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ABSTRACT 

The modeling of the collective behavior of many characters is an important problem in crowd animation. Such behaviors 

can be described by solutions of large-scale nonlinear dynamical systems, which are built from many interacting 

components. The design of the stability properties of such complex multi-component systems has been rarely studied in 

computer animation. We present an approach for the solution of this problem that is based on Contraction Theory, a 

framework for the analysis of the stability of complex nonlinear dynamical systems. Based on learning-based realtime 

capable architecture for the animation of crowds, we demonstrate the application of this novel approach for stability 

design. We derive conditions guaranteeing the global asymptotic stability of the formation of coordinated navigation 

behavior of crowds. In addition, we demonstrate that the same approach permits to derive bounds that guarantee the 

minimal convergence rates of the formation of order in navigating crowds.  

KEYWORDS 

computer animation, coordination, crowd animation, stability 

1. INTRODUCTION 

Dynamical systems are frequently applied in crowd animation for the simulation of autonomous and 

collective behavior of many characters (Musse & Thalmann 2001, Treuille et al. 2006). Some of this work 

has been inspired by observations in biology, showing that coordinated behavior of large groups of agents, 

such as flocks of birds, can be modeled as emergent behavior that arises from the dynamical coupling 

between interacting agents, without requiring an external central mechanism that ensures coordination 

(Cucker & Smale 2007, Couzin 2009, Camazine et al. 2001). Such models can be analyzed by application of 

methods from nonlinear dynamics (Pikovsky et al. 2003). The simulation of collective behavior by self-

organization in systems of dynamically coupled agents is interesting because it might reduce the 

computational costs of traditional computer animation techniques, such as scripting or path planning (Treuille 

et al. 2006). In addition, the generation of collective behavior by self-organization allows to implement 

spontaneous adaptation to external perturbations or changes in the system architecture, such as the variation 

of the number of characters (Cucker & Smale 2007). However, the mathematical analysis of the underlying 

dynamical systems is typically quite complicated. The dynamics describing individual agents is typically 

highly nonlinear, making a systematic treatment of stability properties often infeasible even for individual 
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characters. In addition, crowd animation requires the dynamic interaction of many such agents. 

Consequently, the convergence and stability properties of such dynamical systems have been rarely 

addressed in the context of computer animation. Yet, approaches for a systematic analysis and design of the 

dynamical properties of crowd animation systems seem highly desirable, since they might permit to 

guarantee desired system properties and the robustness of the generated behavior under variations of system 

inputs and the system parameters.  

In this paper we introduce Contraction Theory (Lohmiller & Slotine 1998) as a novel framework for the 

analysis and design of the convergence properties of navigating avatars during self-organized order 

formation. This framework is applied to simple learning-based animation architecture for the real-time 

synthesis of interacting characters. The paper is structured as follows: The structure of the animation system 

is briefly sketched in section 2. The dynamics underlying navigation control is described in section 3. 

Subsequently, in section 4 we introduce some basic ideas of Contraction Theory. The major results of our 

stability analysis and some demos of their application to crowd animation are described in section 5, 

followed by some conclusions. 

2. SYSTEM ARCHITECTURE 

Our investigation of the collective dynamics of crowds was based on a learning-based animation system 

(Giese et al. 2009), see Fig.1. Based on motion capture data, we learned spatio-temporal components of sets 

of different gait types, applying an algorithm for translation-invariant blind source separation (Omlor & 

Giese 2006). The obtained source components were generated online by nonlinear dynamical systems, whose 

state dynamics was given by a limit cycle oscillators. The mappings (t)σ j
 between the stable solution of the 

nonlinear oscillators and the required source functions were learned by application of kernel methods. Each 

character is modeled by a single Andronov-Hopf oscillator (Giese et al. 2009), whose solution is mapped 

nonlinearly onto three source signals. These signals were then superimposed with different linear weights 
ijw  

and phase delays i jt  in order to generate the joint angle trajectories )(tξ i
. By blending of the mixing weights 

and the phase delays, intermediate gait styles were generated. This allowed us to simulate specifically 

walking along paths with different curvatures, and changes in step length. Interactive behavior of multiple 

characters can be modeled by making the states of the oscillators and the mixing weights dependent on the 

behavior of the other characters. Such coupling results in a highly nonlinear system dynamics. 

