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Abstract Dynamic facial expressions are crucial for communication in primates. Due to the

difficulty to control shape and dynamics of facial expressions across species, it is unknown how

species-specific facial expressions are perceptually encoded and interact with the representation of

facial shape. While popular neural network models predict a joint encoding of facial shape and

dynamics, the neuromuscular control of faces evolved more slowly than facial shape, suggesting a

separate encoding. To investigate these alternative hypotheses, we developed photo-realistic

human and monkey heads that were animated with motion capture data from monkeys and

humans. Exact control of expression dynamics was accomplished by a Bayesian machine-learning

technique. Consistent with our hypothesis, we found that human observers learned cross-species

expressions very quickly, where face dynamics was represented largely independently of facial

shape. This result supports the co-evolution of the visual processing and motor control of facial

expressions, while it challenges appearance-based neural network theories of dynamic expression

recognition.

Introduction
Facial expressions are crucial for social communication of human as well as non-human primates

(Calder, 2011; Darwin, 1872; Jack and Schyns, 2017; Curio et al., 2010), and humans can learn

facial expressions even of other species (Nagasawa et al., 2015). While facial expressions in every-

day life are dynamic, specifically, expression recognition across different species has been studied

mainly using static pictures of faces (Campbell et al., 1997; Dahl et al., 2013; Sigala et al., 2011;

Guo et al., 2019; Dahl et al., 2009). A few studies have compared the perception of human and

monkey expressions using movie stimuli, finding overlaps in the brain activation patterns induced by

within- and cross-species expression observation in humans as well as monkeys (Zhu et al., 2013;

Polosecki et al., 2013). Since natural video stimuli provide no accurate control of the dynamics and

form features of facial expressions, it is unknown how expression dynamics is perceptually encoded

across different primate species and how it interacts with the representation of facial shape.

In primate phylogenesis, the visual processing of dynamic facial expressions has co-evolved with

the neuromuscular control of faces (Schmidt and Cohn, 2001). Remarkably, the structure and

arrangement of facial muscles is highly similar across different primate species (Vick et al., 2007;

Parr et al., 2010), while face shapes differ considerably, for example, between humans, apes, and

monkeys. This motivates the following two hypotheses: (1) The phylogenetic continuity in motor con-

trol should facilitate fast learning of dynamic expressions across primate species and (2) the different
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speeds of the phylogenetic development of the facial shape and its motor control should potentially

imply a separate visual encoding of expression dynamics and basic face shape. The second hypothe-

sis seems consistent with a variety of data in functional imaging, which suggests a partial separation

of the anatomical structures processing changeable and non-changeable aspects of faces

(Haxby et al., 2000; Bernstein and Yovel, 2015).

We investigated these hypotheses, exploiting advanced methods from computer animation and

machine learning, combined with motion capture in monkeys and humans. We designed

highly realistic three-dimensional (3D) human and monkey avatar heads by combining structural

information derived from 3D scans, multi-layer texture models for the reflectance properties of the

skin, and hair animation. Expression dynamics was derived from motion capture recordings on mon-

keys and humans, exploiting a hierarchical generative Bayesian model to generate a continuous

motion style space. This space includes continuous interpolations between two expression types

(‘anger’ vs. ‘fear’), and human- and monkey-specific motions. Human observers categorized these

dynamic expressions, presented on the human or the monkey head model, in terms of the perceived

expression type and species-specificity of the motion (human vs. monkey expression).

Consistent with our hypotheses, we found very fast cross-species learning of expression dynamics

with a typically narrower tuning for human- compared to monkey-specific expressions. Most impor-

tantly, the perceptual categorization of expression dynamics was largely independent of the facial

shape (human vs. monkey). In particular, the accuracy of the categorization of species-specific

dynamic facial expressions did not show a dependence on whether the species-specific expressive

motion and the avatar species were matching (e.g., monkey expressions being recognized more

accurately on a monkey avatar). Our results were highly robust against substantial variations in the

expressive stimulus features. They specify fundamental constraints for the computational neural

mechanisms of dynamic face processing and challenge popular neural network models, accounting

for expression recognition by the learning of sequences of key shapes (e.g. Curio et al., 2010).

Results
In this section, we briefly sketch the methodology of our experiments; whereas many other impor-

tant details can be found in ’Materials and methods’ section and ’Appendix 1’. Then, we describe in

detail the results of the three main experiments, which we realized (further control experiments are

described in ’Appendix 1’).

Our studies investigated the perceptual representations of dynamic human and monkey facial

expressions in human observers, exploiting photo-realistic human and monkey face avatars

(Figure 1A). The motion of the avatars was generated exploiting motion capture data of both pri-

mate species (Figure 1B), which were used to compute the corresponding deformation of the sur-

face mesh of the face, exploiting a model based on elastic ribbon structures that were modeled

after the main facial muscles of humans and monkeys (Figure 1C and Appendix 1).

