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Abstract. Motor disturbances can affect the interaction with dynamic
objects, such as catching a ball. A classification of clinical catching tri-
als might give insight into the existence of pathological alterations in
the relation of arm and ball movements. Accurate, but also early de-
cisions are required to classify a catching attempt before the catcher’s
first ball contact. To obtain clinically valuable results, a significant de-
cision confidence of at least 75 % is required. Hence, three competing
objectives have to be optimized at the same time: accuracy, earliness
and decision-making confidence. Here we propose a coupled classifica-
tion and prediction approach for early time series classification: a pre-
dictive, generative recurrent neural network (RNN) forecasts the next
data points of ball trajectories based on already available observations; a
discriminative RNN continuously generates classification guesses based
on the available data points and the unrolled sequence predictions. We
compare our approach, which we refer to as predictive sequential clas-
sification (PSC), to state-of-the-art sequence learners, including various
RNN and temporal convolutional network (TCN) architectures. On this
hard real-world task we can consistently demonstrate the superiority of
PSC over all other models in terms of accuracy and confidence with re-
spect to earliness of recognition. Specifically, PSC is able to confidently
classify the success of catching trials as early as 123 milliseconds before
the first ball contact. We conclude that PSC is a promising approach for
early time series classification, when accurate and confident decisions are
required.

Keywords: Early time series classification · recurrent neural networks
(RNN) · temporal convolutional networks (TCN) · clinical movement
control
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1 Introduction

Patients suffering from neurodegenerative or neurodevelopmental disorders, in-
cluding Spinocerebellar Ataxia and Autism Spectrum Disorder, are often im-
paired in the interaction with dynamic objects, for instance when catching a
ball. Ball catching requires an intact perception-action coupling and the abil-
ity to anticipate the trajectory of an oncoming ball [16]. It is suggested that
dysfunctions of predictive control which result in alterations of preparatory arm
movements are the leading cause of catching impairments in these diseases [5].
In this paper, we aim to recognize changes in the relation of arm and ball move-
ments that are predictive for the success of catching trials before the first ball
contact of the catcher. To ensure clinically valuable results, we choose a confi-
dence threshold of 75% which is commonly used for two-alternative forced choice
tasks in psychophysical studies [14].

Hence, the problem at hand can be formulated as an early time series classi-
fication task with increased confidence requirements. Early time series classifica-
tion is referred to as making classifications as early as possible, while maintaining
a high classification accuracy [13]. It naturally evokes a trade-off between ear-
liness and accuracy of classifications. Different approaches have been applied
to the problem of early time series classification, including convolutional neural
networks and reinforcement learning [15,9]. Surprisingly, despite the widespread
application of recurrent neural network (RNN) models to sequential problems,
they have rarely been used for the early classification of time series. Recent
work, however, suggests that gated recurrent units can handle missing values in
multivariate time series [3]. Moreover, first promising results have been achieved
applying long short-term memory (LSTM) models for early classification in agri-
cultural monitoring [12]. These approaches leave aside the confidence of decision-
making, which is an important factor in various applications.

Recently, it has been shown that predictive RNNs can be employed to effi-
ciently generate goal-directed, anticipatory behavior to support decision-making
[11]. Therefore, we present a novel RNN-based approach that simultaneously
optimizes accuracy, confidence and earliness in time series classification. Our
approach, which we refer to as predictive sequential classification (PSC), incor-
porates two different specialized RNN models into one coupled arrangement.
The first model, a predictive, generative RNN, forecasts the next data points
of a time series based on already available observations. The second model, a
discriminative RNN, continuously generates classification guesses based on the
available data points and the unrolled sequence predictions of the first model.
We compare our approach to several state-of-the-art sequence learners, including
various RNN and temporal convolutional network (TCN) architectures using a
motion dataset containing two-dimensional trajectories of healthy and patho-
logical ball catching attempts. At test time, all models are confronted with in-
complete catching trials of different lengths. We evaluate all architectures with
regard to the accuracy of the final decision, the level of decision confidence, and
the earliness of decision-making.
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2 Predictive Sequential Classification

