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Abstract  
 

Walking on a beam is a challenging motor skill that requires the regulation of upright 

balance and stability. The difficulty in beam walking results from the reduced base of 

support compared to that afforded by flat ground. One strategy to maintain stability and 

hence avoid falling off the beam is to rotate the limb segments to control the body’s angular 

momentum. The aim of this study was to examine the coordination of the angular 

momentum variations during beam walking. We recorded movement kinematics of 

participants walking on a narrow beam and computed the angular momentum contributions 

of the body segments with respect to three different axes. Results showed that, despite 

considerable variability in the movement kinematics, the angular momentum was 

characterized by a low-dimensional organization based on a small number of segmental 

coordination patterns. When the angular momentum was computed with respect to the 

beam axis, the largest fraction of its variation was accounted for by the trunk segment. This 

simple organization was robust and invariant across all participants. These findings support 

the hypothesis that control strategies for complex balancing tasks might be easier to 

understand by investigating angular momentum instead of the segmental kinematics. 
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Introduction 

Walking on a narrow beam is a demanding motor skill that requires the control of 

dynamic stability, defined as the ability to reduce self-initiated or external perturbations via 

inherent restoring moments to avoid loss of balance. Due to the reduced base of support of 

the beam and the intrinsic variability of the human, walking tends to become unstable in the 

medio-lateral (ML) direction 1. Walking on a beam has been investigated in multiple studies 

over the last two decades. For instance, several studies examined the effects of age on 

balance control 2, the effects of physical guidance on motor learning 3 and the neural 

activation associated with loss of balance control 4. More recently, Sawers and colleagues 

used beam walking as an experimental paradigm to investigate how long-term training 

affects muscle synergies 5 and how individual differences in proficiency may inform 

therapists about clinical problems 6. It is important to note that in all these studies, 

participants were asked to fold their arms in front of the body to isolate “locomotor 

balance” from the complex arm movements typically employed to assist balance control. 

Hof suggested that for a standing human only three mechanisms are available for the 

control of dynamic balance 7,8: 1) the shift of the center-of-pressure under the feet with 

respect to the vertical projection of the center-of-mass (COM), 2) the rotation of the body 

segments to counterbalance the variations of the angular momentum (AM), and 3) the 

application of external forces. The first strategy has been usually referred to also as “ankle 

strategy” 9, while the second one comprises the “hip strategy” 9, i.e. rotation of the upper 

body segments around the ankle or hip joint, respectively. These mechanisms can also be 

exploited to maintain balance in the ML direction when walking on a narrow beam, 

although shifting the center-of-pressure under the feet becomes a relatively ineffective 

balancing strategy, as the beam has a limited width. If holding onto an external object to 

apply an external force is not possible, rotating the body segments to create compensatory 

angular momenta remains the only effective strategy. A systematic investigation of the 

angular momentum during beam walking thus might provide deeper insights into the 

control strategies in such challenging balancing tasks.  

The angular momentum is a physical quantity that characterizes the rotational 

inertia of an object or a system of objects about an axis. In any inertial reference frame, the 

AM of a system is a conserved quantity as long as no external forces or torques act on the 
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object. This is the consequence of Euler’s dynamic laws of motion, according to which the 

derivative of AM is equal to the external torques applied to the body 10. During walking, 

however, ground reaction forces are constantly acting on the feet, inducing considerable 

variations of the AM that need to be controlled 11. Multiple studies in biomechanics and 

motor control have examined the AM to characterize the mechanisms underlying 

locomotion and balance control 11,12,13,14,15. These studies have inspired the design of robust 

motion generation policies for robots and computer graphics applications 16,17,18,19. 

Importantly, the AM is computed with respect to an axis about which the object rotates in 

space, rendering it a relative measure. In biomechanical studies, it has been common 

practice to compute the AM with respect to the axis passing through the whole-body center 

of mass. However, given the complex dynamics of articulated limbs when walking on a 

beam, it is not a priori guaranteed that this axis is the only or most appropriate choice. 

 The aim of this study was to investigate the coordination of a complex whole-body 

movement such as walking on a narrow beam. We collected movement kinematics of 16 

healthy participants that were asked to complete 20 successful walks on a very narrow 

beam placed on the floor. Analyzing the rotations of the body segments projected into the 

medio-lateral plane, the segmental AM contributions were computed with respect to three 

different axes: 1) the axis perpendicular to the ML plane through the average center 

position of the head, 2) the axis perpendicular to the ML plane and passing through the 

COM of the whole body, and 3) the axis perpendicular to the ML plane through the center of 

the beam on the floor. The choice of the axis through the head was motivated by previous 

studies that showed that stabilization of the head might be an important control principle 

for many locomotion tasks 20. The long axis of the beam was chosen because the human 

body can be viewed as an inverted pendulum that rotates about this axis. The analyses of 

the AM components were confined to rotations in the ML plane with respect to those axes 

parallel to the walking direction. 

Analyses of kinematic variations revealed a very complex structure with large inter-

individual differences and no apparent invariances. In contrast, analyses of the AM with 

respect to the axis along the beam rendered a very parsimonious description of the 

observed coordination patterns showing a low-dimensional structure of the AM. These 

findings suggest that the underlying control strategy might aim at minimizing the variation 

of the AM about this axis.  



