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Abstract 21 

Understanding how the human brain processes body movements is essential for clarifying the 22 

mechanisms underlying social cognition and interaction. This study investigates the encoding 23 

of biomechanically possible and impossible body movements in occipitotemporal cortex 24 

using ultra-high field 7Tesla fMRI. By predicting the response of single voxels to 25 

impossible/possible movements using a computational modelling approach, our findings 26 

demonstrate that a combination of postural, biomechanical, and categorical features 27 

significantly predicts neural responses in the ventral visual cortex, particularly within the 28 

extrastriate body area (EBA), underscoring the brain's sensitivity to biomechanical 29 

plausibility. Lastly, these findings highlight the functional heterogeneity of EBA, with 30 

specific regions (middle/superior occipital gyri) focusing on detailed biomechanical features 31 

and anterior regions (lateral occipital sulcus and inferior temporal gyrus) integrating more 32 

abstract, categorical information.  33 

Keywords: body representation, encoding models, occipitotemporal cortex, banded ridge 34 

regression, extrastriate body area, biomechanical plausibility. 35 

 36 

Introduction 37 

Human bodies convey essential information about others' actions, intentions, and emotions 38 

and provide critical cues in social communication (de Gelder, 2006; de Gelder et al., 2010; 39 

Peelen & Downing, 2007; Tipper, Signorini, & Grafton, 2015). Previous research using 40 

functional magnetic resonance imaging to investigate the neural basis of body perception 41 

(fMRI) has primarily focused on localizing high-level visual category-specific 42 

representations. Specific regions in the occipitotemporal and fusiform cortex are selectively 43 

responsive to images of bodies, the extrastriate body area (EBA) and the fusiform body area 44 
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(FBA) (Downing, Jiang, Shuman, & Kanwisher, 2001; Peelen & Downing, 2005). Similar 45 

findings of distinct body sensitive patches were found in monkeys in the ventral bank of the 46 

superior temporal sulcus (STS), namely the middle STS body patch (MSB) and the anterior 47 

STS body patch (ASB), with a putative homology between MSB and EBA, and ASB and 48 

FBA (Vogels, 2022). When dynamic images or functional aspects of body perception like 49 

action and emotional expression are also considered, body sensitivity was reported in other 50 

areas  (de Gelder & Poyo Solanas, 2021).  This has raised interest in investigating the neural 51 

mechanisms underlying body sensitivity, notably in the specific computational mechanisms 52 

operating across these different body sensitive areas. 53 

Some studies suggested that EBA is more involved in processing body parts and local 54 

features and FBA devoted to holistic processing (Taylor & Downing, 2011; Taylor, Wiggett, 55 

& Downing, 2007). There is also some evidence that EBA and FBA might process a 56 

combination of local and global body features (Bracci, Ietswaart, Peelen, & Cavina-Pratesi, 57 

2010; Downing & Peelen, 2011, 2016; Marrazzo, De Martino, Lage-Castellanos, Vaessen, & 58 

de Gelder, 2023),  depending on semantic attributes such as emotion and action (de Gelder, 59 

Snyder, Greve, Gerard, & Hadjikhani, 2004; Downing, Peelen, Wiggett, & Tew, 2006; 60 

Hadjikhani & de Gelder, 2003), and that EBA is sensitive to task demands (Marrazzo, 61 

Vaessen, & de Gelder, 2021). Additionally, recent findings further suggest that activity in the 62 

Default Mode Network (DMN) is sensitive to the contrast between biological and non-63 

biological motion based on the naturalness of kinematic patterns. Specifically, the DMN’s 64 

stronger response to human-like motion, particularly when it matches expected kinematics, 65 

suggests that it may modulate or support EBA and FBA processing by enhancing sensitivity 66 

to motion patterns that carry social and biological relevance (E. Dayan et al., 2016).   67 

However, despite these insights, there is no clear understanding of a functional division of 68 

labour between different body-sensitive areas.  A better understanding of the computational 69 
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processes within these body-selective areas should clarify their specific contributions to body 70 

perception.  71 

 Over the past decade, (linearized) encoding (Kay, Naselaris, Prenger, & Gallant, 2008; 72 

Naselaris, Kay, Nishimoto, & Gallant, 2011) has been used to compare different 73 

computational hypotheses of brain function. In these approaches, brain activity (e.g., blood 74 

oxygen level-dependent (BOLD) signals in a voxel or brain region during fMRI) is predicted 75 

based on stimulus features derived from computational models. The accuracy of these 76 

predictions can then be compared to adjudicate between competing models, or to determine 77 

the relative contribution (the variance explained) of each model (Dumoulin & Wandell, 2008; 78 

Dupré la Tour, Eickenberg, & Gallant, 2022; Moerel, De Martino, & Formisano, 2012; 79 

Nunez-Elizalde, Huth, & Gallant, 2019; Santoro et al., 2014; Thirion et al., 2006; Wandell, 80 

Dumoulin, & Brewer, 2007). Encoding models predict neural responses based on specific 81 

stimulus features and have been successfully applied to visual processing in early visual 82 

cortex (Kay et al., 2008; Naselaris et al., 2011) as well as higher visual cortex (Huth, 83 

Nishimoto, Vu, & Gallant, 2012; Marrazzo et al., 2023; Nunez-Elizalde et al., 2019; Yamins 84 

et al., 2014). An earlier study used encoding models to human body-selective regions 85 

(Marrazzo et al., 2023) and shed light on the relevance of joint positions and their spatial 86 

configuration for the responses in the EBA to still images. Like most prior research in the 87 

field, the use of still images, only addressed postural aspects rather than movement, thus 88 

limiting our understanding of how the brain processes more complex, dynamic information.  89 

Here, we probed EBA’s dependency on joints configuration by using biomechanical 90 

manipulations of natural movements based on 3D motion capture (mocap) data. Creating 91 

videos that disrupt the natural spatial configuration of joints allowed us to investigate how 92 