In order to realize a full parametric control of motion style, we exploited a Bayesian motion

morphing technique (’Materials and methods’) to create a continuous expression space that

smoothly interpolates between human and monkey expressions. We used two human expressions

and two monkey expressions as basic patterns, which represented corresponding emotional states

(‘fear’ and ‘anger/threat’). Interpolating between these four prototypical motions in five equidistant

steps, we generated a set of 25 facial movements that vary in five steps along two dimensions, the

expression type, and the species, as illustrated in Figure 1D. Each generated motion pattern can be

parameterized by a two-dimensional style vector (e, s), where the first component e specifies the

expression type (e ¼ 0: expression 1 (‘fear’) and e ¼ 1: expression 2 (‘anger/threat’)), and where the

second variable s defines the species-specificity of the motion (s ¼ 0: monkey and s ¼ 1: human). The

dynamic expressions were used to animate a highly realistic monkey as well as a human avatar model

(generation; ’Materials and methods’). In order to vary the two-dimensional stimulus features, we

rendered the avatars from two different view angles: from the front view and from the view that was

rotated by 30 degrees about the vertical axis. This rotated view maximized the differences of the

two-dimensional appearance relative to the front view, while avoiding strong salient changes, such

as occlusions of face parts. The following sections describe the results of the three main experiments

of our study.
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Dynamic expression perception is largely independent of facial shape
In our first experiment, we used the original dynamic expressions of humans and monkeys as proto-

types and presented morphs between them, separately, on the human and the monkey avatar faces,

with two different view angles (0 and 30 degrees rotation about the vertical axis). Facial movements

of humans and monkeys are quite different (Vick et al., 2007), so that our participants, all of whom

had no prior experience with macaque monkeys, needed to be familiarized briefly with the monkey
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Figure 1. Stimulus generation and paradigm. (A) Frame sequence of a monkey and a human facial expression. (B) Monkey motion capture with 43

reflecting facial markers. (C) Regularized face mesh, whose deformation is controlled by an embedded elastic ribbon-like control structure that is

optimized for animation. (D) Stimulus consisting of 25 motion patterns, spanning up a two-dimensional style space with the dimensions ‘expression’ and

‘species’, generated by interpolation between two expressions (‘anger/threat’ and ‘fear’) and the two species (‘monkey’ and ‘human’). Each motion

pattern was used to animate a monkey and a human avatar model.
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expressions prior to the main experiment. During the familiarization, participants learned to recog-

nize the four prototypical expressions perfectly, always with maximally four stimulus repetitions. Dur-

ing the main experiment, motions were presented in a block-randomized order, and in separate

blocks for the two avatars and for the two tested views. The expression movies with a duration of 5 s

showed the face going from a neutral expression to the extreme expression and back to neutral

(Figure 1A). Participants observed 10 repetitions of each stimulus. They had to decide whether the

observed stimulus was looking more like a human or a monkey expression (independent of the ava-

tar shape and view), and whether the expression was rather ‘anger/threat’ or ‘fear’. The resulting

two binary responses in each trial can be interpreted as assignment of one out of four classes to the

perceived expression of the stimulus, independent of avatar type and view (1: human-angry, 2:

human-fear, 3: monkey-threat, and 4: monkey-fear).

Figure 2A shows the raw classification data as histograms of the relative frequencies of the four

classes Ĉi e; sð Þ, as a function of the style parameters e and s for the four tested classes. The class

probabilities Pi e; sð Þ were modeled by a logistic multinomial regression model

(’Materials and methods’), resulting in the fitted discriminant functions that are shown in Figure 2B

for the different classes. Comparing regression models with different sets of predictor variables, we

found that in almost all cases, a model of the form that contains the two style variables for expres-

sion (e) and the species (s) as predictors (in addition to a constant predictor) was the simplest model

that provided good fits of the data. Figure 2C shows the prediction accuracy of regression models
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Figure 2. Raw data and statistical analysis. (A) Histograms of the classification data for the four classes (see text) as functions of the style parameters e

and s. Data is shown for the human avatar, front view, using the original motion-captured expressions as prototypes. (B) Fitted discriminant functions

using a logistic multinomial regression model (see ’Materials and methods’). Data is shown for the human avatar, front view, using the original motion-

captured expressions as prototypes. (C) Prediction accuracy of the multinomial regression models with different numbers of predictors (constant

predictor, only style variable e or s, and both of them).
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with different sets of predictors for the monkey avatar stimulus (data from the other conditions are

presented in Appendix 1). The different models were compared quantitatively using prediction accu-

racy and the Bayesian Information Criterion (BIC). Specifically, a model that also included the prod-

uct e�s did not provide significantly better prediction results, except for a very small improvement of

the prediction accuracy for the rotated view conditions. Models only including one of the predictors,

e or s, provided significantly worse fits. Likewise, models that contained the average amount of optic

flow as the additional predictor did not result in higher prediction accuracy (see Appendix 1 for

details.). This implies that simple motion features, such as the amount of optic flow, do not provide

a trivial explanation of our results. Summarizing, both style variables e and s are necessary as predic-

tors, and there is no strong interaction between them. This motivated us to use the model with these

two predictor variables for our further analyses.