5 
 

 

Results  

While walking on the 3.4 cm-wide beam, participants displayed highly variable motor 

behavior, using a wide range of strategies in order to maintain or regain balance. As an 

illustration, Figure 1a displays four series of body postures that participants adopted during 

four typical trials, three were successful and one was unsuccessful and the participant had 

to step off the beam. Participants displayed not only large trunk movements, but also large 

and variable movements of both arms. When at the brink of falling off the beam, they also 

abducted their legs. Movies from a set of experimental trials are provided as supplementary 

material to this article. As one index to quantify the degree of balance, Figure 1b depicts the 

time series of the medio-lateral velocity of each of the participants’ whole-body center of 

mass (VCOM). The root mean square (RMS) of this variable was computed over 15% to 

85% of the duration of each successful trial or over the last 3 seconds prior to loosing 

balance. The interval for this computation is highlighted in grey in Figure 1b. Comparison of 

the VCOMRMS for all successful and unsuccessful trials confirmed that the variations in 

successful trials were significantly smaller, VCOMRMS = 0.03 ± 0.01 m/s, than in those trials 

when participants lost their balance, VCOMRMS = 0.15 ± 0.08 m/s, t139=-170.6, p<0.001.  

 

[Figure 1 about here]  

 

The highly variable behavior was also evident in a principal component analysis (PCA) 

applied to the relative orientations of the segments. Figure 2a shows the variance 

accounted for (VAF) for the successful trials as function of the number of principal 

components, averaged across 16 participants. The whole-body movements required on 

average 8 components to account for at least 95% of the variance. After applying a 

VARIMAX rotation, we obtained components with average sparsity indexes ranging between 

0.65 and 0.91 (Figure 2b). By definition, the sparsity index is 1 if only one single element of 

the vector is different from zero, when more components are non-zero then sparsity is 

lower than 1 (see Methods for more detail). All components accounted for similar amounts 

of variance (Figure 2c).   
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[Figure 2 about here] 

 

In order to test whether participants have improved over the 20 trials and changed 

their strategy, we split the 20 trials in two blocks: block 1 comprised the first 10 successful 

trials, block 2 the second 10 successful trials. The same PCA was applied to the covariance 

matrices associated with the 2 blocks. We found that for both blocks 8 components were 

needed to account for 95% of the variation associated with the data. Comparing the 

components of the 2 blocks revealed that they were similar, S = 0. 90 ± 0.14. This average 

similarity index S was quantified as the dot product between two components, normalized 

with respect to their norms. By definition, the index S is equal to 1 when the components 

are proportional (see Methods for details). These results suggested that subjects’ strategy 

did not change significantly across the duration of the experiment, i.e., there was no sign of 

learning effects. 

In order to assess the inter-individual variations of the kinematic coordination 

structure, we applied a cross-validation procedure. For this purpose, the principal 

components of a single participant were used to predict the data from each of the other 

participants. The amount of variance explained for all pairwise comparisons was low, the 

average VAF was 44.05 ± 26.45%, indicating little consistency between the kinematic 

strategies of the individual participants. 

Given this high dimensionality and large inter-individual differences in the 

kinematics, we proceeded to calculate the angular momenta of the body segments. While 

the typical axis used for this calculation is the axis through the whole-body COM, we also 

calculated AM with respect to two additional axes, one parallel to and through the beam 

and one through the central position of the head. Figure 3 shows the temporal evolution of 

the angular momentum through the 3 axes from the trial in the top panel of Figure 1. While 

the 3 time series are visibly correlated, they also display considerable differences in 

amplitude and variability. These qualitative observations were confirmed by the average 

correlation coefficients (R) and RMS values (LRMS) associated with the angular momenta, 

which are summarized in Table 1.  

 

[Table 1 and Figure 3 about here] 

 



7 
 

Applying principal component analysis to the AM computed with respect to the 

different axes revealed substantial differences between the segmental coordination 

patterns. Figure 4a shows the cumulative variance accounted for each of the 3 axes. Before 

averaging, the principal components associated with different participants were paired and 

grouped according to their similarity. While 4 or 5 components were required to account for 

about 95% VAF for the whole-body COM and the head, the center of the beam as reference 

axis needed only one single component for a comparable VAF.  

Figure 4b depicts the first 5 components for the 3 axes after a VARIMAX rotation. 

There were considerable differences between the 3 axes with respect to the structure of the 

extracted components. However, the axis through the beam center showed a particularly 

simple structure: the first PC was associated mainly with the trunk segment, the second and 

the third PCs with the left and right arm, and the fourth and the fifth PCs with the left and 

right leg. The similarity index S between the components identified with respect to the axis 

through the head and through the COM was S = 0.80 ± 0.10. Similarly, for the components 

computed with respect to the head axis and the beam axis, S = 0.60 ± 0.03. For the sets of 

components associated with the whole-body COM axis and the beam axis, S = 0.63 ± 0.07. 

These moderate values of similarity give evidence that the segmental patterns of 

covariation were highly dependent on the reference axis chosen for the computation of the 

AM. Further, the analysis of the sparseness of the components revealed that the PCs 

computed with the beam axis were on average sparser than the corresponding PCs for the 

other two reference axes. This implies that using the beam center as axis rendered the 

lowest-dimensional description of the underlying signal space.  