EBA processes biomechanical plausibility. This approach is particularly important with 93 

moving bodies, as dynamic stimuli capture the temporal and kinematic properties essential 94 
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for understanding how the brain encodes real-world, biologically relevant movements. We 95 

specifically tested the hypothesis that EBA is sensitive to biomechanical characteristics of 96 

body movements, building on some earlier indications in the literature.  For instance, 97 

participants exhibit automatic imitation effects even for impossible movements, indicating 98 

the brain's predisposition to process action dynamics despite biomechanical violations 99 

(Longo, Kosobud, & Bertenthal, 2008).  Recognition of human bodies is significantly 100 

affected by inversion, reflecting specialized perceptual mechanisms for recognizing human  101 

shape in upright configurations (Reed, Stone, Bozova, & Tanaka, 2003). More recent studies 102 

have shown that prior knowledge of biomechanical constraints biases  visual memory, with 103 

participants misremembering extreme postures as less extreme, adjusting their perceptions 104 

toward more biomechanically plausible positions (Han, Gandolfo, & Peelen, 2024).  105 

Developmental evidence also points to an early sensitivity to biomechanical constraints on 106 

human movement.   12-month-old infants as well as and adults spend more time looking at 107 

the elbows during impossible arm movements compared to possible ones (Morita et al., 108 

2012), and  newborns can differentiate between biomechanically possible and impossible 109 

hand movements  (Longhi et al., 2015). Investigating the neural correlates of humanly 110 

impossible movements has further revealed that impossible finger movements elicit distinct 111 

neural responses compared to possible ones in EBA (Costantini et al., 2005). The influence of 112 

biomechanics to the processing of visual information related to the body may be fundamental 113 

to how body representations are formed in the brain, and may involve areas like the EBA.   114 

To investigate the computations underlying the neural responses to body movements in the 115 

occipitotemporal cortex, we utilized ultra-high-field 7 Tesla fMRI and linearized encoding 116 

models, assessing macroscopic and mesoscopic (layer-specific) responses related to 117 

biomechanical sensitivity. We aimed to identify how different cortical layers within the EBA 118 

encode biomechanical information and distinguish between possible and impossible 119 
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movements. We employed three distinct encoding models to probe these computations: the 120 

3D Keypoints (kp3d) model, which represents three-dimensional coordinates of body joints 121 

and captures precise postural information; the Similarity Distances (simdist) model, which 122 

quantifies biomechanical differences between possible (natural) and morphed (impossible) 123 

movements based on motion capture data (Ghorbani et al., 2021); and the categorical 124 

differences model, which provides a higher-level distinction by categorizing movements as 125 

biomechanically possible or impossible. By comparing model performance across cortical 126 

layers, we aimed to test the hypothesis that superficial cortical layers encode categorical 127 

information—indicating sensitivity to global, higher-order features—while deeper layers 128 

encode joint-specific and biomechanical information (contained in the kp3d and simdist 129 

models). 130 

Material and methods 131 

Participants 132 

12 right-handed subjects (5 males, mean age = 27.8 ± 3.8 years) participated in this study. 133 

They all had normal (or corrected to normal) vision and reported no history of psychiatric or 134 

neurological disorders. One participant was excluded from the main analysis for excessive 135 

head motion across multiple runs. All subjects were naïve to the task and the stimuli and 136 

received monetary compensation for their participation. Scanning sessions took place at the 137 

neuroimaging facility Scannexus at Maastricht University (NL). All experimental procedure 138 

conformed to the Declaration of Helsinki and the study was approved by the Ethics 139 

Committee of the faculty of Psychology and Neuroscience of Maastricht University.  140 

Main experiment stimuli 141 

The stimulus set consisted of 120 videos of two avatars (1 male). The videos were generated 142 

by animating mocap data from the MoVi dataset (Ghorbani et al., 2021), which includes 143 
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recordings from 60 female and 30 male actors performing 21 daily actions and sports 144 

movements. For this experiment, we animated six specific actions (kicking, pointing, waving, 145 

jumping, jumping jacks, and walking sideways) performed by 17 actors (9 males). The 146 

movements of these 17 actors were then used to animate the two avatars, ensuring that the 147 

presented stimuli maintained diversity in motion while being standardized in appearance. 148 

This process resulted in 96 videos depicting natural body movements. Additionally, we 149 

modified the joint angles of the limbs to create 96 biomechanically impossible videos. To 150 

refine the set for the fMRI experiment, we conducted a behavioral validation, to select stimuli 151 

showing the greatest difference between possible and impossible movements. This ultimately 152 

reduced the set to 120 videos (60 possible videos created from 17 actors performing 4 153 

actions: kicking, jumping, pointing, waving). More details are provided in the behavioral 154 

validation section below. Each video was edited to have a length between 60 and 90 frames, 155 

corresponding to 2 to 3 seconds at 30 frames per second. Additionally, the avatars in each 156 

video were aligned to be centered relative to the fixation cross, ensuring a consistent starting 157 

position across all videos. During the experiment, the stimuli spanned a mean width and 158 

height of 1.84º x 4.32º of visual angle  (Fig. 1a). 159 
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Figure 1. Stimuli and experimental procedure 

(a)  The videos were generated by animating mocap data from the MoVi dataset (Ghorbani 

et al., 2021). Sixty possible videos were created from 17 actors performing 4 actions: 

kicking, jumping, pointing, waving. Additionally, we modified the joint angles of the 

elbows and knees to create 60 biomechanically impossible videos. In panel (a) we show 

frame of possible videos and their equivalent impossible. (b)  For each run 1/6 of the stimuli 

(20) where presented in a pseudo-randomized order following a fast event-related design. 

Each stimulus was repeated three times per run. Each run was repeated two times across 

sessions resulting in a total of 120 stimuli repeated six times. To identify body sensitive 

region, the localizer stimuli included videos of humans performing natural body movement, 

objects, and their scrambled version. We presented stimuli following a block-design with 

each block repeated three times per run.  (c) During the main experiment participants 

fixated on the cross and were presented with the stimuli depicting possible and impossible 

body movement for 1-2 TRs (depending on the length of each video) followed by a blank 

screen which appeared for 2, 3 or 4  TRs. When the fixation cross turned to a circle, they 
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had to press a button whether with the right index finger.  TR= 2300ms. 