For the crowd animation scenarios in this paper, the heading directions of the characters were controlled by a 

navigation dynamics that steers the avatars towards goal points, which were placed along parallel straight 

lines in front of the characters. The heading dynamics was given by a nonlinear first-order differential 

equation (see (Giese et al. 2009) for details). This control of heading direction was active only during the 

initial stage of the organization of the crowd, which results in an alignment of the characters along the 

parallel straight lines, independent of their initial positions and gait phases. For the mathematical stability 

analysis presented in the following, we neglected the influence of the dynamics of the control of heading 

direction, focusing on the second phase of order formation when the characters’ heading directions are 

already aligned. In this case, the positions of the characters can be described by a single position 

variable )z(t , see Fig. 2. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture of the animation system.  
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Figure 2. a. Crowd coordination setup: every avatar i is characterized by its position (t)iz , the phase (t)if , and the 

instantaneous eigenfrequency (t)φ(t)ω ii  of Andronov-Hopf oscillator, and the step-size scaling parameter (t)μ i
. 

Self-organizing scenarios: b. control of step frequency by distances (convergent case); c. same scenario (divergent 

behavior); d. control of step length together with phase synchronization (convergent case). 

3. CONTROL DYNAMICS 

Beyond the control of heading direction, the analyzed scenarios of order formation in crowds require the 

control of the following variables: 1) phase of the step cycle and 2) step length. Neglecting the influence of 

heading direction, where each individual character was modeled by an Andronov-Hopf oscillator with 

constant equilibrium amplitude ( 1r *

i  ). For an appropriate choice of parameters, these nonlinear oscillators 

have a limit cycle that corresponds to a circular trajectory in phase space (Andronov et al. 1987).  

In polar coordinates and with instantaneous eigenfrequency w  this dynamics is given by: 

))()(()( trtrtr 21 ,  wf )(t . Control affects the instantaneous eigenfrequency w  of the Andronov-Hopf 

oscillators and its phase f , while the first equation guarantees that the state stays on the limit cycle 

( t1,  r(t)  ). 

The position 
iz  of any character along the parallel paths (see Fig. 2) fulfils the differential equation 

)((t) iii gz ff  , where the positive function g  determines the propagation speed of the character depending 

on the phase in the gait cycle. This nonlinear function was determined empirically from the kinematics of the 

character. By integration of this propagation dynamics one obtains: 
iii cGz ~)((t)  f , with some constant 

ic~  

that depends on the initial gait phase of character i and with 
i

dgG i

f

fff
0

)()( , assuming 00 )(G . Three 

control rules were implemented: 

3.1 Control of step frequency 

A simple form of speed control is based on making the frequency of the oscillators 
if
  dependent on the 

behavior of the other characters. Let 
0w  be the equilibrium frequency of the oscillators without interaction, 

then a simple controller is defined by the differential equation:  





N

j

ijjjiiijdi dctGctGKmt
1

01 ])~)((()~)(([()()( ffwf  

The constants 
i jd define the stable pairwise relative distances in formed order for each pair (i, j) of characters. 

The elements of the link adjacency matrix K  are 1ijK  if characters i and j are coupled and zero otherwise. 

In addition, we assume 0iiK . The constant 0dm  defines the coupling strength. 



 

 

 

 

 

 

 

 

 

 

Figure 3. Propagation velocity for 10 different values of step length morphing parameter µ = [0 . . . 0.25] dependent on 

gait cycle phase (t)f  and 1(t) w . The vertical axis is scaled in order to make the average velocity equal to one for 

0m  (lowest thick line). This empirical estimates are well approximated by (t))()(1 ig fm . 