Figure 4c illustrates how the variance was distributed across the different 

components. When AM was computed with respect to the head axis, all components  

accounted for a comparable amount of data variation, with PC1 accounting for the smallest 

amount. In contrast, using the COM or the beam as axis, the biggest contribution to data 

variation came from the first component alone, leaving only a small amount of variance to 

be explained by the other components. For the beam axis, PC1 accounted for approximately 

90% of the variance. Moreover, for the latter case, the average similarity of PC1 across 

different participants was high, S = 0.99 ± 0.01. This indicates that the component 

accounting for the majority of the variance was also relatively invariant across participants. 
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[Figure 4 about here] 

 

To test whether these results changed across practice, the data were again split into 

2 blocks (first 10 and second 10 of the successful trials) and PCA was applied separately to 

each block. There were no noteworthy differences between the identified components, 

suggesting that there were no performance improvements during the experiment. When 

the AM was computed with respect to the head axis S was 0.93 ± 0.11 between block 1 and 

block 2. When the AM was computed with respect to the COM S was 0.94 ± 0.13, and when 

the center of the beam was taken as reference axis S was 0.99 ± 0.02. The amount of 

variance accounted for by the first 5 PCs was always higher than 95%.   

As with the kinematic results, we also quantified the reproducibility of the 

coordination structure between participants with a cross-validation procedure (see 

Methods). Using the components of a single participant, we predicted the data from other 

participants. With all pairwise comparisons conducted for each of the 3 axes, the 

reproducibility measure was substantially lower for the whole-body COM reference axis, 

VAF = 86.67 ± 9.77%, and for the head axis, VAF = 75.44 ± 23.80%, than for the beam axis, 

VAF = 98.93 ± 0.92%. These results show that the differences between individuals were 

much attenuated and again confirmed the robustness of the AM patterns with respect to 

the beam axis. 

One might argue that the single dominant contribution to the AM from the trunk is a 

trivial consequence of the fact that the trunk is the body segment with the largest mass. 

This might obscure the structure of the more complex coordination patterns of the arms 

and the legs. To evaluate this objection, we applied PCA to a reduced data set that included 

all AM contributions, except the one of the trunk segment. The results of this analysis are 

summarized in Figure 5. Figure 5a shows that even in this case 5 components explained 

about 95% of the variance, separately for each axis. The amount of variance that could be 

accounted for using one single component was however notably smaller in Figure 5a than in 

Figure 4a. For instance, 3 components, instead of one, were needed to account for 90% of 

VAF when the AM was computed the beam axis. Figure 4b depicts the first 5 principal 

components for the 3 axes. As above, the sets of principal components of different 

participants were paired and grouped according to their similarity before their averages 

were computed. There were still considerable differences between the 3 axes with respect 
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to the structure of the identified components. Remarkably, the components relative to the 

beam axis retained their particularly intuitive structure, similar to what was seen in Figure 

4b. Now, however, PC1 was associated mainly with the head segment, whereas the other 4 

components were associated with the two arms and the two legs (Figure 5b).  Figure 5c 

illustrates how the variance was distributed across the different components. Similar to the 

full set of components in Figure 4c, when the AM was computed with respect to the head 

axis, all components accounted for a comparable amount of data variation. For the COM 

and the beam axis, however, the amount of VAF associated with PC1 was much lower than 

in Figure 4c and is comparable to the VAF associated with the other components. These 

results therefore support the conclusion that, even when the trunk was excluded from the 

analysis, the AM organization associated with the beam axis was still revealed simpler 

coordination patterns. This suggests that the simple AM organization was not the trivial 

consequence of the large mass of the trunk. 

 

[Figure 5 about here] 

 

In order to assess the contributions of specific body segments to the coordination of 

the AM we quantified the percentage of VAF by head, trunk, arms and legs separately. The 

results are summarized in Table 2. Clearly, the legs alone accounted for the largest amount 

of variance when the AM was computed with respect to the head axis. This percentage was 

substantially lower for the whole-body COM and the beam axes. In contrast, the trunk 

segment accounted for the largest percentage of the VAF when the AM was computed with 

respect to the beam axis. Its contribution was smaller for the other two reference axes. The 

arms provided similar contributions when the AM was computed with respect to the head 

or the COM axes, but their contribution was smaller when computed with respect to the 

beam axis.  

 

[Table 2 about here] 

 

Besides the 20 successful trials that each participant accomplished during the 

experiments, we also analyzed the sets of unsuccessful trials during which participants lost 

their balance before arriving at the end of the beam. More specifically, for each participant 
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we applied the same PCA with VARIMAX rotation to the segmental orientations and 

computed the AM contributions with respect to the beam axis. The analysis was restricted 

to the last 3 seconds prior to termination, defined as the moment when one foot touched 

the ground. The principal components of the unsuccessful trials were then compared to 

those of the successful ones. Using the same cross-validation procedure as above, we 

quantified to which extent the principal components in the successful trials could account 

for data variation in the unsuccessful trials. For the segmental kinematics, 8 principal 

components were needed to account for 95% of the variance in the unsuccessful trials, VAF 

= 93.93 ± 2.46%. The similarity between the components in successful and unsuccessful 

trials was relatively high, but was highly variable, S = 0.88 ± 0.21. Moreover, the principal 

components of the successful trials could not account for much of the variance in the 

unsuccessful trials, VAF = 63.22 ± 15.32%. These results suggested that when participants  

started to lose balance they recruited different kinematic strategies than the ones in the 

successful trials.  