 160 

Localizer stimuli  161 

Stimuli for the localizer experiment consisted of videos depicting two object categories: 162 

bodies, objects. Additionally, also a scrambled version of each stimulus was included. (Fig. 163 

1b). The size of the stimuli was 3.5 * 7.5 degrees for human bodies and objects. For more 164 

details about the localizer stimuli we refer to (Li et al., 2023). None of the stimuli from the 165 

localizer were used in the main experiment.  166 

Behavioural validation 167 

The stimuli created from the mocap data comprised 96 videos of natural body movements 168 

(possible) and their corresponding modified versions, for a total of 192 stimuli. These 169 

modified versions (impossible) were created by altering the joint angles of the limbs to 170 

produce biomechanically impossible movements. We violated the anatomical constraints of 171 

the elbows and knees, by mirroring those joints orientations for each time point of a 172 

trajectory. Accordingly, we modified the shoulders and wrist joint angles, as well as ankles 173 

and hips, in order to preserve the end-effectors (hands and feet) orientations to be as close as 174 

possible to the original (possible) ones for every time point. 175 

Out of the total 192 videos, we selected 120 (60 possible and their impossible version) for the 176 

fMRI experiment through a process of behavioral validation. This selection was based on 177 

identifying the stimuli that best demonstrated the intended differences between possible and 178 

impossible movements, ensuring the most effective set for the experiment. We asked 136 179 

participants (25 males, mean age = 21.45 ± 2 years) to rate the stimuli using a questionnaire 180 

consisting of two Likert-scale questions and one categorical question. Participants were 181 

presented with half (96) of the total stimuli (192) once. For each participant, the stimuli were 182 
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pseudo-randomized (96 stimuli randomly selected for each participant, but evenly distributed 183 

so that each stimulus was rated by approximately the same number of participants: mean 184 

number of responses = 68 ± 2.24).  After each presentation, participants were asked to answer 185 

a total of three questions about the plausibility/realism of the body movement, action content 186 

and salience of specific body parts (see Supplementary materials). 187 

 188 

MRI acquisition and experimental procedure 189 

Participants viewed the stimuli while lying supine in the scanner. Stimuli were presented on a 190 

screen positioned behind participant’s head at the end of the scanner bore (distance 191 

screen/eye = 99 cm) which the participants could see via a mirror attached to the head coil. 192 

The screen had a resolution of 1920x1200 pixels, and its angular size was 16º (horizontal) x 193 

10º (vertical). The experiment was coded in Matlab (v2021b The MathWorks Inc., Natick, 194 

MA, USA) using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner, Brainard, 195 

& Pelli, 2007; Pelli, 1997).  196 

Each participant underwent two MRI sessions, we collected a total of twelve functional runs 197 

(six runs per session) and one set of anatomical images. Images were acquired in a 7T MR 198 

scanner (Siemens Magnetom) using a 32-channel (NOVA) head coil. Anatomical (T1-199 

weighted) images were collected using MP2RAGE MP2RAGE: 0.7 mm isotropic, repetition 200 

time (TR) = 5000 ms, echo time (TE) = 2.47 ms, matrix size= 320 x 320, number of slices = 201 

240. The functional dataset (T2*-weighted) covered the occipitotemporal cortex and was 202 

acquired using a Multi-Band accelerated 2D-EPI BOLD sequence, multiband acceleration 203 

factor = 2, voxel size = 0.8 mm isotropic, TR = 2300 ms, TE = 27 ms, number of slices = 58 204 

without gaps; matrix size = 224 x 224; number of volumes = 300, GRAPPA factor =3. In 205 

addition to functional images, phase images were simultaneously acquired along with five 206 

noise volumes appended at the end of each run.  207 
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During the main experiment, stimuli were presented on the screen for 2-3 seconds (depending 208 

on the length of each video) with an inter stimulus interval that was pseudo-randomised to be 209 

2, 3 or 4 TRs. Participants were asked to fixate at all times on a white cross at the centre of 210 

the screen (Fig. 1c). 211 

To control for attention, participants were asked to detect a shape change at the fixation cross 212 

(cross to circle) and respond via button press with the index finger of the right hand. Within 213 

each run, 20 stimuli (10 possible and 10 impossible) were presented and repeated 3 times.  214 

Three target trials were added for a total of 63 trials per run. The two sessions were identical 215 

therefore each of the 120 videos was repeated 6 times (3 repetitions x 2 sessions) across the 216 

12 runs. Additionally, three blank trials were added in each run lengthening the baseline 217 

period. 218 

Across sessions, we collected 2 to 3 runs of localizer depending on available scanning time. 219 

Each localizer run contained 10 videos per category presented following a block design. Each 220 

block lasted 25 seconds (10 videos x 1 sec + 1.5 sec intertrial interval) and was followed by a 221 

jittered fixation period of 11 seconds on average.  Each category block was repeated 3 times 222 

per run. During the localizer participants performed the same task as in the main experiment. 223 

Preprocessing for the functional images was performed using BrainVoyager software (v22.2, 224 

Brain Innovation B.V., Maastricht, the Netherlands), Matlab (v2021b) and ANTs (Avants, 225 

Tustison, & Song, 2009). To lower thermal noise, we performed NOise reduction with 226 

DIstribution Corrected (NORDIC) using both magnitude and phase images (Moeller et al., 227 

2021).  EPI Distortion was corrected using the Correction based on Opposite Phase Encoding 228 

(COPE) plugin in BrainVoyager, where the amount of distortion is estimated based on 229 

volumes acquired with opposite phase-encoding (PE) with respect to the PE direction of the 230 

main experiment volumes (Fritz et al., 2014), after which subsequent corrections is applied to 231 
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the functional volumes. Other preprocessing steps included scan slice time correction using 232 

cubic spline, 3D motion correction using trilinear/sinc interpolation and high-pass filtering 233 