Time series classification describes the task of assigning one of two (binary
classification) or one of multiple (multi-class classification) labels to a time series
S, where S is defined as an ordered, uniformly spaced temporal sequence of T
vectors [4]:

S = (x1,x2, . . . ,xT ) (1)

The here considered time series are multivariate, i.e. they contain more than
one feature for each time step. When processing time series, two different types of
processing modes can generally be distinguished. The first mode, called many-to-
one (MTO) processing, takes an input sequence and outputs a single class label
after consuming the entire input sequence. Many-to-many (MTM) processing, on
the other hand, produces a class label for multiple steps (typically for every time
step) of the input sequence, i.e. both input and output are sequences. In con-
trast to other types of neural networks, sequence learners, such as the recurrent
neural network (RNN), expect the data to be temporally highly correlated and
in sequential order [6]. By introducing circular connections (recurrences), RNNs
allow past inputs to influence future time steps. However, in practical applica-
tions, vanilla RNNs are largely replaced by long short-term memory (LSTM)
networks. This extension of RNNs overcomes the vanishing gradient problem
and makes the learning of long-term dependencies possible [7].

Early time series classification is targeted at making accurate classifications
based on incomplete, instead of full-length time series. To compensate for the
missing time interval we propose a novel RNN-based approach to early time
series classification that equips a sequence classifier with predictive power. The
predictive sequential classification (PSC) approach entails both a predictive, gen-
erative LSTM that forecasts the next data points of a time series based on
already available observations, as well as a discriminative LSTM, which contin-
uously generates classification guesses based on the available data points and
the unrolled sequence predictions. Both models are trained separately on their
respective tasks. At test time the models come together to make a predictive
classification guess.

With every incoming observation xt, the amount of available observations
increases. Based on these data points, the predictor sequentially forecasts the
remaining T − t data points of the time series. Each predicted observation x̃t

is used to make a predictive classification. Finally, the classification output yt
c

is updated with the last predictive classification yT
c (Algorithm 1). For every

history size, the classifier aggregates already available observations and predicted
observations to make a predictive classification guess. When all data points of the
time series are available, PSC defaults to a vanilla sequence classifier (Figure 1).
In the following experiments, we show that PSC is superior to state-of-the-art
sequence classifiers for the task of early and confident time series classification.
In an additional study, we investigate the importance of the two-model design
for PSC, revealing that directly including a predictive objective into a single
model even harms the classification performance.
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Algorithm 1: Predictive Sequential Classification

/* Initialize hidden states */

h0
c ← 0, h0

p ← 0 /* Loop over incoming observations */

for t ← 1 to T do
/* Update classifier and predictor with current input */

yt
c,h

t
c ← fc(x

t,ht−1
c )

x̃t+1,ht
p ← fp(xt,ht−1

p )
/* Unroll sequence prediction and predictive classification */

for t′ ← t+ 1 to T do

yt′

c ,h
t′

c ← fc(x̃
t′ ,ht′−1

c )
x̃t′+1,ht′

p ← fp(x̃t′ ,ht′−1
p )

end for
/* Use predictive classification as current classifier output */

yt
c ← yT

c

end for

Variables:
t : current time step ht

c : the classifier’s hidden state
t′ : time step within prediction loop ht

p : the predictor’s hidden state

T : sequence length fc : the classifier’s forward pass function
xt : observation at time t fp : the predictor’s forward pass function
x̃t : predicted observation for time t yt

c : classification output for time t

x1 x̃2 x̃3 x̃4 x̃T -1 x̃T. . .

y1
c

fp fp fp . . . fp

fc fc fc . . . fc fc

x1 x2 x̃3 x̃4 x̃T -1 x̃T. . .

y2
c

fp fp fp . . . fp

fc fc fc . . . fc fc

x1 x2 x3 x4 xT -1 x̃T. . .

yT -1
c

fp fp fp . . . fp

fc fc fc . . . fc fc

x1 x2 x3 x4 xT -1 xT. . .

yT
c

fp fp fp . . . fp

fc fc fc . . . fc fc

t
=

1
t
=

2
t
=

T
−

1
t
=

T

.

.

.
.
.
.

.

.

.