When testing the segmental AM contributions, we found that in the unsuccessful 

trials 5 principal components could always account for at least 99% of the variance and that 

these components were very similar to those associated with the successful trials, S = 0.95 ± 

0.11. Moreover, the cross-validation procedure revealed that the principal components in 

the successful trials reconstructed the AM variation in the unsuccessful trials with high 

approximation, VAF = 98.75 ± 0.71%. These results therefore suggest that while the 

kinematic coordination deviated from the steady-state pattern, the loss of balance was not 

preceded by a recruitment of altered AM components.  

The low-dimensional AM organization that characterized both successful and 

unsuccessful trials suggests that the AM pattern arose from a linear combination of 

invariant AM patterns (the PCs). To further unravel this conjecture, the linear weights 

associated with the PCs were analyzed. The specific hypothesis was that loss of balance was 

brought about by a different combination of the principal components in comparison to the 

successful trials. To investigate this hypothesis, the coefficient of the first AM principal 

component (PC1), explaining at least 90% of the variance, was related to a task variable that 

characterized the degree of balance. The task variable that quantified ML balance, the ML 

velocity of the center of mass (VCOM) was chosen (Figure 1b). Differences in the 



11 
 

coefficients of successful and unsuccessful trials should reflect different recruitment 

processes of the component.  

More specifically, we hypothesized that the RMS value of the time series of the 

linear weight of PC1, computed within each single trial, should be predicted by the RMS of 

the time series of the VCOM, VCOMRMS, split by the type of trial (successful/unsuccessful) 

and their interaction. A multiple regression revealed that such a linear model predicted a 

significant amount of the variance associated with the weight, F3,454 = 118.03, p < 0.002, R2 = 

0.44, R2
adju = 0.43. Further, the type of trials did not significantly predict the coefficient, β = -

0.112, t457 = -0.589, p > .05. In contrast, both VCOMRMS, β =56.66, t457 = 8.06, p < 0.001, and 

the interaction between trial type and VCOMRMS, β = -22.51, t457 = -6.30, p < 0.001, were 

significant predictors. The β values indicate the slopes associated with the corresponding 

predictor in the regression equation. Taken together, the regression results showed that the 

weight of PC1 was approximately two times larger in the successful trials than in the 

unsuccessful ones (see Figure 6). This implies a weaker recruitment of this component in the 

instants prior to balance loss compared to the recruitment of the same component during 

the successful trials. 

 

 

[Figure 6 about here] 

 

Discussion 

The overall goal of this study was to investigate possible control strategies underlying the 

observed coordination during a challenging balancing task, walking on a narrow beam. We 

found highly variable and complex kinematic patterns with large-amplitude movements of 

the trunk, arms and legs. This high variability in the kinematic patterns was reflected in the 

high dimensionality of the relative orientations of the segments as quantified by a PCA. In 

addition, there appeared to be little or no consistency of patterns across the different 

individuals, indicating a lack of invariance underlying the organization of the movements. 

Contrasting with this result, the analysis of the AM revealed a much simpler pattern. 

Applying PCA to the AM structure of the different body segments, we were able to find a 

low-dimensional and coherent structure. This was especially the case when the AM was 
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computed with respect to an axis aligned with the beam. In contrast, when the AM was 

computed using the axes through the whole-body COM or the head, the revealed structures 

required more components to approximate the data.   

Beam walking has been investigated in multiple previous studies 2,3,4,6. However, in 

all these experiments, participants walked on the beam with their arms folded in front of 

the body. The implicit or explicit reason was to isolate the locomotor task from disturbances 

arising from the complex and irregular arm movements. Simplifying the analysis of the 

balancing components by excluding the influence of the arms can be advantageous when 

pursuing clinical goals 6. However, it remains an open question how humans might control 

their entire body including their arms to regulate balance. To answer this question, we 

opted to not impose constraints on the arm movements and allowed maximal freedom on 

the choice of motor strategies to maintain balance. Indeed, participants moved their arms 

extensively (as visible by the loadings in PC1 to PC7 in Figure 2), suggesting that the arms 

likely played a role in the control of balance. This conclusion was also corroborated by the 

finding that 2 out of the 5 AM components were related to the arms. This underscores that 

to understand the control of locomotor balance under relatively unstable conditions, it is 

necessary to examine arm movements.  

How can these results shed light on the control of balance? Our results might be 

interpreted with a two-layered control framework 21,22: an “execution” level and a “task” 

level. Rotating the body segments to control the whole-body AM about the beam axis to 

minimize the risk of falling may reflect a control strategy that is concerned with lower-level 

variables, such as segmental AM contributions. This view is supported by the simple AM 

structure: the trunk, as a segment with comparably high mass (about 43% of the total body 

weight 23) and located relatively far away from the axis dominates the decomposition of the 

AM. The two legs and the two arms, which have much smaller mass, are components that 

can be used for finer control or as measures of “last resort” to avoid loss of balance. This 

interpretation is supported by the fact that the the RMS values of PC weights associated 

with the upper- and lower-limb components increased during the unsuccessful trials before 

participants lost balance and stepped off the beam (see supplementary Figure S1). Note that 

the analysis that eliminated the trunk component ruled out that all structure was generated 

by the trunk component. 
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At the task level the human body might be approximated by an inverted pendulum 

that rotates about the axis that is defined by the contact of the feet with the beam 24,25. 