 

With the Laplacian d
L  of the coupling graph, which is defined by 

ij

d

ij KL  for ji   and  


N

j ij

d

ii KL
1

, 

and constants  


N

j ijiji dKc
1

and  


N

j jiiji ccKc
1

)~~(ˆ  the last equation system can be written in vector 

form:  

)ˆ)(()( ccφLφ  Gm d

d12 0w  

3.2 Control of step length 

Step length was varied by morphing between gaits with short and long steps. A detailed analysis shows that 

the influence of step length on the propagation could be well captured by simple linear rescaling. If the 

propagation velocity of avatar i is (t))((t)(t))((t)(t)(t) iiiiii ggzv fwff    for the normal step size, then 

the velocity for modified step size was well approximated by (t))((t))(1(t)(t) iiiii gzv fwm   with the 

morphing parameter 
im . The range of morphing parameters was restricted to the interval 5050 ..  im , 

where this linear scaling law was fulfilled with high accuracy. The empirically estimated propagation 

velocity in heading direction, dependent on gait phase, is shown in Fig. 3 for different values of the step 

length morphing parameter m . Using the same notations as in equation (1), this motivates the definition of 

the following dynamics that models the influence of step length control on the propagation speed:  

))(()()( czLφφz  z

zmg 13   

In this equation z
L  signifies the Laplacian of the relevant coupling graph, and 

zm  the strength of the 

coupling. For uncoupled characters ( 0zm ) this equation is consistent with the definition of propagation 

speed that was given before. 

3.3 Control of step phase: 

By defining separate controls for step length and step frequency it becomes possible to dissociate the control 

of position and step phase of the characters. Specifically, it is interesting to introduce a controller that results 

in phase synchronization between different characters. This can be achieved by addition of a simple linear 

coupling term to equation (1)  

φLccφLφ
fw kGm d

d  )ˆ)(()( 14 0
  

with 0k  and the Laplacian f
L . (All sums or differences of angular variables were computed by modulo 

2).  

The mathematical results derived in the following section apply to subsystems of this the complete system 

dynamics that is given by equations (3) and (4). In addition, animations are presented for the full system 

dynamics. 
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4. CONTRACTION THEORY 

Dynamical systems describing the behavior of autonomous characters are essentially nonlinear. In contrast to 

the linear dynamical systems, a major difficulty of the analysis of stability properties of the nonlinear is that 

the stability properties of parts usually do not transfer to composite systems. Contraction Theory (Lohmiller 

& Slotine 1998) provides a general method for the analysis of essentially nonlinear systems, which permits 

such a transfer, making it suitable for the analysis of complex systems with many components. Contraction 

Theory characterizes the system stability by the behavior of the differences between solutions with different 

initial conditions. If these differences vanish exponentially over time, and its solution converges towards a 

single trajectory, independent from the initial states, the system is called globally asymptotically stable. For a 

general dynamical system of the form  

),()( txfx 5  

assume that )(tx  is one solution of the system and that )()()(~ ttt xxx   is a neighboring one with a 

different initial condition. The function )(tx  is also called virtual displacement. With the Jacobian of the 

system 
x

xf
xJ






),(
),(

t
t  it can be shown (Lohmiller & Slotine 1998) that any nonzero virtual displacement 

decays exponentially to zero over time if the symmetric part of the Jacobian 2/)( T

s JJJ   is uniformly 

negative definite, denoted as 0sJ , i.e. has negative eigenvalues for all relevant state vectors x . In this 

case, it can be shown that the norm of the virtual displacement decays at least exponentially to zero, for 

t . If the virtual displacement is small enough, then )(),()( ttt xxJx   , implying through  

)(),()()( tttt
dt

d
s

T
xxJxx  2

2
    the inequality: 





 

t

s dsst
0

0 )),((exp)()( max xJxx  .  

This decay occurs with a convergence rate (inverse timescale) that is bounded from below by the quantity 

)),((sup max, tstc xJx    , where  (.)max  signifies the largest eigenvalue. This has the consequence that 

all trajectories converge to a single solution exponentially in time (Lohmiller & Slotine 1998). 

An important extension of contraction analysis is applying it to the hierarchically coupled systems (Lohmiller 

& Slotine 1998). Consider the composite dynamical system:  


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1
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x
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where the dynamics of the first subsystem is not influenced by the dynamics of the second. Such system is 

called hierarchically coupled and its Jacobian is:  
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Consider then the smooth dynamics of virtual displacements:  
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where 
21F  is bounded. The first subsystem does not depend on the second one, so that 

1x  exponentially 

converges to 0 if 011 s)(F . Then, 
121 xF   is an exponentially decaying disturbance for the second 

subsystem. In this case, uniformly negative definite 
22F  implies exponential convergence of  

2x  to an 

exponentially decaying ball, see (Lohmiller & Slotine 1998) for details of proof. The whole system is then 

globally exponentially convergent to a single trajectory. 