Figure 3A shows a comparison of all fitted discriminant functions, shown separately for the two

avatar types and for the two tested view conditions. These functions show the predicted class proba-

bilities as functions of the two style parameters e and s. The form of these discriminant functions is

highly similar between the two avatar types and also between the view conditions. This is confirmed

by the fact that the fraction of the variance that is different between these functions divided by the

one that is shared between them does not exceed 3% (q ¼ 2:75%; see ’Materials and methods’). The

same conclusion is also supported by a comparison of the multinomially distributed classification

responses using a contingency table analysis (see ’Materials and methods’), across the four condi-

tions (avatar types and views), separately for the different points in morphing space and across par-

ticipants. This analysis revealed that only for three stimuli (12%) of the style space, the classification

responses were significantly different (p ¼ 0:02, Bonferroni-corrected). Differences tended to be

larger especially for intermediate values of the style space coordinates e and s, thus for the stimuli
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Figure 3. Fitted discriminant functions Pi(e,s) for the original stimuli. Classes correspond to the four prototype motions, as specified in Figure 1D (i = 1:

human-angry, 2: human-fear, 3: monkey-threat, 4: monkey-fear). (A) Results for the stimuli generated using original motion-captured expressions of
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with high perceptual ambiguity (Figure 3B). This result implies that primate facial expressions are

perceptually encoded largely independently of the head shape (human vs. monkey) and of the stimu-

lus view. Especially, this implies substantial independence of this encoding of the two-dimensional

image features, which vary substantially between the view conditions, and even more between the

human and the monkey avatar model. This observed independence might also explain why many of

our subjects were able to recognize human facial expressions on the monkey avatar face, even with-

out any familiarization. This matches the common experience that humans can recognize dynamic

facial expressions spontaneously even from non-human comic figures, which often are highly

unnatural.

Tuning is narrower for human-specific than for monkey-specific dynamic
expressions
A biologically important question is whether expressions of one’s own species are processed differ-

ently from those of other primate species, potentially supporting an own-species advantage in the

processing of dynamic facial expressions (Dahl et al., 2014). In order to characterize the tuning of

the perceptual representation for monkey vs. human expressions, we computed tuning functions, by

marginalizing the discriminant functions belonging to the same species category (P1 and P2 belong-

ing to the human, and P3 and P4 to the monkey expressions) over the expression dimension e (see

’Materials and methods’ for details). Figure 4A shows the resulting two species-tuning functions

DH(s) and DM(s), revealing a smaller tuning width for the human than for the monkey expressions for

all stimulus types, except for the 30 degrees rotated human condition.

The fitted threshold values are given by the conditions DM sthð Þ;DH sthð Þ ¼ 0:5 and are shown in

Figure 4B for the monkey- and the human-specific motion (solid vs. dashed lines). This observation

is confirmed by computing the threshold values of the tuning functions by fitting them with a sigmoi-

dal function (see ’Materials and methods’). Comparing the threshold values by running separate

ANOVAs for the four stimulus types (monkey and human front view, and monkey and human rotated

view), we found significantly narrower tuning for the human than for the monkey expression for all

tested conditions, except for the human avatar in the 30 degrees condition. These two-way mixed-

model ANOVAs include the expression type (human vs. monkey motion) as within-subject factor and

the stimulus type (original motion, stimuli with occluded ears, or animated with equilibrated motion;

see below) as between-subject factor. The ANOVAs reveal a strong effect of the expression type (F

1; 66ð Þ ¼ 188:82, F 1; 66ð Þ ¼ 46:39, and F 1; 40ð Þ ¼ 127:35; p<0:001, respectively), except for the human

30 degrees condition, where the influence of this factor did not reach significance

(F 1; 40ð Þ ¼ 1:43; p>0:23). In all cases, we failed to find a significant influence of the stimulus type

(F 2; 66ð Þ ¼ 0:0, F 2; 66ð Þ ¼ 0:01, F 1; 40ð Þ ¼ 0:002, and F 1; 40ð Þ ¼ 0:014; p>0:91, respectively). Interac-

tions between stimulus type and expression type were found for all conditions

(F 2; 66ð Þ ¼ 4:51; p<0:015, F 2; 66ð Þ ¼ 3:15; p ¼ 0:049, 1; 40ð Þ ¼ 8:31; p<0:007, respectively), but not for

the human 30 degrees condition (F 1; 40ð Þ ¼ 0:735; p>0:39).

Summarizing, there is a strong tendency of the species-specific expression tuning to be narrower

for the human ‘own-species’ expressions, while this tendency is not as prominent in rotated views.

Robustness of results against variations of species-specific features
One may ask whether the previous observations are robust with respect to variations of the chosen

stimuli. For example, monkey facial movements include species-specific features, such as ear motion,

that are not present in human expressions. Do the observed differences between the recognition of

human and monkey expressions depend on these features? We investigated this question by repeat-

ing the original experiment, presenting only the front view, with a new set of participants, using stim-

uli for which the ear region was occluded. Figure 5A depicts the corresponding fitted discriminant

functions, which are quite similar to the ones without occlusion, characterized again by a high similar-

ity in shape between the human and monkey avatar (ratio of different vs. shared variance: q ¼ 1:44%;

only 12% of the categorization responses over the 25 points in morphing space were significantly dif-

ferent between the two avatar types; p ¼ 0:02; Figure 5B). Figure 4A also shows that the corre-

sponding tuning functions DM and DH are very similar to the ones for the non-occluded stimuli, and

the associated threshold values (Figure 4B) are not significantly different from the one for non-
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occluded stimuli (see ’ANOVA analysis’). Summarizing, the elimination of ear motion as a monkey-

specific feature did not have a major influence on the main results of the original experiment.