Therefore, the corrections at the execution level might aim to ensure the dynamic stability 

of the inverted pendulum. This raises the question how the body is controlled to assemble 

and regulate this inverted pendulum? Note that an inverted pendulum is by definition 

unstable. Therefore, there has to be at least one additional degree of freedom to afford 

stability: either a joint at the hip to form a double-pendulum, or a joint at the tip of the 

pendulum connected like a T-bar. Interestingly, these 2-DOF linkages map into well-known 

strategies when balancing: a two-DOF system may be achieved by moving around the hip 

joint, the so-called hip strategy, well known in postural control 9. The “T-bar model” is 

realized when the two arms are extended horizontally or even enhanced by rope walkers 

who hold a long horizontal bar, evidently to help them maintain stability. The observation 

that the left and right arms are indeed the second and third PC is consistent with this T-bar 

model.  

The hypothesis that at the task level the whole-body system may be approximated 

as an inverted pendulum does not contradict the fact that, at the execution level, a complex 

motor strategy may be applied. The approach to approximate and simplify the whole body 

at the task level has revealed to also be useful in the control of robotic systems 26,27. While 

balance of an inverted pendulum can be achieved by applying, for example, zero-moment-

point control, more refined control requires more accurate models 28,29,30. 

Analysis of the unsuccessful trials provided interesting insights into the strategies 

that participants recruited in the last 3 seconds before losing balance. Regardless of the 

chosen axis used for the AM computation, the AM components recruited in this interval 

were similar to the ones recruited in the successful trials. On the one hand, this suggests 

that losing balance cannot be attributed to the recruitment of a “wrong” set of components. 

Instead, the analysis suggests that the “right” components may be not be recruited 

“properly”, i.e. with the wrong linear weights, to assure balance recovery. The linear 

regression analysis seemed to support this hypothesis. In the unsuccessful trials, the 

activation of the most important component (PC1) was much lower than its activation 

during the successful trials, given a specific amount of dynamic instability VCOMRMS. This 

can be interpreted as a decrease of control effort and one possible cause of the loss of 

balance. However, the experimental procedures were designed for the successful trials and 
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more work is needed to develop more suitable procedures to reveal how the AM 

components are recruited and whether a deficient recruitment process can lead to loss of 

balance.  

Angular momentum during walking has been investigated as a possible diagnostic 

measure for individuals with movement deficits caused, for instance, by a stroke 

31,32,33,34,35,36,37. Analysis of gait stability in terms of the structure of angular momentum 

around different axes may inform clinicians about individual deficits and may point to novel 

rehabilitation protocols for patients with balance problems. Our results showed that the 

RMS value of the medio-lateral velocity of the COM and the scalar coefficient of the first 

principal component can discriminate between successful and unsuccessful trials. Hence, 

the coefficients of the AM principal components may be informative for the assessment of 

balance problems and motor recovery during rehabilitation. Similarly, the number and 

amount of variance of principal components might help discriminate between different 

pathological changes and help in the design and assessment of individual rehabilitation 

protocols.  

While the more standard clinical measures of functional impairment, such as the 

velocity of the COM, are easier to obtain, the typical clinical measures tend to be global 

descriptors. We conjecture that the parameters of the low-dimensional organization might 

be more sensitive to specific pathological factors and ultimately more precise and specific as 

diagnostic tools.  

Our study showed that computing the AM with respect to axes different from the 

typically used axis of the whole-body COM provide novel and interpretable results. An 

interesting question therefore arises whether these methods and results generalize to other 

walking conditions. On the one hand, normal walking on flat ground is comparatively stable 

in the ML plane and analysis of the AM with different axes may not provide new information 

as the limb rotations in the ML plane are comparatively small. For example the computation 

of the AM along the sagittal plane might provide useful insights as walking implies a 

rotational motion about the ankle of the standing leg in the sagittal plane. Similar 

considerations apply to walking on stairs or slopes 14,15. On the other hand, analysis with 

respect to the reference axis of the head may prove insightful for many other balance-

challenging walking conditions as head stabilization is an important reference for control 
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during several locomotion tasks 20. In conclusion, our results may serve as stimulus to 

consider alternative axes when analyzing whole-body control in locomotory tasks.  

  

 

Methods 

Participants 

Sixteen healthy participants completed the experiment (11 males, 5 females, ages    

27 ± 4 years, mass 70 ± 11 kg, height 1.76 ± 0.09 m). All participants were in good health and 

had no previous history of neuromuscular disease. The experiment conformed to the 

Declaration of Helsinki and written informed consent was obtained from all participants 

according to the protocol approved by the ethical committee at the Medical Department of 

the Eberhard-Karls-Universität of Tübingen, Germany. Participants appearing in the figures 

or in the supplementary videos provided informed consent for publication of identifying 

information/images in an online open-access publication. 