Many systems are not contracting with respect to all dimensions of the state space, but show convergence 

with respect to a subset of dimensions. Such behavior can be mathematically characterized by partial 

contraction (Wang & Slotine 2005, Park et al. 2009). The underlying idea is to construct an auxiliary system 

that is contracting with respect to a subset of dimensions (or submanifold) in state space. The major result is 

the following: 

Theorem 1 Consider a nonlinear system of the form 

),,()( txxfx 9  

and assume that the auxiliary system 



),,()( txyfy 10  

is contracting with respect to y  uniformly for all relevant x . If a particular solution of the auxiliary system 

verifies a specific smooth property, then all trajectories of the original system (9) verify this property with 

exponential convergence. The original system is then said to be partially contracting. (Wang & Slotine 

2005). 

 

A ’smooth property’ is a property of the solution that depends smoothly on space and time, such as 

convergence against a particular solution or a properly defined distance to subspace in the phase space. The 

proof of the theorem is immediate noticing that the observer-like system (10) has )()( tt xy   for all 0t  as 

a particular solution. Since all trajectories of the y-system converge exponentially to a single trajectory, this 

implies that also the trajectory )(tx  verifies this specific property with exponential convergence. 

It thus is sufficient to show that the auxiliary system is contracting to prove convergence to a subspace. Let 

us also assume that the system has a flow-invariant linear subspace M , which is defined by the property that 

trajectories starting in this space always remain in it for arbitrary times ( MM  ,t)t: (f ). If matrix V  is an 

orthonormal projection onto M , then the sufficient condition for global exponential convergence to M  is: 

0T
VVJ s

, where smaller sign indicates that the matrix is negative definite (Pham & Slotine 2007, Park et 

al. 2009). 

5. RESULTS: STABILITY ANALYSIS FOR DIFFERENT NAVIGATION 

SCENARIOS 

We derived contraction bounds for three scenarios that correspond to the control dynamics with increasing 

levels of complexity. 

5.1 Control of step phase without position control: 

The simplest case is the control of the phase of the walkers’ step cycles without simultaneous control of the 

position of the characters. Such simple control already permits to simulate interesting behaviors, such as 

soldiers synchronizing their step phases (Park et al. 2009). The underlying dynamics is given by (4) with 

0dm . For N identical dynamical systems with symmetric identical coupling gains k this dynamics can be 

written as. 

Nik
j

ijii ,,,)()(  1 
 iN

xxxfx  

where 
iN  defines the index set specifying the neighborhood in the coupling graph, i.e. the other subsystems 

or characters that are coupled with character i (see Fig.4 for examples).  

 

Figure 4.  a. Symmetric coupling with coupling constant k, 
iN  specifying the set of neighbors of i;  b.-d. star, chain, 

ring coupling schemes. 

 

This type of symmetric coupling, where the interaction forces between subsystems depending only on the 

differences of the phase variables is called diffusive coupling. In this case, the Laplacian matrix of the 

coupling scheme is given by 
pG ILL  , where p is the dimensionality of the individual sub-systems, and 

where   signifies Kronecker product. The Laplacian of the coupling graph is the matrix 
GL . The system 



can be then rewritten compactly as Lxxfx kt  ),(  with the concatenated phase variable TT

N

T ],,[ xxx 1 . 

The Jacobian of this system is LxDxJ ktt  ),(),( , where the block-diagonal matrix ),( txD  has the 

Jacobians of the uncoupled components ),( tix
x

f



  as entries.  

The dynamics has a flow-invariant linear subspaceM  that contains the particular solution   Nxx 1
. For 

this solution all state variables 
ix  are identical and thus in synchrony. In addition, for this solution the 

coupling term in equation (5) vanishes, so that the form of the solution is identical with the solution of the 

uncoupled systems )( ii xfx  . If V  is a projection matrix onto the subspace M , then, the sufficient 

condition for convergence toward M  is 0 T

skt VLxDV )),((  (Pham & Slotine 2007, Park et al. 2009). 

