron 60, 915–929 (2008)

http://dx.doi.org/10.1007/s10827-007-0039-5
http://hdl.handle.net/10023/162
http://dx.doi.org/10.1038/nature06713

	An application of formal concept analysis to semantic neural decoding
	Abstract
	Introduction
	Sparse coding
	Formal concept analysis
	Concept lattices of local, sparse and dense codes
	Building a formal context from responses of high-level visual neurons
	Physiological data
	Bayesian thresholding
	Cell selection

	Results
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