Fig. 1. Predictive sequential classification. A predictive RNN forecasts the remaining
trajectories based on past observations. The classifier combines both to make informed
classification guesses. Grayed out boxes indicate previously computed states.
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3 Experimental Setup

3.1 Data

The data sample comprised 63 videos of one-handed ball catching attempts by
11 healthy subjects, 13 children with Autism Spectrum Disorder and 10 patients
with Spinocerebellar Ataxia. All experiments were admitted by the ethical com-
mittee of the University Clinic of Tübingen. Of the 1975 recorded catching trials,
1082 attempts were successful, and 893 attempts were unsuccessful. 965 trials
were caught with the right hand and 1010 trials with the left hand. Videos were
recorded at a frame rate of 100 frames per second. The two-dimensional position
of the catcher’s arm and hand joints and the trajectory of the ball were captured
with two deep learning frameworks for pose estimation [10,2]. We extracted 18
hand and arm features describing the motion of the shoulder, the elbow, the
wrist, the ball of the hand, each fingertip on the relevant body side, and two
features specifying the ball center for each video frame.

3.2 Preprocessing

A Savitzky-Golay filter was applied to the arm and hand marker trajectories be-
tween the start and the end of each trial to smooth flickering noise. All catching
trials were provided with a binary label specifying the success of the attempt
(1: catch, 0: drop). An attempt was only counted as successful if the ball was
caught at the first try. Two types of dropping behavior were observed, where
the ball either jumped off the catcher’s hand or the catcher completely missed
the ball. Learning absolute coordinates can lead to overfitting, since a slightly
shifted starting position already leads to different absolute coordinates, while
the relative difference can remain the same. Therefore, absolute coordinates
were converted to relative coordinates by taking the difference between coor-
dinates of two subsequent frames. Since every catching attempt varied in length,
we truncated all sequences to the shortest sequence length, taking into account
the trade-off between comparability of models, accuracy and sufficiently long se-
quence lengths. Hence, the first f frames of all sequences were removed to obtain
the length of the shortest sequence (60 frames, i.e. 600 milliseconds (ms)), with
f as the difference between the individual sequence lengths and the shortest se-
quence length. The full dataset was then randomly split into subsets for training
(60 %), validation (20 %) and testing (20 %). All subsets were normalized using
mean and standard deviation of the training subset.

3.3 Models

We compare PSC to other LSTM models and temporal convolutional networks
(TCN) [7,1]. All models are trained using the Adam optimizer with standard
parameters (η = 0.001 (learning rate), β1 = 0.9 and β2 = 0.999, ε = 10−7) and
the binary cross-entropy (BCE) loss.
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LSTM Models: All LSTM models contain two LSTM layers with 64 hid-
den units, one dropout layer after each LSTM layer, recurrent dropout of 20%
and a fully-connected output layer with sigmoid activation. They are trained
on full batches. The weights of LSTM layers are initialized according to Xavier
uniform initialization. Recurrent weights are initialized in an orthogonal man-
ner. The many-to-one model (MTO-LSTM) maps the input sequence to a sin-
gle binary classification. A dropout of 50% is applied. It is trained for 250
epochs. The many-to-many model (MTM-LSTM) produces classification guesses
for each time step of the input sequence. A dropout of 40% is applied. MTO-
LSTM and MTM-LSTM have 54,849 trainable parameters each. The hybrid
model (HYB-LSTM) extends the fully-connected layer of MTM-LSTM by an
additional branch for trajectory prediction with linear activation. At each time
step t, HYB-LSTM simultaneously produces a classification guess for step t and
a prediction for arm, hand and ball trajectories at t + 1. It is trained on an
equally-weighted additive loss, consisting of the BCE for classification outputs
and the mean squared error for regression outputs. HYB-LSTM includes 56,149
parameters. Finally, PSC-LSTM realizes our predictive sequential classification
approach. For classification, we use the above described MTM-LSTM model.
For prediction, we train a separate LSTM on trajectory prediction which resem-
bles the prediction branch of HYB-LSTM. MTM-LSTM, HYB-LSTM and the
ancillary prediction network of PSC-LSTM are trained for 200 epochs.

