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Abstract

A learning algorithm for the estimation of the structure of nonlinear recurrent neural models
from neural tuning data is presented. The proposed method combines support vector regression
with additional constraints that result from a stability analysis of the dynamics of the )tted
network model. The optimal solution can be determined from a single convex optimization
problem that can be solved with semide)nite programming techniques. The method successfully
estimates the feed-forward and the recurrent connectivity structure of neural )eld models using
as data only examples of stable stationary solutions of the neural dynamics. The class of neural
models that can be learned is quite general. The only a priori assumptions are the translation
invariance and the smoothness of the feed-forward and recurrent spatial connectivity pro)le.
The e.ciency of the method is illustrated by comparing it with estimates based on radial basis
function networks and support vector regression.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A variety of cortical functions can be modeled using relatively simple nonlinear
recurrent neural networks (e.g. [2]). The structure of such models is often prede)ned
by the modeler leaving only a small number of parameters unspeci)ed, which can be
adjusted either by hand or automatically by applying parameter optimization techniques
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(e.g. [6]). This approach seems suitable when the basic structure of the model can,
in advance, be su.ciently constrained based on neurophysiological data. Otherwise,
rather heuristic assumptions about the structure of the network connectivity have to be
made by the modeler.
A theoretically more satisfying approach determines the network structure directly

from the data using a relatively general ansatz for the neural nonlinear network dynam-
ics. In a number of studies techniques from nonlinear system identi)cation, like Wiener
and Volterra series have been applied to estimate the parameters of such general dy-
namic neural models (e.g. [7]). These approaches require typically a large amount of
neural data including a su.cient number of transients in order to )t the higher-order
kernels. This requirement cannot always be met since gathering large amounts of neural
data is quite costly. In cases where no data on the transient relaxations of the neural
activity is available modelers often assume that the measured “quasistationary” activ-
ity within an appropriately chosen time window corresponds to the stable stationary
activation states in their neural models.
We propose here a method for the automatic identi)cation of recurrent neural models

from neural activity patterns that correspond to stable stationary solutions. By exploiting
principles from regularization theory and structural risk minimization the amount of
required neural data can be kept quite small.

2. Basic model

Our algorithm approximates the data using a spatially continuous neural network
(neural )eld) with the form [1]:

�u̇(x; t) + u(x; t) =
∫
w(x − x′)f(u(x′; t)) dx′ +

∫
b(x − x′)s(x′) dx′: (1)

The continuous variable x de)nes the dimension that is encoded by the neurons, e.g.
motion direction or orientation. The variable u(x; t) signi)es the membrane potential of
the model neurons as a function of time. s(x) is an external stimulus that is assumed to
be known and constant in time. The nonlinear function f(u) is a monotonic threshold
function, typically a linear or a step threshold. The network structure is de)ned by the
continuous functions w(x) and b(x) that de)ne the form of the lateral connectivity and
the feed-forward connections. The only assumption about these functions is that they
are smooth.

3. Learning problem

The neural data is obtained for Q diIerent stimuli s(q)(x), 16 q6Q. The neural data
is given by pairs [xl; u

(q)
l ]. xl signi)es the parameter value which the neuron encodes,

e.g. a certain preferred orientation. The activity value u(q)l is the activity of the neuron
that encodes the value xl of the stimulus s(q)(x), i.e. u(q)l = u(xl) | s(q)(x). Goal of the
learning algorithm is to determine the functions w(x) and b(x) in a way that ensures
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that following three constraints are ful)lled: (1) Good approximation of the neural data
by the stationary solutions of the neural model. (2) Smoothness (minimal complexity)
of the )tted functions w(x) and b(x). (3) The neural data is approximated by stable
solutions of the )tted neural dynamics.