 

Kinematic Measurements 

Kinematic data were collected with a Vicon motion capture system with 10 infrared 

cameras (Oxford, UK), which recorded the 3D positions of 42 spherical reflective markers 

(2.5 cm diameter). The markers were attached with double-sided adhesive tape to tight 

clothing worn by the participants (Figure 7a). Marker placement followed the Vicon’s 

PlugInGait marker set. The sampling rate was set at 100 Hz; spatial error was below 1.5 mm. 

To create a challenging condition for balance control participants walked on a very narrow 

beam (3.4 cm wide, 3.4 cm high, 4.75 m long). The beam was fixed to the ground with 

strong double-sided adhesive. In the Vicon frame of reference the axis parallel to the beam 

was defined as the x-axis (Figure 7b); the axis perpendicular to the beam was defined as y-

axis, with positive pointing leftward with respect to the direction of motion; the third axis 

parallel to the gravity direction was defined as z-axis, pointing upward.  

 

[Figure 7 about here] 

 

Experimental procedure 



16 
 

Each participant was asked to walk barefoot from one end of the beam to the other. 

Starting from a standing position with the left foot on the beam and the right foot on the 

ground, he/she started walking after the experimenter gave a go-signal and started the 

movement recording. Importantly, participants were allowed to freely move their arms to 

maintain balance and there were no time constraints. After reaching the end of beam, the 

participant stepped off the beam with both feet on either side of the beam and stood still 

until the movement recording was stopped. A typical successful trial lasted between 4.51 

and 23.28 seconds. The participant then returned to the starting position. If the participant 

lost balance and stepped off the beam before reaching the end, the experimenter stopped 

the recording and the participant returned back to the starting position. A typical 

unsuccessful trial lasted between 0.96 and 18.89 seconds. Each participant performed trials 

until 20 successful trials were completed. After each trial, participants were allowed to take 

a short rest if needed. Participants needed on average 34 ± 16 trials to achieve 20 successful 

trials. While there were 14 unsuccessful trials per participant, this number varied widely 

between 0 and 52 trials across individuals. 

 

Data analysis 

Commercial Vicon software was used to reconstruct and label the markers, to 

interpolate between short missing segments of the trajectories, and to compute the    

center-of-mass (COM) of the whole body. Kinematic analysis was performed off-line using 

Matlab v.R2015a (The Mathworks, Natick, MA). Before analysis, kinematic data were low-

pass-filtered using a Butterworth filter with a cut-off frequency of 20 Hz. To exclude 

transient behaviors, only the time windows between 15% and 85% of the duration of each 

successful trial were considered for analysis. For each unsuccessful trial only the last 3 

seconds before the participant stepped off the beam were considered. Unsuccessful trials 

shorter than 2.5 seconds were excluded from the analysis. After this exclusion, there were 

151 unsuccessful trials in total, on average 9 ± 12 trials per participant, varying between 0 

and 39 trials across individuals. As this study was mainly interested in understanding the 

organization of the kinematics and the AM for balance control in the medio-lateral plane, 

the kinematic analysis was confined to this ML plane.  

 Relative orientations of the body segments. The human body was modeled as a 

kinematic chain composed of 14 rigid segments: head, trunk, left and right upper arms, 
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forearms, hands, thighs, shanks and feet. The spatial coordinates of the extrema of each 

segment (i.e., the ends of each link) were derived from the motion capture data. For the 

head, the first coordinate was obtained computing the average position between the 

centers of rotation of the left and right shoulder, the second coordinate was defined at the 

average position of the 4 markers attached to the head. These coordinates were used to 

determine the axis parallel to the beam but through the head. For each hand, one 

extremum coincided with the wrist joint, and the other one with the marker applied to the 

base of the index finger on the back of the hand. For each foot, the first extremum 

coincided with the ankle joint of rotation, the second extremum with the marker applied on 

the top of the big toe. The 3D spatial coordinates of the joints of rotation were projected 

onto the ML-plane by setting the coordinates of the joints of rotation along the beam 

direction (x-axis) to zero. For each segment, its relative orientation was computed as the 

angle between that segment and its proximal and adjacent segment. The orientation of the 

trunk segment was computed with respect to the z-axis.  

Angular momentum. The contribution )( Pi rL  of each segment to the whole-body 

AM with respect to an axis of rotation passing through the point P was computed as follows: 

 iiiCOMiPiCOMPi m ωIvrrrL +×−= )()()( ,,  (1) 

where iCOM ,r  indicates the position vector of the center of mass of the i-th segment, iCOM,v  

its corresponding velocity, iI  its inertial tensor, and iω  its corresponding 3D angular 

velocity. Pr  indicates the position vector of the point P. For each segment, the position of 

the corresponding center of mass and the inertial tensors iI  were computed using average 

human anthropometric data and the kinematic measures derived from the motion capture 

data  38,39,23. As the analysis focused on the movements in the ML-plane, only the AM 

component parallel to the x-direction was considered. This is the component of the vector 

L  that causes rotations of the body segments in the ML-plane.  

For each participant, the AM was computed about 3 axes passing through 3 different 

points in the ML-plane (Figure 7b): 1) the average position of the head computed across all 

trials, 2) the position of the whole-body COM over time, and 3) the center of the beam. The 
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center of the beam and the average position of the head of each participant were fixed 

points in the ML-plane. In contrast, the position of the whole-body COM changed over time. 