TCN Models: Three TCN models are implemented, each of which covers
a different receptive field size (10, 30 or 60 steps). The size of the receptive
field determines the number of residual stacks, the size of the kernels and the
dilation factors used (receptive field size = number of stacks * kernel size *
last dilation factor). We examined different combinations of these factors for
each receptive field size and selected the architecture that yielded the highest
validation accuracy. TCN-10 is composed of one residual block, 32 filters of size
2, dilations of 1 and 5 and a dropout rate of 0.2. It is trained on batches of 32
samples and has 8,257 trainable parameters. TCN-30 holds 3 residual blocks, 20
filters of size 2, dilations of 1 and 5 and a dropout rate of 0.3 and is trained
on batches of 64 samples. It contains 9,861 trainable parameters. Finally, TCN-
60 contains 2 residual blocks, 20 filters of size 2, dilations of 1, 5, 10 and 15
and a dropout rate of 0.3 and is trained on batches of 64 samples. It comprises
13,141 trainable parameters. All TCN models are trained for 500 epochs and
contain one final fully-connected layer with sigmoid activation to produce class
probabilities for each time step. A He normal initializer is used for TCN kernels.

3.4 Evaluation Metrics

All models were tested on an unseen subset of the original data containing 395
randomly selected catching attempts. The models are rated according to the de-
gree of correctness of a classification, as well as the earliness of decision-making.

Accuracy: We evaluate the models based on the percentage of correctly
classified test trials (the percent accuracy) given different sizes of past history.
We apply two different thresholds to measure the confidence of a prediction. The
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50 % confidence threshold rounds the final model output to 1 or 0, symbolizing a
catch or a drop, respectively and compares it to the target label. When applying a
75 % confidence threshold, however, trials are only considered if the final model
output either exceeds 0.75 or undershoots 0.25. In the first case, the binary
output is set to 1, in the latter case to 0. Trials with model outputs between
0.25 and 0.75 are disregarded. The binary output is again compared to the target
label.

Ball-Hand Distance: The distance between the catcher’s hand and the ball
can be a first indicator to determine whether the ball will be caught or not. The
metric is used to qualitatively evaluate the performance of a model by visually
comparing trends in the prediction curve with the ball-hand distance over time.
It is defined as the Euclidian distance between the absolute two-dimensional
positions of the marker at the base of the relevant hand and at the center of
the ball at a given time step t. The ball-hand distance increases when ball and
hand move farther apart, while it decreases when the markers are moving closer
together. However, since the ball-hand distance only considers the base of the
hand, it does not necessarily give insight into the ball being grasped or not.

Mean Time to (Correct) Decision: We introduce a novel metric to quan-
titatively evaluate the earliness of decision-making. The time to decision (TTDi)
for a given input sequence (sample) i is defined as the time step when the model
makes a final decision without switching decisions afterwards. A final decision is
defined as a model prediction of larger than 0.75 or smaller than 0.25, regardless
of the correctness. Values between 0.25 and 0.75 are treated as indecisive and
excluded in further calculations.

∀yi : yTi ≥ θhi ∨ yTi ≤ θlo

TTD(Y ) = max
{

1 ≤ t ≤ T |
(
yt−1 < θhi ∧ yt ≥ θhi

)
∨
(
yt−1 > θlo ∧ yt ≤ θlo

)} (2)

The time to correct decision (TTcDi) for a given sample i equals the time to
decision if the final decision is correct, i.e. if the binary model output ybini

after
applying a 75 % confidence threshold equals the target label zi. Otherwise, the
TTcDi is undefined:

TTcD(Y ) =

{
TTD(Y ), ybini

= zi

undefined, ybini 6= zi
(3)

The mean time to decision (MTTD) and the mean time to correct decision
(MTTcD) are defined as the arithmetic mean of all defined TTDi and TTcDi,
respectively, for i in the number of data samples N . A low MTTcD indicates
that a model can make the correct decision early in the time sequence, i.e. based
on a small size of available past history, whereas a low MTTD only implies that
a model tends to make decisions early, but not necessarily correctly.
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4 Results and Discussion