Robustness against variations of expressivity
A further possible concern might be that the chosen prototypical expressions might specify different

amounts of salient low-level features, for example, due to species differences in the motion, or

because of differences between the anatomies of the human and the monkey face. In order to con-

trol for the influence of such expressive low-level information, we re-ran the main conditions of the
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experiment with stimuli that were equilibrated (balanced) for the amount of such expressive

information.

Our equilibration procedure was based on a pilot experiment that compared equilibration meth-

ods based on different types of measures for low-level information. This included the total amount

of optic flow (OF), the maximum deformation of the polygon mesh during the expression (DF), and

the total motion flow of the polygon mesh during the expression (MF) (see ’Materials and methods’

for details). In the control experiment, nine participants rated these equilibrated stimulus sets in

terms of the perceived expressivity of their motion (independent of avatar type). Perceived expres-

sivity was assessed by ratings using a nine-point Likert scale (1: non-expressive, 9: very expressive),

presenting each stimulus in a block-randomized manner for four times.

The averages of these ratings, comparing the different low-level measures, are shown in

Figure 6A. In addition, this figure also shows the ratings for the neutral expression, which are very

low, and the ratings for the original non-equilibrated expressions. It turns out that balancing the

amount of polygon motion (MF) resulted in the lowest standard deviation of the expressivity ratings

after equilibration (except for the neutral condition 1:479; p<0:021).

More specifically, perceived expressivity showed smaller variance for the MF condition than for

the DF conditions for the human avatar (F 1; 142ð Þ ¼ 1:479; p<0:021). Also, for the monkey avatar, this

variance was smaller than for all other conditions (F>1:403; p<0:045), except for the DF

condition (F 1; 142ð Þ ¼ 0:869; p>0:407). Moreover, the difference of the perceived expressiveness

between the two avatars was non-significant (t 283ð Þ ¼ 0:937; p>0:349) for equilibration with the DF

measure. For these reasons, and also because it resulted in the equilibrated stimuli with the highest

expressivity, we decided to use MF as a measure of the equilibration of the prototype motion in our

main experiment (a more extensive analysis of these data and additional tested measures for low-

level expressive information are discussed in Appendix 1).

Equilibration was based on creating morphs between the original motion-captured expressions

and a neutral expression, varying the morphing weight of the neutral expression in a way that

resulted in a matching of the amount of motion flow (see ’Materials and methods’). Equilibration was

realized separately for the two avatars and also for the different view conditions. Figure 6B shows

an example of the effect of equilibration on the extreme frames of a monkey-threat expression. The

equilibration also reduces the very salient mouth opening motion of the monkey, which, due to ana-

tomical differences, cannot be realized by a real human face. The efficiency of the procedure in bal-

ancing the amount of motion information is illustrated in Figure 6C. It illustrates the motion flow

before and after equilibration for the different points of our motion style space for the front view.
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Figure 5. Fitted discriminant functions Pi(e,s) for the condition with occlusions of the ears. Classes correspond to the four prototype motions, as

specified in Figure 1D (i = 1: human-angry, 2: human-fear, 3: monkey-threat, 4: monkey-fear). (A) Results for the stimuli generated using original

motion-captured expressions of humans and monkeys as prototypes but with occluded ears, for presentation on a monkey and a human avatar (only

using the front view). (B) Significance levels (Bonferroni-corrected) of the differences between the multinomially distributed classification responses for

the 25 motion patterns, presented on the monkey and human avatar.
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The standard deviation of the motion flow across the 25 conditions in style space is reduced by 83%

for the monkey avatar and by 54% for the human avatar by the equilibration. Constraining the flow

analysis to the mouth region, we found that the standard deviation of the corresponding motion

flow across conditions was reduced by 79% for the monkey avatar and by 59% for the human avatar

(results for the other view conditions are similar).

The fitted discriminant functions for the data from the repetition of the experiment with equili-

brated stimuli are shown in Figure 7A. These functions are more symmetrical along the axes of the

morphing space than for the original stimuli (for example, this reduces the amount of confusions of

human anger and monkey fear expressions that occurs for intermediate levels of the style parame-

ters, especially for the human avatar, potentially due to the subtlety of the monkey fear expression).

This is corroborated by the fact that an asymmetry index (AI) that measures the deviation from a per-

fect symmetry with respect to the e and s axes (see Appendix 1) is significantly reduced for the data

from the experiment with equilibrated stimuli compared to the data from the experiment using the

original motion prototypes (AIoriginal ¼ 0:624 vs:AIequilibrated ¼ 0:504), the difference being significant

according to the Wilcoxon signed-rank test (Z ¼ 2:49; p<0:013). Compared to the original stimuli, we

found an even higher similarity of the discriminant functions between the two avatar types and the

different view conditions. This is corroborated by the small ratios of different vs. shared variance

between the conditions (q ¼ 4:01%), where only 4% of the categorization responses across the 25

points in morphing space were significantly different between the avatar types and view conditions,

according to a contingency table analysis (Figure 7B).