The smaller sign indicating that the matrix is negative definite. With 

L  signifying the smallest non-zero 

eigenvalue of symmetric part of the Laplacian 
sL this implies:    )(sup))(( max,min st

T

s kk DVLV xL     

The maximal eigenvalue for the individual dynamical system is )),((sup max, tt x
x

f
x




 . The sufficient 

conditions for global stability of the overall system is given by 




 Lx x

x

f
 /)),((sup max, tk t

. This implies 

the minimum convergence rate: ))),(((sup max,

T

stc kt VLxDVx   . 

For the special case of (4) with 0dm  this implies the sufficient contraction conditions  0k  and 

0s)( f
L . Different topologies of the coupling graphs result in different stability conditions, since for 

example ))/cos(2 - 2(1 N 

L
 for symmetric ring coupling, while N

L  for all-to-all coupling. Where N 

is the number of characters. See (Wang & Slotine 2005, Park et al. 2009) for details. 

In order to validate these theoretical bounds we computed empirical convergence rates erexp  from our 

animation system. They were obtained by analyzing the time courses of the virtual 

displacements )exp(~ exp tx er   and approximating them by exponential convergence. The norm of the 

virtual displacement x  was approximated by the angular dispersion 211
1 /)(ˆ ji

j
e

N
R

f

  of the phases 

jf  of Andronov-Hopf oscillators (c.f. (Kuramoto 1984)), averaged over many simulations with random 

initial conditions. 
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Figure 5. a. Dispersion of the phase of the oscillators, averaged over 100 simulations with random initial conditions, as 

function of time (gait cycles). After an offset time, during which the dispersion remains relatively constant, it decays 

exponentially. Convergence rates were estimated by fitting linear function to this decay; b. The relationship between 

convergence rate and coupling strength k for different types of coupling graphs; c. Slopes of this relationship as function 

of the number N of Andronov-Hopf oscillators, comparing simulation results (indicated by the same symbols near to the 

lines) and derived from the theoretical bounds (Park et al. 2009). 



Fig.5a) shows the logarithm of this dispersion measure as a function of time (in gait cycles). After an initial 

constant interval (offset time), the logarithm of dispersion shows a nearly linear decay with time. From these 

parts of the curve the rate constants erexp  were estimated by linear regression. The results for different 

coupling topologies and for different numbers of avatars are shown in Fig.5b) shows the dependency 

between the coupling strengths k and the convergence rate erexp , estimated from simulations in the regime 

of the exponential convergence. As derived from the theoretical bound, the convergence rate varies linearly 

with the coupling strength. In case of three oscillators the ring coupling is equivalent with all-to-all coupling. 

Fig.5c) shows the slope dkkd er /)(exp  of this linear relationship as function of N, the number of oscillators 

in the network. We find a close similarity between the theoretically predicted relationship (dashed curves) 

and the results from the simulation (indicated by the stars). In addition, it is evident that for all-to-all coupling 

the convergence rate increases with the number of oscillators, while for chain or ring coupling the 

convergence speed decreases with the number of oscillators (for fixed coupling strength). These results show 

in particular that the proposed theoretical framework is not only suitable for proving asymptotic stability, but 

also for guaranteeing the convergence speed of the system dynamics. 

5.2 Speed control by variation of step frequency: 

The dynamics of this system is given by equations (2) and (3) for 0zm .  The Jacobian of this system is 

given by 
g

d

dm DLφJ )( , where 0 )()( iiig g fD  is strictly positive diagonal matrix. The sufficient 

conditions for exponential contraction are: 0 )(φBJ ds m , introducing Td

gg

d )()( LDDLφB  . 

The exponential contraction conditions are thus satisfied when 0 Td

gg

d )()( LDDLφB  for any 

diagonal matrix 0gD  and for 0 Tdd )(LL . Matrices d
L  which satisfy this property for 0 gD  are 

called D-stable. The proof that 0B  for 0d
L  and any diagonal 0gD  is given by (Bellman 1960, Ch.6, 

p.94). The proof for real symmetric 0d
L  is following the same line using Hadamard product of two 

symmetric matrices and exploiting the decomposition  


N

i

T

ii

d

i

d

2
VVLL )( , where the 

iV  are 

eigenvectors of d
L , which span its eigenspaces corresponding to distinct eigenvalues )( d

i L  ordered in 

ascending order, and 01 )( dL  (c.f. Schur 1911, Johnson 1974). For ],,[ Ni 2 , 
iV  are the rows of the 

matrix V̂ , the matrix of projection to the orthogonal complement of the flow-invariant manifold. Using this 

decomposition, it is straightforward to show that 0)(φB , and that 0)(φB  unless   Nff 1
. Along 

the same line, a lower bound for the contraction rate is computed from the projected symmetrized Jacobian  
T

d

T

s m VφBVVφJV ˆ)(ˆ)/(ˆ)(ˆ 2  , resulting in the guaranteed contraction rate  dgmd L
f f ))((min . 