All models are confronted with incomplete trajectories of catching trials. There-
fore, the ready-trained models are used to make a classification based on increas-
ing sizes of known past history. The presented results are average values based on
ten repetitions with random data splits. To evaluate the correctness of the final
classification, two different confidence thresholds are applied. Figure 2 depicts
the percentage of correctly classified test samples for all models assuming a de-
cision confidence threshold of 50 %. This figure shows that all models start with
an accuracy above chance level. MTO-LSTM is the only model that falls below
chance level for history sizes between 34 and 47 time steps. However, it reaches
the highest accuracy of 81.27 % when the entire history is known, i.e. after 60
time steps of accumulated history. PSC-LSTM only starts to make predictions
after a warm-up phase of ten time steps where history is accumulated. When the
entire past history is available, it defaults to MTM-LSTM. Hence, both models
reach the same final accuracy of 67.08 % after 60 time steps. However, MTM-
LSTM performs slightly better over time applying a 50 % confidence threshold.
HYB-LSTM demonstrates constant accuracies around 60 % with an increase to
65.06 % for the complete sequence. When applying a 50 % confidence threshold,
the TCN models outperform the LSTM models, especially with larger history
sizes, without dropping below chance.

However, when considering a 75 % confidence threshold, the picture changes
significantly. Figure 3 depicts selected steps of a sample trial where the sub-
ject was able to catch the ball. In Figure 4 the corresponding model predic-
tions and the ball-hand distance for this trial are displayed. The latter shows
a clear decrease until step 40, the point of time when the ball is first touched.
Since the ball is successfully caught, the ball-hand distance stays minimal after
the catcher’s first ball contact. The two upper sub-figures depict the process of
decision-making along the course of the trial. The point at which a model reaches
the gray-shaded decision area between 0.75 and 1.0 without decision-switching
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Fig. 2. Model accuracy applying a 50 % decision confidence threshold. The figure illus-
trates the percentage of correctly classified test trials for increasing sizes of past history
for all models. The vertical red line denotes the point of the catcher’s first ball contact.
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Fig. 3. Animated two-dimensional trajectories of the catcher’s arm (red) and hand
(blue) and the ball (green) for a successful sample trial over time. The figure illustrates
the trajectories every ten time steps, starting with step 0. The fifth pose denotes the
point of the catcher’s first ball contact.

Fig. 4. Predictions of all models for a successful sample trial (cf. Figure 3). The upper-
most sub-figure illustrates the model classifications of all LSTM models for increasing
history sizes. The sub-figure in the middle shows the predictions of TCN models. In
both figures, the green cross denotes the correct label for the selected sample trial. Col-
ored crosses below the sub-figures mark the TTcD for the model of the corresponding
color. The vertical red line at step 40 shows the point of the catcher’s first ball contact.
The bottom figure shows the ball-hand distance over time for the selected trial.

afterwards, is denoted as the TTcD of the corresponding model. PSC-LSTM
already commits to the final correct decision at the first prediction attempt af-
ter ten steps. MTM-LSTM expresses a continuously increasing confidence with
a TTcD of 41, while HYB-LSTM does not reach a final confident decision and
stays below 0.75. MTO-LSTM exhibits decision-switching and only comes to a
final confident decision at step 49. Compared to the LSTM models, all TCN
models demonstrate a more noisy prediction curve and high TTcDs (TCN-10:
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Fig. 5. Model accuracy applying a 75 % decision confidence threshold. The figure illus-
trates the percentage of correctly classified test trials for increasing sizes of past history
for all models. The vertical red line denotes the point of the catcher’s first ball contact.

Table 1. Comparison of the mean times to (correct) decision. Numbers in brackets
denote the temporal distance to the catcher’s first ball contact at frame 40 (after 400
ms). Negative distances represent classifications before the initial ball contact, and
positive distances indicate classifications after the catcher’s first ball contact.