(GLM Fourier) cut off 3 cycles per run. During the 3D motion correction process, all runs 234 

were aligned to the first volume of the first run using the scanner's intersession auto-align 235 

function, ensuring consistent spatial alignment across sessions. Anatomical images were 236 

resampled at 0.4mm isotropic resolution using sinc interpolation. To ensure a correct 237 

functional-anatomical and functional-functional alignment, the first volume of the first run 238 

was coregistered to the anatomical data in native space using boundary based registration 239 

(Greve & Fischl, 2009). Functional images were exported in nifti format for further 240 

processing in ANTs. To reduce non-linear intersession distortions, functional images were 241 

corrected using the antsRegistration command in ANTs using as target image the first volume 242 

of the first run and as moving image the first volume of all the other runs.  Volume Time 243 

Courses (VTCs) were created for each run in the normalized space (sinc interpolation). Prior 244 

to the encoding analysis (and following an initial general linear model [GLM] analysis aimed 245 

at identifying regions of interest based on the response to the localizer blocks), we performed 246 

an additional denoising step of the functional time series by regressing out the stimulus onset 247 

(convolved with a canonical hemodynamic response function [HRF]) and the motion 248 

parameters. This step was crucial for minimizing the influence of external confounds, such as 249 

the timing of stimulus presentation and participant head motion, on the neural data. By 250 

removing these factors, we ensured that the model's training focused exclusively on learning 251 

patterns directly associated with the features of the encoding models. However, this 252 

approach, while effective in isolating feature-driven neural responses, can lead to smaller 253 

accuracies as it also removes some of the variance explained by the stimulation paradigm 254 

itself. Despite this trade-off, this method provides a cleaner and more specific evaluation of 255 

the encoding models' ability to capture the relevant neural patterns. 256 
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 257 

Segmentation of white matter (WM) and gray matter (GM) boundaries as well as cortical 258 

layers estimation was performed using a custom pipeline. First, the UNI image and T1 image 259 

obtained from MP2RAGE were exported to nifti.  We performed  gaussian noise reduction 260 

using the DenoiseImage command in ANTs (Manjón, Coupé, Martí-Bonmatí, Collins, & 261 

Robles, 2010), and bias field correction in SPM12 as described on layer fMRI blog 262 

(https://layerfmri.com/2017/12/21/bias-field-correction/). After preprocessing of anatomical 263 

images, cortical reconstruction and volumetric segmentation was performed using Basic 264 

SAMSEG (cross-sectional processing) command of the Freesurfer image analysis suite 265 

(http://surfer.nmr.mgh.harvard.edu/), using the UNI images as T1w contrast and the T1 map 266 

of the MP2RAGE (which has flipped intensities between white and gray matter, resembling a 267 

T2w image) as T2w contrast. Lastly, cortical thickness and layers extraction were performed 268 

using surf_laynii.sh script (https://github.com/srikash/surf_laynii/blob/main/surf_laynii) 269 

which enables layering in LAYNII (Huber et al., 2021) using the Freesurfer segmentations 270 

output. Three layers were then calculated in LAYNII using the equi-volume approach. All 271 

analyses were performed in the individual subject space, but for visualization purposes we 272 

projected single-subject statistical or encoding maps onto a group cortex-based aligned 273 

surface and then averaged the results across subjects (Goebel, Esposito, & Formisano, 2006).  274 

 275 

 276 

Voxel selection for encoding analysis 277 

The functional time series of the localizer runs collected in each participant were analysed 278 

using a fixed-effect GLM with 5 predictors (4 conditions in the localizer: Body Objects and 279 

their scrambled version and 1 modelling the catch trials). Motion parameters were included in 280 

the design matrix as nuisance regressors. The estimated regressor coefficients representing 281 
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the response to the localizer blocks were used for voxel selection. A voxel was selected for 282 

the encoding analysis if significantly active (q(FDR)<0.05) in response to the Body and 283 

Objects categories. Note that this selection is unbiased to the response to the stimuli 284 

presented in the experimental section of each run.  285 

 286 

Functional ROI definition 287 

Using the functional localizer we also defined body selective regions at the single subject 288 

level. Specifically, the EBA was defined using the contrast [Body + Body Scrambled] > 289 

[Objects + Objects Scrambled] (Ross, de Gelder, Crabbe, & Grosbras, 2020)  with a 290 

statistical threshold of q(FDR) < 0.05. All subsequent ROI-level analyses were conducted by 291 

identifying the intersection between the voxels assigned to the EBA and those selected for the 292 

encoding analysis. 293 

 294 

Encoding models 295 

In order to understand what determines the response to body images we tested several 296 

hypotheses, represented by different computational models, using fMRI encoding (Allen et 297 

al., 2018; Kay et al., 2008; Naselaris et al., 2011; Santoro et al., 2014). We compared the 298 

performance (accuracy in predicting left out data) of three encoding models.  299 

 300 

The first model represented body stimuli using the position of joints in three dimensions 301 

(kp3d) using 71 keypoints (main skeleton joints like hips, knees, shoulders, elbows, hands 302 

and facial features like eyeballs, neck and jaw) extracted from the MoVi dataset.  This   303 

model represents the stimuli as a collection of points in space forming a human skeleton. To 304 

focus on joints that significantly influence perception while minimizing variability from less 305 

relevant keypoints, we excluded constant (or almost constant) keypoints ending up with a 306 
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subset that included 56 keypoints (shoulders, elbows, wrists, hips, knees, and ankles, hands, 307 

fingers and facial features from both sides of the body).  308 

 309 

The second model quantifies the similarity distances (simdist) between morphed movements 310 

(impossible) and normal movements (possible) by analyzing motion capture data extracted 311 

during stimulus creation. For each video, both the modified and original motion data were 312 

loaded. Initially, all 71 joints defined in the MoVi skeleton were considered. However, to 313 

focus on joints with meaningful movement and reduce variability from less relevant joints 314 