Most importantly, also for these equilibrated stimulus sets, we found a narrower tuning for the

human than for the monkey dynamic expressions (Figure 4A). This is confirmed by the results of the

ANOVA for the threshold points of the tuning functions DM(s) and DH(s) (Figure 4B), which failed to
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surface of the face. In addition, the ratings for a static neutral face are shown as reference point for the rating (neutral). (B) Extreme frames of the
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expression style space for the monkey avatar for the front view (similar results were obtained for the other stimulus types).
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show a significant influence of the factor stimulus type (original vs. occluded vs. equilibrated stimuli)

(see above).

An analysis of the steepness of the fitted threshold functions is shown in Figure 4C. This analysis

shows that the equilibration procedure effectively balances the steepness of the tuning functions

between the human and the monkey expressions, which is apparent in the non-equilibrated stimuli.

This observation is confirmed by two-way ANOVAs for the original motion stimuli and the ones with

occluded ears, which show significant influences of the factor avatar type/view

(F 3; 83ð Þ ¼ 12:76; p<0:006; and F 1; 39ð Þ ¼ 3:33; p<0:077, respectively), but not of the expression type

(F 3; 83ð Þ ¼ 0:01 and F 1; 39ð Þ ¼ 0:01; p>0:92), and no interactions. Contrasting with this result, the

ANOVA for the stimuli with equilibrated motion does not show any significant effects, neither of the

avatar type and view (F 3; 87ð Þ ¼ 1:27; p>0:26), nor of the expression type (F 3; 87ð Þ ¼ 0:03; p>0:86), nor

of an interaction (full ANOVAS’ results in Appendix 1—table 3).

Summarizing, these results show that the high similarity of the classification data of the stimuli

between the two different avatar types, and between the different view conditions, was not funda-

mentally changing if the expressiveness of the stimuli was controlled. Also, the tendency for a nar-

rower tuning for human own-species expressions was robust against this manipulation. However,

balancing expressiveness leveled out the differences in the steepness of the computed species-tun-

ing functions. This rules out the objection that the observed effects are just an implication of differ-

ences in the amount of low-level salient features of the chosen prototypical motion patterns.

E1: 0 0.25 0.5 0.75 E2: 1

Expression

H: 1

0.75

0.5

0.25

M: 0

S
p

e
c
ie

s

Equilibrated Motion

0

0.01

0.02

0.03

0.04

0.05

P
1
(e, s)

0 .25 .5 .75 1
H: 1

.75

.5

.25

M: 0

P
2
(e, s)

0 .25 .5 .75 1
H: 1

.75

.5

.25

M: 0

P
3
(e, s)

0 .25 .5 .75 1

Expression (e)

H: 1

.75

.5

.25

M: 0

S
p

e
c
ie

s
 (

s
)

P
4
(e, s)

0 .25 .5 .75 1
H: 1

.75

.5

.25

M: 0

P
1
(e, s)

0 .25 .5 .75 1
H: 1

.75

.5

.25

M: 0

P
2
(e, s)

0 .25 .5 .75 1
H: 1

.75

.5

.25

M: 0

P
3
(e, s)

0 .25 .5 .75 1

Expression (e)

H: 1

.75

.5

.25

M: 0

S
p

e
c
ie

s
 (

s
)

P
4
(e, s)

0 .25 .5 .75 1
H: 1

.75

.5

.25

M: 0

3
0

 d
e

g
re

e
0

 d
e

g
re

e
Monkey av. Human av.

P
2
(e,s)P

1
(e,s)

P
3
(e,s) P

4
(e,s)

P
2
(e,s)P

1
(e,s)

P
3
(e,s) P

4
(e,s)

P
2
(e,s)P

1
(e,s)

P
3
(e,s) P

4
(e,s)

P
2
(e,s)P

1
(e,s)

P
3
(e,s) P

4
(e,s)

Expression (e)

1.0

.5

0

S
p

e
ci

e
s 

(s
)

0 .5 1.0

Expression (e)

BA Signi!cance

Level

60

40

100

80

20

0

Class Probabilities

P
1
: Human Angry/Threat

P
2
: Human Fear

P
3
: Monkey Angry/Threat

P
4
: Monkey FearS

p
e

ci
e

s 
(s

)

P-value

0.03

0.02

0.05

0.04

0.01

0.0

P
ro

b
a

b
ili

ty
Figure 7. Fitted discriminant functions Pi(e,s) for the experiment with equilibration of expressive information. Classes correspond to the four prototype

motions, as specified in Figure 1D (i = 1: human-angry, 2: human-fear, 3: monkey-threat, 4: monkey-fear). (A) Results for the stimuli set derived from

prototype motions that were equilibrated with respect to the amount of local motion/deformation information, for presentation on a monkey and a

human avatar. (B) Significance levels (Bonferroni-corrected) of the differences between the multinomially distributed classification responses for the 25

motion patterns, presented on the monkey and human avatar.
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Discussion
Due to the technical difficulties of an exact control of dynamics of facial expressions

(Knappmeyer et al., 2003; Hill et al., 2005), in particular of animals, the computational principles of

the perceptual representation of dynamic facial expressions remain largely unknown. Exploiting

advanced methods from computer animation with motion capture across species and machine-learn-

ing methods for motion interpolation, our study reveals fundamental insights about the perceptual

encoding of dynamic facial expressions across primate species. At the same time, the developed

technology lays the ground for physiological studies with highly controlled stimuli on the neural

encoding of such dynamic patterns (Polosecki et al., 2013; Chandrasekaran et al., 2013;

Barraclough et al., 2005; Furl et al., 2012).