However, it is well known that, for the COM, the derivative of the AM computed with 

respect to the x-axis passing though the COM is always equal to the external moments 

applied to the body. The Euler’s law 10 was therefore always valid independently of the 

chosen axis. The total AM was computed by summing the contributions of all body 

segments:  

  =
= 14

1
)()(

i PiP rLrL  (2) 

Index of stability. The velocity of the whole-body center of mass (COM) along the 

ML-direction, VCOM, showed marked fluctuations in time, coincident with variations in 

segmental kinematics (see Figure 1 for illustration). To characterize this ML-velocity, the 

root mean square error (RMS) was calculated over the specified duration of each successful 

and unsuccessful trial VCOMRMS.  

Analysis of dimensionality. Principal component analysis PCA 40 is an unsupervised 

learning method that allows to decompose an input matrix X  into the linear combination of 

a finite set of orthonormal basis vectors, referred to as principal components. These basis 

vectors are weighted by a set of scalar coefficients. In order to analyze the spatio-temporal 

coordination of the relative orientations of the body segments, PCA was applied to the 

covariance matrix of the segmental orientations. To analyze the dimensionality of the 

segmental AM contributions, PCA was applied to the covariance matrix of the AM 

components parallel to the walking direction, i.e. the direction causing the rotation of the 

body segments in the frontal plane. In order to reduce the variability across study 

participants, the AM contributions were represented in dimensionless form prior to PCA. 

For this purpose, they were normalized with respect to the product between the 

participant’s body mass (kg), walking speed (m/s) and body height (m). The covariance 

matrix was used instead of the correlation matrix to avoid any amplitude normalization of 

the signals from different orientations or body segments. Subsequently, only the minimum 

number of components was retained that was sufficient to account for at least 95% of the 

total variance (VAF) 41.  
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 A VARIMAX rotation was applied to the retained components to simplify the 

interpretation of the factors 42. The direct effect of the VARIMAX rotation was a 

sparsification of the components, making the elements of each component very small or 

zero. The fewer elements of the components are different from zero, the easier it is to 

provide a functional interpretation of the components. To quantify the level of sparseness 

for each rotated factor, Hoyer’s index was used 43. More specifically, sparsity was defined as 

follows: 

 1
21 )1()(Sparsity −−⋅−= NN   (3) 

where N indicates the number of elements in each component (here N = 14 for both 

segmental orientations and AM contributions) and 1  and 2  indicate the 1-norm and the 

2-norm, respectively. This measure varies between 0 and 1, where zero means that the 

factor is not sparse, and 1 signifies the maximum level of sparsity, where only one element 

of the factor is different from zero.  

 Similarity between components. In order to assess similarity between different 

principal components associated with different axes, different participants, or the two types 

of trials (successful versus unsuccessful), a similarity measure S was computed for all 

possible pairings. To obtain the similarity S, the corresponding scalar product was computed 

after the components were normalized with respect to their norms. Thus, given two 

principal components uand v , their similarity was defined as follows: 

 vu
vu ⋅=S  (4) 

where ⋅ indicates the Euclidian norm. The index S represents the cosine of the angles 

between the vectors identified by the two components. When the index is equal to 1, the 

components are proportional to each other, while S = 0 implies that they are orthogonal. 

The index S is equivalent to the un-centered Pearson correlation coefficient.  

The principal components of this first best-matching pair were then removed from 

the corresponding sets and the procedure was repeated for the second-best matching pair, 
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and so forth. This procedure was iterated until all components had been matched. The 

computation of the similarity S between two sets of components provided a quantitative 

assessment of the extent to which the patterns of covariation of the segmental orientations 

or segmental AM contributions relative to two axes, two participants, or successful or 

unsuccessful trials differed from each other.  

 Cross-validation. A cross-validation procedure was performed to assess the extent to 

which the organizations of the relative orientations of the body segments and of the AM 

identified by PCA were invariant across participants or successful or unsuccessful trials. Each 

set of principal components identified in one participant or in one type of trial was used to 

reconstruct the data from the other participants by least-square approximation. The 

goodness of reconstruction was quantified in terms of variance accounted for. The 

goodness-of-fit measures were averaged across all pairings between participants to obtain a 

single reproducibility score. We also computed the extent to which head, trunk, arms and 

legs contributed separately to the total AM. Their contributions were quantified in terms of 

percentage of variance accounted for. 

Statistical analysis. Mean and standard deviation were used to summarize the data. 

The similarity between two time series was quantified by computing the corresponding 

centered Pearson’s correlation coefficient . The amplitudes of temporal signals were 

characterized by computing the corresponding root mean square values RMS. A Welch t-

test was applied to compare RMS values of medio-lateral velocity across participants and 

trials, i.e. with unequal and different sample sizes. A multiple regression analysis was 

conducted to test whether COM-stability in the ML-plane (quantified by VCOMRMS), the 

type of trial (successful/unsuccessful) and their interaction predicted the RMS value of the 

scaling coefficient associated with one principal component (the one associated with the 

trunk segment and obtained from the AM computed with respect to the trunk).  