4. Algorithm

The algorithm was derived by combining support vector regression [11] with methods
from robust control theory (linear matrix inequalities) [3]. To simplify the notation in
the following we will use the abbreviation v(q)(x)=f(u(q)(x)). We assume that the full
functional form of this thresholded activation distribution is known. In practice it can
be reconstructed from the neural data, e.g. by interpolation or nonlinear regression.
The functions w(x) and b(x) are represented as convolutions of two parameter func-

tions with the Gaussian kernel g(x) (cf. [11]):

w(x) =
∫
!(x − x′)g(x′) dx′; (2)

b(x) =
∫
�(x − x′)g(x′) dx′: (3)

To ensure that the functional form of the estimated feed-forward and lateral con-
nections has minimal complexity we apply the structural risk minimization principle
by minimizing a bound for the VC dimension of these functions. Following derivations
in [11] this is possible, the minimization of the following error functional:

E[!; �] =
1
2

∫
!(x)2 dx +

1
2

∫
�(x)2 dx + C

∑
l;q

(�(q)l + �(q)∗l ) (4)

with the positive constant C subject to the constraints (with 16 l6L and 16 q6Q):

u(q)l −
∫∫

!(xl − x′ − x′′)v(q)(x′)g(x′′) dx′ dx′′

−
∫∫

�(xl − x′ − x′′)s(q)(x′)g(x′′) dx′ dx′′ + �(q)l + �¿ 0; (5)

−u(q)l +
∫∫

!(xl − x′ − x′′)v(q)(x′)g(x′′) dx′ dx′′

+
∫∫

�(xl − x′ − x′′)s(q)(x′)g(x′′) dx′ dx′′ + �(q)∗l + �¿ 0; (6)

�(q)l ¿ 0; (7)

�(q)∗l ¿ 0: (8)
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Using methods from variational calculus this optimization problem can be transformed
in dual form [11] with solutions of the form

!(x) =
∑
l;q

(�(q)∗l − �(q)l )
∫
g(xl − x′ − x)v(q)(x′) dx′; (9)

�(x) =
∑
l;q

(�(q)∗l − �(q)l )
∫
g(xl − x′ − x)s(q)(x′) dx′; (10)

where the coe.cients �(q)l and �(q)∗l are Lagrange multipliers. The dual optimization
problem is a quadratic programming problem that can be written compactly by de)ning
the vectors �(∗) = [�(1)(∗)1 ; : : : ; �(Q)(∗)L ]T and u= [u(1)1 ; : : : ; u

(Q)
L ]T. The following function

has to be maximized over the vectors �(∗)

L(�; �∗) =− 1
2 (�

∗ − �)T(Kv + Ks)(�∗ − �) + uT(�∗ − �)− �1T(�∗ + �) (11)

with the box constraints:

06 �(q)l ; �
(q)∗
l ¡C: (12)

The elements of the (LQ)× (LQ) matrices Kv and Ks are given by

(Kv)
qq′

ll′ =
∫∫∫

g(xl − x′ − x)g(xl′ − x′′ − x)v(q)(x′)v(q′)(x′′) dx dx′ dx′′;

(Ks)
qq′

ll′ =
∫∫∫

g(xl − x′ − x)g(xl′ − x′′ − x)s(q)(x′)s(q′)(x′′) dx dx′ dx′′;

where rows and columns of the matrices run through all combinations of the index pairs
(l; q) and (l′; q′). A number of additional constraints follows from the requirement that
the data should correspond to stable states of the network dynamics. For each stimulus
s(q)(x) the stability of the solution can be veri)ed by linearizing dynamics (1) around
the measured neural activity distribution u(q)(x). An approximation for the spatially
continuous activity dynamics can be obtained by sampling the )eld discretely in the
points xr . From this the stability matrix of the linearized dynamics is derived as

A(q) =−I +WD(q) (13)

with Wmn = w(xm − xn) and D(q)
nn = f′(u(q)(xr))Lxr , where Lxr is the discretization

interval along the x dimension. Exploiting Eqs. (2), (3), and (9) it can be shown
that this stability matrix is an a.ne function of the parameters �(q)l and �(q)∗l . For the
stability of the dynamics it must be required that the matrix A has no eigenvalues
with nonnegative real part. An equivalent stability condition that is more suitable for
an elegant algorithmic implementation is given by the Lyapunov inequality