Our first key observation was that facial expressions of macaque monkeys were learned very

quickly by human observers. This was the case even though monkey expressions are quite different

from human expressions, so that naive observers could not interpret them spontaneously. This fast

learning might be a consequence of the high similarity of the neuromuscular control of facial move-

ments in humans and macaques (Parr et al., 2010), resulting in a high similarity of the structural

properties of the expression dynamics that can be exploited by the visual system for fast learning.

Secondly, and unexpectedly from shape-based accounts for dynamic expression recognition, we

found that the categorization of dynamic facial expressions was astonishingly independent of the

type of primate face (human vs. monkey) and of the stimulus view (0 vs. 30 degrees of rotation of

the head about the vertical axis). Clearly, this shows a substantial degree of invariance against

changes of the two-dimensional image features. More specifically, we neither found strong differen-

ces between categorization responses dependent of these parameters, nor did we find a better per-

ceptual representation of species-specific dynamic expressions that match the species of the avatar

(e.g., a more accurate representation of human expressions on the human avatar or of monkey

expressions on the monkey avatar). Facial expression dynamics seems thus represented indepen-

dently of the detailed shape features of the primate head and of the stimulus view.

Yet, we found a clear and highly robust own-species advantage (Scott and Fava, 2013;

Pascalis et al., 2005) in terms of the accuracy of the tuning for expression dynamics: the tuning

along the species axis of our motion style space was narrower for human than for monkey expres-

sions. This remained true even for stimuli that eliminated species-specific features, such as ear

motion, or which were carefully equilibrated in terms of the amount of low-level information.

Both key results support our initial hypotheses: perception can exploit the similarity of the struc-

ture of dynamic expressions across different primate species for fast learning. At the same time, and

consistent with a co-evolution of the visual processing of dynamic facial expressions with their motor

control, we found a largely independent encoding of facial expression dynamics from a basic facial

shape in primate expressions. This observed independence has to be further confirmed in more

extended experiments, including a bigger spectrum of facial shapes and, probably, even faces from

non-primate species. In fact, the observation that humans observe facial expressions readily from

comic characters, which do not even correspond to existing species, suggests that the observed

invariance goes far beyond primate faces. However, further experiments including a much wider

spectrum of facial shapes will be required to confirm this more general hypothesis.

The observed independence of basic facial shape and expression encoding seems in-line with

results from functional imaging studies that suggest a modular representation of different aspects of

faces, such as changeable and non-changeable ones (Haxby et al., 2000; Bernstein and Yovel,

2015; Dobs et al., 2019). At the same time, it is difficult to reconcile our experiments with several

popular (recurrent) neural network models that represent facial expressions in terms of sequences of

learned key shapes (Curio et al., 2010; Li and Deng, 2020). Since the shape differences between

human and monkey faces are much larger than the ones between the keyframes from the same

expression, the observed spontaneous generalization of dynamic expressions to faces from a differ-

ent primate species seems difficult to account for by such models.

Concrete circuits for a shape-independent encoding of expression dynamics still have to be dis-

covered. One possibility is that they might exploit optic-flow analysis (Giese and Poggio, 2003;

Jhuang et al., 2007), since the optic flow of the expressions on different head models might be sim-

ilar. Another possibility would be mechanisms that are based on ‘vectorized encoding’, where the

face shape in individual stimulus frames is encoded in terms of their differences in feature space
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from a ‘reference’ or ‘norm face’ (Giese, 2016; Leopold et al., 2006; Rhodes and Jeffery, 2006;

Beymer and Poggio, 1996). We have demonstrated elsewhere that a very robust recognition of

dynamic facial expressions can be accomplished by a neural recognition model that is based on this

encoding principle (Stettler, 2020), where norm-referenced encoding had been shown to account

for the identity tuning of face-selective neurons in area IT (Leopold et al., 2006; Giese and Leopold,

2005). The presented novel technology for the generation of highly realistic dynamic face avatars of

humans and monkeys enables electrophysiological studies that clarify the exact underlying neural

mechanisms. A similar methodological approach was quite successful for discovering of the neural

mechanisms of the identity of static faces (e.g., Leopold et al., 2006; Murphy and Leopold, 2019;

Chang and Tsao, 2017).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers Additional information

Software, algorithm Custom-written software
written in C#

This study https://hih-git.neurologie
.uni-tuebingen.de/
ntaubert/FacialExpressions
(copy archived at
swh:1:rev:6d041a0a0cc7055618
f85891b85d76e0e7f80eed;
Taubert, 2021)

Software, algorithm C3Dserver Website https://www.c3dserver.com

Software, algorithm Visual C++ Redistributable for
Visual Studio 2012 Update
4 � 86 and x64

Website https://www.microsoft.com/en-US/
download/details.aspx?id=30679

Software, algorithm AssimpNet Website https://www.nuget.org/
packages/AssimpNet

Software, algorithm Autodesk Maya 2018 Website https://www.autodesk.com/
education/free-software/maya