Data availability. The data that support the findings of this study are available from 

the authors of the article. Restrictions apply to the general availability of these data, which 

were used under license for the current study, and so are not publicly available. However, 

data are available from the authors upon reasonable request. 
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Legends 

 

Table 1: Average correlation coefficients (R) and RMS values (LRMS) associated with the 

angular momenta computed with respect to the three axes. The RMS values were computed 

considering only the AM components parallel to the walking direction and causing rotation 

along the ML plane. Like the correlation coefficients, were averaged across trials and 

participants. 
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Table 2: Percentages of variance accounted for (VAF, mean ± sd) relative to four separate 

body segments, respectively head, trunk, arms and legs. 

 

Figure 1: (a) Stick figures with segmental orientations reconstructed from 3D kinematic data 

of 4 representative participants walking across the beam. The first 3 panels illustrate typical 

successful trials and the variety of body postures adopted by different participants. The 

bottom panel shows the body postures seen during one unsuccessful trial. (b) Time series of 

the medio-lateral velocity of the participants’ whole-body center of mass associated with 

the trials in Figure 1a. The grey-shaded areas indicate the intervals over which the 

VCOMRMS were computed. 

 

Figure 2: (a) Boxplots of the average percentage of VAF as function of the number of 

principal components identified from covariance matrix associated with the joint angles. (b) 

Average values of the first 8 kinematic principal components after VARIMAX rotation. Each 

element of the components corresponds to a specific body segment among the following 

ones: head (He), trunk (Tr), left and right upper arms (respectively LUA and RUA), forearms 

(LFA, RFA), hands (LA, RA), thighs (LT, RT), shanks (LS, RS) and feet (LF, RF).   (c) Average 

percentages of variance accounted for of the 8 principal components. In all panels, average 

values were computed across 16 participants and the error bars represent one standard 

deviation.  

 

Figure 3: Temporal evolutions of the whole-body angular momentum (AM) during the first 

trial illustrated in Figure 2. The 3 lines refer to the axis through the head, the center of mass 

of the whole body, and the beam. 

 

Figure 4: (a) Box-plots of the average percentage of VAF as function of the principal 

components identified from the segmental AM contributions computed about head, whole-

body COM and the beam. (b) Average values of the first 5 principal components after 

VARIMAX rotation. (c) Average percentages of variance accounted for by these 5 principal 

components. In all panels, average values were computed across all participants and error 

bars represent standard deviations across participants. 
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Figure 5: Principal component analysis of the AM contributions excluding the trunk 

segment. (a) Boxplots of the average percentage of VAF as function of the number of 

principal components identified from the segmental AM contributions computed about 

head, whole-body COM, and the beam. (b) Average shape of the first 5 principal 

components after VARIMAX rotation. (c) Average percentages of variance accounted for of 

the 5 principal components. In all panels, average values were computed across all 

participants and error bars represent standard deviations across participants. 

 

Figure 6: Linear regression of the RMS values of the coefficients associated with the first AM 

principal component against the RMS values ML velocity of the center of mass, VCOMRMS. 

The blue symbols denote the successful trials, the red symbols denote the unsuccessful 

trials. The slopes of the two linear regressions are visibly different.  

 

Figure 7: (a) Participant walking on the narrow beam and wearing the markers sets for 3D 

kinematic data acquisition. (b) Illustration of the projection of the joints onto the ML plane 

of a participant walking on the beam. The walking direction is the x-axis. The green circles 

represent the 3 axes with respect to which the AM was computed. According to equation 

(1), only the AM along the x-axis can produce rotations of the segments in the ML plane, 

identified by the y- and z-axis.  
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Measure mean ± sd 

COMHeadR −  0.95 ± 0.03
Beam-COMR  0.91 ± 0.05
Beam-HeadR  0.76 ± 0.11 

)Head(L RMS  [Kg m2/s] 1.44 ± 0.61
)COM(LRMS  [Kg m2/s] 1.54 ±0.62 
)Beam(LRMS  [Kg m2/s] 1.97 ± 0.76 

Axes % VAF
Head 

% VAF
Trunk 

% VAF
Arms 

% VAF 
Legs 

Head 0.82 ± 1.38 2.41 ± 4.05 8.07 ± 9.74 79.65 ± 13.89 
COM 3.60 ± 2.57 49.37 ± 13.30 11.53 ± 10.59 27.10 ± 11.36 
Beam 4.52 ± 3.52 85.34 ± 6.61 0.57± 4.60 1.97 ± 3.82 

Table 1

Table 2
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Figure S1. RMS values of the PC weights during the stable and unstable phases of 
unsuccessful trials. To assess how the PC structure changed prior to loosing balance,  the 
RMS values of the linear weights of each PC were computed over two different intervals: the 
unstable phase was defined as the last 3 seconds preceding the loss of balance; the stable 
phase was defined as the interval preceding the unstable phase. The PC weights of the 
stable phase were computed by optimizing the fitting of the AM data using the PCs 
identified in the unstable phase. This fitting procedure rendered a reconstruction accuracy 
of 99.34 ± 0.11% (mean ± sd). During the unstable phase the weights were significantly 
larger than during the stable phase (Welch t-tests, p<0.05). This result suggests that before 
losing balance, participants exploited as many components as possible as a “last resort”. The 
asterisks indicate statistically significant differences. 
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