A(q)TP+ PA(q)6 0; (14)

where P is a positive de)nite symmetric matrix that determines the speed of the re-
laxation of perturbations of the stationary solution. This matrix is preassigned to be a
multiple of the unit matrix. X6 0 means that the matrix X is negative semi-de)nite.
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Obviously, the last equation is also a.ne in the parameters �(q)l and �(q)∗l . This allows
to reformulate the stability conditions as set of linear matrix inequalities of the form:

A(q)
0 +

∑
l;q

(�(q)∗l − �(q)l )A(q)
n ¿ 0: (15)

Finally, by application of Schur complements [3], the quadratic programming problem
(11) and (12) can be converted into a semi-de)nite programming problem

minimize E

subject to B0 + EBE +
∑
l;q

(�(q)∗l B(q)∗
l + �(q)l B

(q)
l )¿ 0 (16)

with the new additional scalar parameter E. This together with Eqs. (15) and (16) de)ne
a common semi-de)nite programming problem that, if feasible, de)nes a solution that
ful)lls all three constraints formulated in the last section. Semi-de)nite programming
problems are convex, i.e. have a unique solution. In addition, they can be solved
e.ciently with interior point methods [3,10].

5. Results

The method was evaluated with simulated neural data. A neural )eld with gaussian
feed-forward kernel b(x) and a Mexican hat-shaped lateral interaction function w(x)
was simulated. The stable stationary solutions for multiple input signals s(x) (com-
posed from one or multiple delta pulses along the x axes) were used as training data.
Fig. 1 shows an example for the model )ts obtained with three diIerent methods:
(1) standard regularization by modeling the functions b(x) and w(x) with radial ba-
sis function networks (dotted line), (2) support vector regression (dashed-dotted line),
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Fig. 1. Estimation results obtained with diIerent methods for simulated data. The left panel shows the
estimated kernels describing the feed-forward and feedback connectivity. Right panel shows the stable activity
distributions u(x) obtained by simulation of the network using the data as initial condition. The original data
is plotted in grey. The dashed curves indicate the estimation results obtained with the proposed method.
The results obtained using a standard radial basis function network (dotted lines) and with support vector
regression [11] (dashed-dotted lines) are shown for comparison.
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and (3) the proposed algorithm with dynamic stability control (dashed line). Only the
proposed method )ts a model with stable solutions that are close to the data. All three
methods identify models that lead to very small equation errors for the approximation
of Eq. (1). However, the solutions of the methods without dynamic stability control
drift away from the data during the iteration of the )tted dynamics. This occurs in
particular when the original neural dynamics is close to instability.

6. Discussion

A new learning algorithm was proposed that estimates automatically the structure
of a nonlinear recurrent neural network model (neural )eld) from a sparse set of
neural data. The stable solutions of the )tted model approximate the neural data. Only
very general a priori assumptions about the structure of the model have to be made,
including the shape of the nonlinearity and smoothness and translation invariance of
the connections. Many existing dynamic neural models in neuroscience and technical
applications ful)ll these assumptions. Neural )eld models have been automatically )tted
before (e.g. [4,5]). The speci)c property of the proposed method is that it permits an
automatic estimation of such models without the knowledge of transients of the neural
signals. For a variety of applications in neuroscience such transients are not easily
available.
The theoretically interesting aspect of the proposed method is that it combines struc-

tural risk minimization with constraints resulting from a stability analysis of learned
dynamical model. Constraints expressed in terms of linear matrix inequalities have
been used for the training of recurrent neural networks without exploiting regulariza-
tion (e.g. [8]). In addition, standard regularization networks have been combined with
stability constraints in the context control applications [9]. The proposed approach
seems very general and might be extended for other applications that require learning
of regularized dynamical models with capacity control.
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