(such as fingers and toes), joints without rotation data (i.e., joints with empty rotation indices) 315 

were excluded, reducing the original set to 56 keypoints (the same as in the previous 316 

paragraph). For each selected joint at each time frame, we converted the original Euler angles 317 

representing the joint rotation to axis-angle representation. This process yielded a set of three-318 

dimensional vectors in Euclidian space representing the rotation of each joint over time. To 319 

measure the similarity between test movements (both modified and original) and the manifold 320 

of normal (original) movements, a Gaussian kernel-based approach was employed. This 321 

method quantifies the proximity of motion data in the high-dimensional joint angle space, 322 

allowing for a robust assessment of movement similarity (see supplementary material). 323 

Keypoints for which the computed similarity distances to the normative manifold were not 324 

finite (e.g., containing NaN or Inf values) were identified and excluded to maintain data 325 

quality, reducing the original 56 keypoints to 29. Similarity distances for all joints were then 326 

concatenated to form feature vectors representing each movement's similarity across all 327 

considered joints. This model encoded biomechanical differences because it evaluates the 328 

kinematic properties of human joint movements by measuring their distances to a manifold of 329 

normal actions, thereby allowing for the differentiation between biomechanically plausible 330 

(possible) and implausible (impossible) movements, with the latter exhibiting higher 331 
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distances due to their deviation from typical human motion patterns. (for the mathematical 332 

formulation see supplementary materials).  The third model encodes categorical differences 333 

between possible and impossible stimuli by incorporating two features that explicitly indicate 334 

the (im)possibility of each stimulus. Unlike the other models, this approach does not account 335 

for variations within each category, focusing instead on the binary classification of stimuli as 336 

either possible or impossible. This model is considered more abstract (or higher-order) 337 

compared to the kp3d and simdist models, as it goes beyond image computable approaches 338 

(like keypoints) and instead recapitulates a  conceptual distinctions. 339 

 340 

Banded ridge regression and model estimates 341 

In the context of fMRI, the linearized encoding framework typically uses L2-regularized 342 

(ridge) regression to extract information from brain activity (Hoerl & Kennard, 1970). This 343 

method is effective for improving the performance of models with nearly collinear features 344 

and helps minimize overfitting. When dealing with multiple encoding models, ridge 345 

regression can either estimate parameters for a combined feature space or for each model 346 

separately. However, using a single regularization parameter for all models may not be 347 

optimal due to varying feature space requirements. To address this, banded ridge regression 348 

optimizes separate regularization parameters for each feature space, enhancing model 349 

performance by reducing spurious correlations and ignoring non-predictive features.(Dupré la 350 

Tour et al., 2022; Nunez-Elizalde et al., 2019). In the present work we used banded ridge 351 

regression to fit the three encoding models, combined in a joint encoding model, and 352 

performed a decomposition of the variance explained by each of the models following 353 

established procedures (Dupré la Tour et al., 2022; Marrazzo et al., 2023).  354 

Model training and testing were performed in cross-validation (3-folds: training on 8 runs [80 355 

stimuli repeated 6 times] and testing on 4 runs [40 repeated 6 times]). For each fold, the 356 
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training data were additionally split in training set and validation set using split-half 357 

crossvalidation. Within the (split-half) training set a combination of random search and 358 

gradient descent (Dupré la Tour et al., 2022) was used to optimize the model fit to the data 359 

(regularization strength and model parameters). Ultimately, the best model over the two 360 

(split-half) validation folds was selected to be tested on the independent test data (4 runs).  361 

Within each fold, the models’ representations of the training stimuli were normalized (each 362 

feature was standardized to zero mean and unit variance withing the training set). The feature 363 

matrices representing the stimuli were then combined with the information of the stimuli 364 

onset during the experimental runs. This resulted in an experimental design matrix (nrTRs x 365 

NrFeatures) in which each stimulus was described by its representation by each of the 366 

models. To account for the hemodynamic response, we delayed each feature of the 367 

experimental design matrix (5 delays spanning 11.5 seconds). The same procedure was 368 

applied to the test data, with the only difference that when standardizing the model matrices, 369 

the mean and standard deviation obtained from the training data were used.  370 

We used banded ridge regression to determine the relationship between the features of the 371 

encoding models (stimulus representations) and the fMRI response at each voxel. The 372 

encoding was limited to voxels that significantly responded to the localizer stimuli 373 

(p(FDR)<0.05) in each individual volunteer’s data. For each cross-validation, we assessed the 374 

accuracy of the model in predicting fMRI time series by computing the correlation between 375 

the predicted fMRI response to novel stimuli (4 runs, 40 stimuli) and the actual responses. 376 

The accuracies obtained across the three folds were Z-transformed and then averaged. To 377 

obtain the contribution of each of the models to the overall accuracy we computed the partial 378 

correlation between the measured time series and the prediction obtained when considering 379 

each of the models individually (Dupré la Tour et al., 2022). Statistical significance was 380 

assessed at the group level via permutation test (subject wise sign-flipping, 2^N=2048 times 381 
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with N=11), and correction for multiple comparison was performed using FDR (q<0.05). 382 

Additionally, for each subject, we obtained the average coefficient of determination within 383 

EBA (defined in the localizer) and we tested significance with a t-test against zero. 384 

 385 

Results 386 

Consistent behavioral categorization of possible and impossible stimuli 387 

The analysis of the questionnaire responses showed that all stimuli were accurately 388 

categorized. In the "possible" condition, each stimulus received the highest rating, confirming 389 

correct classification. Results for the "impossible" videos showed more variability while 390 

consistently scoring below 4 on the 1-7 Likert scale. Notably, 95% (57 out of 60) of these 391 

stimuli had a median rating between 1 and 2, with the remaining three videos rated between 2 392 

and 3 (see supplementary material for more information). 393 

Localizer stimuli reveal activation in ventral visual cortex and EBA for voxel selection 394 

In each subject, voxels that significantly responded to the localizer conditions (Body + 395 