Due to the row diagonal dominance of d
L , for the positive symmetric coupling coefficients 0 jiij KK  

one can show 0d
L  applying Gershgorin’s theorem (Horn & Johnson 1985). This last step proves the 

global stability of system with positive interactions 0 jiij KK . 

In order to suppress oscillatory fluctuations of the positions of the characters the above dynamics can be 

extended by a low-pass filtering of the character positions: czz ~))(()()(  tGtt f . By introduction of a 

linear coordinate transformation, bounds for the positive filter constant   can be derived that guarantee 

globally stable behavior of the system. The dynamics of the system with low-pass filtering is given by 
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which can be transformed linearly by introduction of the new coordinates zLy
d

dm )/(   and φyx  : 
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The Jacobian of this system is 
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2
 . Derived from positivity of 

symmetrized Jacobian, the sufficient stability conditions are 0)()/( φBdm .  As in the unfiltered case, 

this is condition is fulfilled for 0)(φg , 0dm , 0 , and 0s

d )(L , and when additionally: 

)(// max B 212 dm . The last inequality results in a lower bound for the filter coefficient  

)())((min max

d

sd gm Lf f . 

An illustration of these stability bounds if given by the [Movie
1
]; that shows convergent behavior of the 

characters when the contraction condition 0s

d )(L  is satisfied. [Movie
2
] shows the divergent behavior of a 

group when this condition is violated.  

5.3 Stepsize control combined with a control of step phase: 

The dynamics is given by equations (3) and (4) with 0dm . It can be shown that the dynamics for )(tz  is 

partially contracting for any external input )(tφ , if 0zm , 0)(tω and 0s

z )(L . This defines a case of a 

hierarchical system (in form of (8)), and the effective relaxation time is determined by equation (4). This 

subsystem is partially contracting, if 0k  and 0s)( f
L . In this case, the effective relaxation time for 

phase synchronization is given by  f L
k , where 

f
L

 is the smallest non-zero eigenvalue of 
s)( f

L . This 

implies that the relaxation time for the distance control is determined by the minimum of  
   and  

z  , 

where  zgmzz L
f f ))((min . 

Demonstrations of this control dynamics satisfying the contraction conditions are shown in [Movie
3
], without 

control of step phase, and in [Movie
4
], with control of step phase. 

5.4 Advanced scenarios: 

A simulation of a system with stable dynamics with both types of speed control (via stepsize and step 

frequency) and step phase control is demonstrated in [Movie
5
]. Applying the same dynamics, a larger crowd 

simulated with Horde3d (open-source 3D rendering engine, http://horde3d.org/) is shown in [Movie
6
]. In this 

scenario, the dynamic obstacle avoidance and the control of heading direction were activated in an initial 

time interval for unsorting of a formation of characters. In a second time interval navigation is deactivated, 

and speed and position control according to the discussed principles takes over. The development of stability 

bounds and estimates of relaxation times for such advanced scenarios is the goal of ongoing and future 

extensions of the proposed approach. 

6. CONCLUSION 

For the example of a learning-based system for the animation of locomoting groups, we have demonstrated 

first examples of an application of Contraction Theory for the analysis and the design of stability and 

convergence properties of collective behaviors in animated crowds. Obviously, future work has to extend this 

work to more complex scenarios. A generalization of this approach to other problems in character animation, 

                                                 
1 http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video1.avi 
2 http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video2.avi 
3 http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video3.avi 
4 http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video4.avi 
5 http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video5.avi 
6 http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video6.avi 
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http://www.uni-tuebingen.de/uni/knv/arl/avi/huma/video3.avi
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such as the control of goal-directed behavior and an extension for non-periodic movements seems possible, 

and such extensions form the core of the planned future work. 
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