Software, algorithm MATLAB 2019b Website https://www.mathworks.com/
products/matlab.html

Software, algorithm Psychophysics
toolbox 3.0.15

Website http://psychtoolbox.org/

Software, algorithm R 3.6 Website https://www.r-project.org/

Other Training data for
interpolation algorithm

This study https://hih-git.neurologie.
uni-tuebingen.de/ntaubert/
FacialExpressions/tree/master/
Data/MonkeyHumanFaceExpression

Other Stimuli for experiments This study https://hih-git.neurologie.
uni-tuebingen.de/ntaubert/
FacialExpressions/tree/master/Stimuli

Human participants
In total, 78 human participants (42 females) participated in the psychophysical studies. The age

range was 21–53 years (mean 26.2, standard deviation 4.71). All participants had no prior experience

with macaque monkeys and normal or to-normal corrected vision. Participants gave written informed

consent and were reimbursed with 10 EUR per hour for the experiment. In total, 31 participants (16

females) were taking part in the first experiment using stimuli based on the original motion capture

data and the experiment with occlusion of the ears. 22 participants (13 females) took part in the

experiment with equilibrated motion of the prototypes. In addition, 16 participants (eight females)

took part in a Turing test control experiment (see below), and nine (five females) participants took

part in a control experiment to identify features that influence perceived expressiveness of the stim-

uli. All psychophysical experiments were approved by the Ethics Board of the University Clinic Tübin-

gen and were consistent with the rules of the Declaration of Helsinki.
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Stimulus presentation
Subjects were presented the stimuli watching a computer screen at a distance of 70 cm in a dark

room (view angle about 12 degrees), with a resolution of 720 � 720 pixels using MATLAB and the

Psychotoolbox (3.0.15) library for stimulus presentation. Each stimulus was repeated for a maximum

of three times before asking for the responses, but participants could skip after the first presentation

if they were certain about their responses. Participants were first asked whether the perceived

expression was rather from a human or a monkey, and whether it was rather the first or the second

expression. Responses were given by key presses. Stimuli for the two different avatar types were

presented in different blocks, with 10 repeated blocks per avatar type.

Dynamic monkey and human head model
For our experiments, we exploited a monkey and a human dynamic face avatar with a very high

degree of realism. The monkey head model was derived from a structural magnetic resonance scan

of a rhesus monkey (9 years old, male). The surface of the face was modeled by an elastic mesh

structure (Figure 1C) that imitates the deformations induced by the major face muscles of macaque

monkeys (Parr et al., 2010). To accomplish a highly realistic appearance, special methods for hair

animation and an appropriate modeling of skin reflectance were applied (Figure 1A). The human

head was based on a scan-based commercial avatar with blend-shape animation, exploiting a multi-

channel texture simulation software. Mesh deformations compatible with the human face muscle

structure were computed from motion capture data in the same way as for the monkey face. Further

technical details about the creation of these head models are described in Appendix 1.

The used dynamic head models achieve state-of-the-art degree of realism for the human head,

and to our knowledge, we present the only highly realistic monkey avatar that is animated with

motion capture data from real animals used in physiology so far. It has been demonstrated by a

recent study of our lab that our dynamic monkey avatar induces behavioral reactions of macaque

monkeys that are very similar to ones elicited by real movies, reaching the ‘good side’ of the

uncanny valley (Siebert et al., 2020), contrasting with previous studies using avatars in experiments

with monkeys (Chandrasekaran et al., 2013; Campbell et al., 2009; Steckenfinger and Ghazanfar,

2009). A related result has been obtained recently for static pictures of monkeys, demonstrating

comparable looking times for the avatar and real pictures of monkey expressions, but without

expressive motion of the face (Bilder and Lauhin, 2014).

Motion generation and style space
The animation of our avatars was based on motion capture data of two real monkey and human

expressions. For motion capture, we used a VICON motion capture system with a marker set of 43

markers that were placed on the face of a monkey and a human participant. Facial expressions were

elicited by instructions, or by having the animal interact with an experimenter, respectively. For this

study, we exploited multiple repetitions of two human and two monkey expressions (anger/threat

and fear), and additional trials with neutral expressions. Further details about motion capture and

the transfer of the motion to the head models are given in Appendix 1.

In order to control the information content and the expressivity of the dynamic face stimuli, we

created motion morphs between these prototypical expressions. For this purpose, we exploited a

method that is based on a generative Bayesian model of the trajectories of the control points of the

face. This algorithm allows to create linear combinations in space-time between these prototypical

motions, controlling smoothly the expressiveness and the style of the created facial motion. We veri-

fied in an additional control experiment (Turing test) that animations created with the original

motion capture data were indistinguishable from the ones generated with motion trajectories gener-

ated with this Bayesian algorithm (reproducing the prototypes by the generative Bayesian model)

(see Appendix 1 about details concerning this algorithm and the Turing test experiment).