Objects) with a false discovery rate (FDR) of less than 0.05 were selected for the encoding 396 

analysis. While selection took place at the individual level, in Figure 2 we report group-level 397 

maps obtained by averaging individual thresholded (q(FDR)<0.05) single-subject maps. All 398 

group maps are projected on group aligned (cortex based aligned - CBA) surface.  The 399 

localizer conditions consistently activated regions in the occipitotemporal cortex, specifically 400 

in the superior, middle, and inferior occipital gyri (SOG/MOG/IOG), fusiform gyrus (FG), 401 

lingual gyrus (LG)  402 
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Figure 2 Voxels selection and EBA definition   

Voxels that were significantly (q(FDR)<0.05) responding to localizer stimuli [Body + 

Objects]>0 were selected for the encoding analysis. Although the analysis was performed at 

single-subject level, for visualization purposes we show the average t-map (in red-yellow) 

obtained by averaging the thresholded single-subjects maps projected on a group cortex-

based aligned mesh. EBA was defined within the localizer via the contrast [Body + Body 

Scramble] > [Objects + Objects Scramble]. Shown in white-green is a probabilistic map 

indicating the overlap between individually defined EBAs (q(FDR)<0.05). 

 403 

middle temporal gyrus (MTG), inferior temporal sulcus (ITS), lateral occipital sulcus (LOS), 404 

and superior temporal sulcus (STS). These clusters overlap with areas identified in our 405 

previous study (Marrazzo et al., 2023). By subtracting the responses to object stimuli from 406 

the responses to body stimuli, we defined the extrastriate body area (EBA) in each individual 407 

and computed probabilistic maps of the overlap of EBA across individuals in cortex based 408 
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aligned space. The EBA spanned the MOG, MTG, and ITS (Fig. 2) with the probabilistic 409 

maps showing an overlap between 20 (white in the Fig.2) and 100% (Green) of subjects.  410 

The joint encoding model significantly predicts responses to novel stimuli in ventral 411 

visual cortex 412 

The main effect of the responses in the localizer (objects + bodies) was used to select voxels 413 

for the encoding in the individual subjects’ data. In these voxels, the response elicited by 414 

body stimuli in the main experiment, independent of the localizer, was modelled using 415 

banded ridge regression. The group performance of the joint encoding model (kp3d, 416 

categorical, simdist) is shown in Figure 3a. Statistical significance at the group level was 417 

assessed via a permutation test, with correction for multiple comparisons using FDR 418 

(q<0.05). The joint encoding model significantly predicted responses to novel stimuli 419 

throughout the ventral visual cortex (SOG, MOG, IOG, ITG, MTG, FG, LOS)  420 

  421 

 

Figure 3. Group-level encoding results.  
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(a) Group Prediction accuracy for the joint model (kp3d, categorical, simdist). Statistical 

significance was assessed via permutation test (subject wise sign-flipping, 2^N=2048 times 

with N=11), and correction for multiple comparison was performed using FDR (q<0.05). 

(b) RGB map in which each vertex is colour coded according to the relative contribution of 

each model to the accuracy of the joint model (red = 100% kp3d; blue = 100% simdist; 

green = 100% categorical) as shown in (a). For clarity, we overlay the outline of EBA as 

defined in the probabilistic map depicted in Figure 2 by selecting vertices shared by at least 

40% of the subjects.  

 422 

Spatial differences in model contributions to fMRI responses were assessed using an RGB 423 

map (Figure 3b), where each vertex is color-coded to show the relative contribution of each 424 

model to the joint encoding model's accuracy. The kp3d model (red) and simdist model (blue) 425 

showed varying contributions across regions, with the categorical model (green) also playing 426 

a role. 427 

In early visual cortical areas, the response to both possible and impossible bodies was best 428 

captured by a combination of the kp3d and simdist models, as indicated by magenta and 429 

purple hues. The categorical model (green) contributed more to the voxels’ response in 430 

ventral occipital regions, either on its own or in combination with the one of other models 431 

(reflected by light-blue or orange colors).  432 

EBA encodes postural, biomechanical and categorical information 433 

Within the EBA, the joint encoding model accounted for approximately 10% of the variance 434 

of the BOLD signal (Fig. 4, top panel). When considering the model fit across cortical layers, 435 

we did not observe significant differences in joint model fit across layers, despite a trend for 436 

the model fit to increase from inner to superficial layers (Fig. 4 bottom left panels). Although 437 
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not statistically significant, the percentage of R² explained by each model showed a trend, 438 

with the kp3d model accounting for a larger portion of the variance (approximately 40%) 439 

(permutation test subject wise sign-flipping, 2^N=2048 times with N=11 on the differences 440 

of variance explained: kp3d-simdist, p=0.0698; kp3d-categorical, p=0.083)  in the left 441 

hemisphere  (Fig. 4, bottom right panels). " Moreover, a layer-specific analysis within EBA 442 

revealed that the joint model's performance increased from inner to superficial layers in the 443 

right hemisphere (inner-middle: t(10) = -3.546, p = 0.005; inner-superficial: t(10) = -2.325, p 444 

= 0.042), 445 

 

Figure 4. Joint model performance and variance partitioning in EBA across cortical 

depths. 

Variance partitioning in the extrastriate body area (EBA) across 11 subjects, comparing left 

(LH) and right hemispheres (RH) across three cortical layers (Left to right � inner, middle, 

superficial). The top panel shows the group average R² values in the EBA, indicating overall 

joint model performance across hemispheres. 

The bottom left panels display the variance explained (R²) in the LH and RH EBA across 
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layers. The bottom right panel illustrates the percentage of R² explained by each model 

across layers. To check for differences in variance explained between models, we ran an 

ANOVA which showed a significant main effect of models (F(2,180) = 4.408, p=0.014) and 

a significant interaction between hemispheres and models (F(2,180) = 3.572, p=0.030) were 

found, indicating that models performance varies between hemispheres and that the 

effectiveness of each model differs across layers.  Error bars represent standard errors.  