Model
No. MTTD No. correct MTTcD

decisions [ms] decisions [ms]

MTO-LSTM 327 475.5 (+75.5) 290 475.9 (+75.9)
MTM-LSTM 258 316.1 (-83.9) 187 313.3 (-86.7)
HYB-LSTM 191 348.4 (-51.6) 142 334.4 (-65.6)
PSC-LSTM 257 277.7 (-122.3) 186 276.9 (-123.1)

TCN-10 242 524.5 (+124.5) 211 516.2 (+116.2)
TCN-30 234 482.1 (+82.1) 210 476.0 (+76.0)
TCN-60 60 495.3 (+95.3) 52 481.3 (+81.3)

45, TCN-30: 48, TCN-60: 49). PSC-LSTM is the only model which can predict
the success of the trial before the ball-hand distance reaches 0.

Figure 5 illustrates the resulting percentage of correctly classified trials across
all test samples for different history sizes. First, it can be observed that PSC-
LSTM is the only model which is capable of correctly classifying more than
half of the test samples with history sizes smaller than 47 steps. For all other
models, there is a vast discrepancy between Figure 2 and Figure 5 which implies
that most model classifications fall between 0.25 and 0.75, especially for smaller
history sizes. When comparing the LSTM models, MTO-LSTM model again
performs best when the entire history is available. This indicates that MTO-
LSTM does not learn to make decisions early, but rather waits for the final
frames. For smaller history sizes before the first ball contact, PSC-LSTM is the
dominant model. Ultimately, the accuracy slightly drops, since it converges to
the accuracy of MTM-LSTM. Furthermore, there is an imbalance in the data set,
containing a large percentage of jump-off trials where the success of a trial can
only be assessed in the last frames, potentially hindering the prediction. HYB-
LSTM which incorporates classification and prediction capabilities in one model
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is outpaced by MTM-LSTM. TCN-60 sticks with uncertain decisions between
0.25 and 0.75 for most of the trials, while TCN-10 and TCN-30 start to make
more confident decisions at the moment of the catcher’s first ball contact after 40
time steps (400 ms). This increase in accuracy can potentially be attributed to
overfitting to the final frames, which is further supported by diverging training
and test accuracies.

This observation is confirmed by the low percentage (15 %) of confidently
classified catching trials made by TCN-60 (Table 1). The highest percentage of
correct decisions is made by TCN-30 and MTO-LSTM. However, both mod-
els rely on late information, while PSC-LSTM achieves the highest accuracy
before the first ball contact. Considering that the first ball contact occurs at
time step 40, neither the TCN models (MTTcD for TCN-10: 516.2, TCN-30:
476.0, TCN-60: 481.3), nor MTO-LSTM (MTTcD: 475.9) are capable of cor-
rectly and confidently classifying catching trials before the outcome is visually
observable. The prevailing models are the recurrent networks trained on many-
to-many classification. The best performance by far is achieved by PSC-LSTM
which can confidently classify trials already 123 ms before the first ball contact.

HYB-LSTM performs slightly worse than MTM-LSTM, but can still make
a classification 65.6 ms before the ball is first touched. In contrast to Hüsken
and Stagge who argue that incorporating an additional prediction task into a
classification RNN improves the learning process, we show that it does not have
a positive effect on the earliness of decision-making [8]. However, the outsourced
prediction approach of PSC-LSTM is superior to both the embedded prediction
approach of HYB-LSTM, as well as the pure classification approach of MTM-
LSTM. Hence, the inclusion of prediction capabilities into a classification model
seems to harm classification performance. This finding can be a first indicator
for the existence of different, possibly antagonistic internal representations and
learning strategies of RNNs trained on classification versus regression tasks.

5 Conclusion

In this paper we introduced a novel RNN-based approach for early and confident
time series classification: the predictive sequential classification (PSC). We eval-
uated our approach in comparison to state-of-the-art sequence learners on the
early recognition of clinical ball catching trials. We consistently demonstrate the
superiority of PSC over all other LSTM and TCN models in terms of the ear-
liness and accuracy of decisions under a high confidence threshold. Specifically,
PSC can on average make a final decision as early as 123 ms before the catcher’s
first ball contact. Hence, we show that ancillary prediction models clearly benefit
classification performance. However, incorporated prediction capabilities seem to
interfere with classification skills and ultimately hurt classification performance.
Our findings show that PSC with its two-model design can simultaneously opti-
mize accuracy, earliness and confidence of decision-making, thus constituting a
promising approach for early and confident time series classification in manifold
applications.
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