 446 

An ANOVA testing for the difference in model performance between hemispheres and layers 447 

revealed a significant main effect of models (F=4.408, p=0.014) and a significant interaction 448 

between hemispheres and models (F=3.572, p=0.030). 449 

Discussion 450 

The present study investigated how dynamic body stimuli, specifically biomechanically 451 

possible and impossible movements, are encoded in occipitotemporal cortex. Specifically, we 452 

compared the predictive performance of encoding models based on 3D keypoints, similarity 453 

distances, and categorical differences (kp3d, simdist, categorical). At the group level, we 454 

observed that a combination of the three models significantly predicted fMRI BOLD 455 

responses in the ventral visual cortex after applying permutation testing and correcting for 456 

multiple comparisons. The variance partitioning across the different models of body posture 457 

in EBA across cortical layers revealed hemispheric differences between models. In the left 458 

hemisphere, the kp3d model appeared to explain a larger portion of the variance 459 

(approximately 40%) compared to the simdist and categorical models (both around 30%), 460 

with this pattern observed consistently across cortical depths (see Fig. 4). In the right 461 

hemisphere, the kp3d model accounted for approximately one-third of the variance, while the 462 

simdist and categorical models showed differing trends across cortical layers. Specifically, 463 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.07.631720doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.07.631720
http://creativecommons.org/licenses/by-nd/4.0/


24 

 

the simdist model tended to explain more variance in the inner layers, whereas the categorical 464 

model appeared to account for more variance in the superficial layers. Although these 465 

differences were not statistically significant.  466 

Low-level and high-level features in the occipitotemporal cortex 467 

Our findings reveal that a combination of low and high-level features contribute to the 468 

dynamic perception of body movement in occipitotemporal cortex. In early visual cortical 469 

areas, the kp3d and simdist models alone, or in combination, best predicted neural responses 470 

(red, blue, magenta-purple color patches in Fig. 3b) indicating that postural and 471 

biomechanical features play a significant role in these regions. These results align with the  472 

notion that early visual areas process low-level features such as orientation, spatial frequency, 473 

and basic shape attributes (Carandini et al., 2005; Kay et al., 2008; Naselaris et al., 2011; 474 

Nishimoto & Gallant, 2011; Nishimoto et al., 2011). As processing advances to higher visual 475 

areas, the categorical model becomes increasingly dominant. This shift aligns with previous 476 

literature showing that higher-order areas integrate lower-level features into more abstract 477 

representations, reflecting a progression toward semantic processing (Grill-Spector & 478 

Weiner, 2014; Haxby et al., 2001; Huth et al., 2012; Kriegeskorte, Mur, & Bandettini, 2008). 479 

Encoding of body stimuli in EBA  480 

Within the EBA, our analysis revealed that a combination of the three encoding models—481 

kp3d, simdist, and categorical—significantly predicted neural responses, accounting for 482 

approximately 10% of the variance of the BOLD signal in EBA (see Fig. 4). This indicates 483 

that in EBA these various types of information, including postural and biomechanical 484 

features and categorical distinctions are combined.    485 

 While all models contributed significantly to the response elicited by dynamic bodies in 486 

EBA, this was more prominent for the kp3d and simdist models (purple-magenta patches - in 487 
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Fig. 3b and 4) in the superior part of EBA, covering middle occipital gyrus (MOG) and 488 

superior occipital gyrus (SOG). In contrast, the anterior inferior part of EBA —spanning 489 

anterior part of the inferior temporal gyrus (aITG) and anterior lateral occipital sulcus 490 

(aLOS)— tended towards categorical encoding (cyan-orange-green patches in Fig. 3b and 4) 491 

suggesting an integration of postural information in the keypoint model with more abstract 492 

representations. This may involve linking specific body configurations to semantic  493 

information such as the type of action being performed or the emotional state conveyed by 494 

the body movement (Foster et al., 2021; Foster et al., 2019) 495 

This functional heterogeneity found in EBA aligns with anatomical findings that identify 496 

distinct body-selective areas within the occipitotemporal cortex (Weiner & Grill-Spector, 497 

2011). Recent findings by Li et al. (Li, Poyo Solanas, Marrazzo, & de Gelder, 2024) using 498 

data-driven methods identified four adjacent body-selective nodes within the 499 

occipitotemporal cortex further support this notion. Specifically, the predominance of kp3d 500 

and simdist in superior subregions may  reflect their role in detailed sensory processing, as 501 

they show stronger connectivity with regions involved in processing fine-grained visual 502 

details (Li et al., 2024). In contrast, the anterior inferior subregions’ reliance on categorical 503 

encoding suggests involvement in higher-order interpretation and integration of body-related 504 

information, consistent with their broader connectivity profiles (Li et al., 2024). Our findings 505 

thus reinforce the notion that EBA is functionally heterogeneous consistent with the finding 506 

of  specialized subregions dedicated to different aspects of body and action perception. (Li et 507 

al., 2024).  508 

Furthermore, our results are consistent with previous findings showing that EBA is more 509 

functionally and structurally connected to dorsal stream regions compared to other body-510 

related areas, such as FBA and the lateral occipital complex (LOC) (Zimmermann, Mars, de 511 

Lange, Toni, & Verhagen, 2018).  This connectivity supports the EBA's role in bridging 512 
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perceptual and motor functions, particularly in specifying goal-directed postural 513 

configurations for motor planning. Notably, the study suggests that EBA’s connectivity with 514 

parietal regions, such as the superior parietal lobule and postcentral gyrus, may enable it to 515 

access somatosensory information, which is essential for planning and executing actions 516 

based on body information.  This suggestion is consistent with the earlier findings from 517 

(Astafiev, Stanley, Shulman, & Corbetta, 2004)  reporting that the EBA responds to goal 518 

directed movements of the observers’ body parts.  519 

Layer-specific encoding in EBA 520 

Our layer-specific analysis within EBA revealed that the joint model's performance increased 521 

from inner to superficial layers in the right hemisphere (inner-middle: t(10) = -3.546, p = 522 

0.005; inner-superficial: t(10) = -2.325, p = 0.042), which may hint towards  a gradient of 523 

sensitivity to postural features in right EBA. Conversely, the joint model performed 524 

uniformly across layers in the left hemisphere. The variance partitioning also hinted at a 525 

potential hemispheric difference, with the kp3d model accounting for a substantial portion of 526 

the variance (approximately 40%) across all cortical depths in the left hemisphere. This trend 527 

may suggest a specialization for encoding detailed three-dimensional postural information., 528 

which is essential for precise spatial judgments and the accurate interpretation of body 529 

movements (Caspari et al., 2014; Kumar, Popivanov, & Vogels, 2019). This left-530 

lateralization aligns with previous findings indicating a dominance of the left hemisphere in 531 

processing detailed aspects of body stimuli (Bracci et al., 2010; Downing & Peelen, 2016) 532 

and may enhance the ability to recognize and interpret fine-grained body movements, 533 

facilitating action recognition and understanding others' intentions. (Blake & Shiffrar, 2007; 534 

de Gelder et al., 2010; Urgesi, Candidi, Ionta, & Aglioti, 2007). 535 
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In the right hemisphere, we observed a varying contributions trend of the simdist and 536 

categorical models across cortical layers—higher simdist influence in inner layers and greater 537 

categorical influence in superficial layers— which may hint at a layer-specific encoding 538 

strategy. Although these differences were not statistically significant, they hint at a 539 

potentially differentiated role of cortical layers in processing biomechanical and categorical 540 

information. This aligns with the notion that deeper cortical layers may handle more input-541 

driven, sensory information, while superficial layers integrate higher-order, contextual, or 542 

semantic information (Bastos et al., 2012; Felleman & Van Essen, 1991; Larkum, 2013; 543 

Rockland & Pandya, 1979; Spratling, 2017). Additionally, a similar depth-dependent 544 

organization has been demonstrated in the ventral temporal cortex, where superficial layers 545 

predominantly encoded broader, domain-level distinctions, while deeper layers were more 546 

sensitive to specific category-level information (Margalit et al., 2020). 547 

Role of biomechanical plausibility 548 

The substantial predictive power of the simdist model from early to high-level visual cortex 549 

underscores the visual system's sensitivity to biomechanical constraints from the initial stages 550 

of processing. This suggests that, beyond simply recognizing body parts, the brain  may be 551 

encoding midlevel features (de Gelder & Poyo Solanas, 2021) that reflect the biomechanical  552 

characteristics of human bodies. Midlevel features, including biomechanical constraints on 553 

posture and movement, could serve as a crucial link between the configurations driven by 554 

body joints we previously identified (see (Marrazzo et al., 2023)) and more abstract, higher-555 

level representations of the body.  556 

Furthermore, differentiating between possible and impossible movements likely involves 557 

detecting deviations from typical joint configurations and movement patterns, which could 558 

suggest the presence of an internal model of human biomechanics (P. Dayan & Berridge, 559 
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2014; Giese & Poggio, 2003). Our results extend previous findings by demonstrating that 560 

encoding models can effectively capture neural responses to biomechanical plausibility  561 

(Costantini et al., 2005). This sensitivity may reflect a mechanism for detecting errors or 562 

anomalies in observed body movement, acting as a filtering mechanism for upstream 563 

processing of actions, which is critical for social cognition (Candidi, Urgesi, Ionta, & Aglioti, 564 

2008; Kilner, Friston, & Frith, 2007; Li et al., 2024; Schubotz, 2007; Urgesi et al., 2007). 565 

Limitations and future directions 566 

Our scanning parameters focused primarily on occipitotemporal and frontal regions, 567 

excluding areas such as the motor and premotor cortices. These regions are known to play a 568 

crucial role in the recognition of both static and dynamic bodily actions (Pobric & de C. 569 

Hamilton, 2006; Urgesi et al., 2007), responding to biomechanically possible and impossible 570 

stimuli alike  (Costantini et al., 2005)  and contributing to the distinction between actions that 571 

can be performed and those that cannot (Candidi et al., 2008). Incorporating these regions in 572 

future studies will help clarify their role in the perception and discrimination of 573 

biomechanical plausibility, offering a more comprehensive view of the neural mechanisms 574 

underlying action recognition. Additionally, our stimulus creation was limited to 575 

manipulations of the elbows and knees to generate impossible movements. Future research 576 

might include a broader range of movements and joint manipulations to evaluate the 577 

generality of encoding mechanisms across different biomechanical contexts. Also, the 578 

relatively small sample size (n=11) is  common in laminar fMRI studies, but may limit the 579 

generalizability of our findings. Replication with larger samples is needed to confirm the 580 

observed effects and strengthen the reliability of these results.  Finally, further exploration of 581 

hemispheric differences, along with the potential influence of attention and task demands on 582 

encoding, would enrich our understanding of the factors shaping these neural processes.  583 
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Conclusions 584 

In summary, this study investigated whether occipitotemporal cortex, particularly the body 585 

sensitive area EBA, encodes biomechanically possible and impossible body movements. By 586 

comparing three encoding models—3D keypoints, similarity distances, and categorical 587 

differences—we found that a combination of these models significantly predicted neural 588 

responses in the ventral visual cortex. In the left hemisphere, 3D keypoints explained a larger 589 

portion of the variance across cortical layers, while in the right hemisphere we saw an 590 

emerging trend for preference for similarity distances in deeper layers, with categorical 591 

differences becoming more prominent in superficial layers. The study underscores the brain's 592 

sensitivity to biomechanical plausibility, with the biomechanical (simdist) model explaining a 593 

significant portion of the variance from early stages of visual processing. Lastly, these 594 

findings highlight the EBA's functional heterogeneity, with superior regions (middle/superior 595 

occipital gyri) focusing on detailed biomechanical features and anterior regions (lateral 596 

occipital sulcus and inferior temporal gyrus) integrating more abstract, categorical 597 

information.  598 
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