Modeling of the classification responses
Using a multinomial logistic regression analysis, the relative frequencies of the four classes Ĉj e; sð Þ

were approximated by class probabilities Pj e; sð Þ for the four classes that were modeled by a gener-

alized linear model (GLM) of the form
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Pi e; sð Þ ¼
eyi

P

4

j0¼1
eyj0

(1)

The variables yj were given by linear combinations of predictor variables Xi in the form

yj ¼ b0jþb1jX1þb2jX2þ . . .þbNjXN (2)

We compared a multitude of models, including different sets of predictors. The most compact

model was linear in the style space variables e and s and was given by the equation

yj ¼ b0jþb1jeþb2js (3)

We also tested variants of linear models that included the predictor variable e � s and a predictor

variable that is proportional to the total amount of optical flow, computed using a Horn-Schunck

algorithm (CV Toolbox) from the stimulus movies. The different versions of the model were com-

pared exploiting their prediction accuracy and the BIC. We discarded the models if, after addition of

a new predictor, either their accuracy was decreasing or the BIC showed a decrease. Further details

of the model fitting procedure are described in Appendix 1.

Computation of the tuning functions
The species-tuning functions were computed by marginalization of the discriminant functions

belonging to the same species category along the variable e. The tuning function to monkey expres-

sions as a function of the species parameter s was defined as DM sð Þ ¼
R

1

0
P1 e; sð Þ þ P2 e; sð Þð Þde. Simi-

larly, the tuning function for human expressions was given by DH sð Þ ¼
R

1

0
P3 e; 1� sð Þ þ P4 e; 1� sð Þð Þde.

For this function, the direction of the s-axis was flipped, so that the category center also appears for

s = 0, just as for the function DM(s).

Equilibration of stimuli for amount of motion/deformation
In order to control the amount of expressive low-level information, that is, the total amount of

motion or shape deformation, we generated sets of equilibrated stimuli. For this purpose, we first

defined different measures for the low-level information content and balanced the stimuli by equili-

brating these measures. Tested measures included (Figure 5A) optic flow (computed with an optic

flow algorithm) (OF), the maximum amount of deformation (projected to the plane) of the polygon

mesh relative to the neutral pose (DF), and the (two-dimensional) motion flow of the polygon mesh

integrated over time (MF). To control the information content of the stimuli, we generated morphs

between the original motion and the trajectories of a neutral expression using our motion morphing

technique. In these morphs, the original expression was weighted with the morph level l and the

neutral expression with the weight 1� lð Þ. The parameter l was chosen to equate the low-level

measures of all four prototypical stimuli, separately for the two avatar models (for the front view).

For this purpose, we fitted the relationship between the individual measures M for the low-level

information and the morphing parameter l by a logistic function of the form (ai signifying constants)

MðlÞ ¼ a0 þ a1=ð1þ expða2lþ a3ÞÞ (4)

The inverse of this function was used to determine the values of the morph parameter l that

matched the value M of the most expressive prototype motion. The MF measure resulted in the least

variability of the perceived expressiveness of the equilibrated stimuli (see ’Results’), and thus was

used to equilibrate the stimuli for all experimental conditions.

Statistical analysis
Statistical analyses were implemented using MATLAB and RStudio (3.6.2), using R and the package

lme4 for the mixed models of ANOVA. We used G*Power 1.3 software to compute a prior rough

estimate of the minimum required number of participants for medium effect size.

Different GLMs for the modeling of the categorization data were fitted using the MATLAB Statis-

tics Toolbox. Models for the discriminant functions, including different sets of predictors, were
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compared using a step-wise regression approach. Models of different complexity were compared

based on the prediction accuracy and by exploiting the BIC.

Two statistical measures were applied in order to compare the similarity of the categorization

responses for the two avatar types. First, we computed the ratio of the different vs. shared variance

between the fitted discriminant functions. For this purpose, we first computed the average discrimi-

nant function across both the avatar types and the two view conditions, and separately for the differ-

ent classes (the index k running over the avatar types and view conditions, and j indicating the class

number):

P
�

j e; sð Þ ¼
1

4 k

X

Pk
j e; sð Þ (5)

The ratio of the variance that is different and shared between the four conditions (avatars and

views) is then given by the expression

q¼
k

X

j

X

RR

1

0
Pkj e; sð Þ�P

�

j e; sð Þ
� �2

deds

4
j0

X

RR

1

0
P
�

j0 e; sð Þ2deds
(6)

This ratio is zero if the discriminant functions across all four conditions are identical.

As second statistical analysis, we compared the multinomially distributed four-class classification

responses across the participants for the individual points in morphing space using a contingency

table analysis that tested for the independence of the class probabilities from the avatar types and

the two view conditions. Statistical differences were evaluated using a �2-test and, for cases for

which predicted frequencies were lower than 5, we exploited a bootstrapping approach

(Wilson et al., 2020).

The species-tuning functions, DH(s) and DM(s), were fitted by the sigmoidal

function DH;M ¼ tanh ! s� �ð Þð Þ þ 1ð Þ=2, with the parameter � determining the threshold and !, the

steepness. Differences of the tuning parameters � were tested using two-factor mixed-model

ANOVAs (species-specific of motion (monkey vs. human) as the within-subject factor and experiment

(original motion, occlusion of the ears, and equilibrated motion) as the between-subject factor). Dif-

ferences of the steepness parameters ! were tested using within-subject two-factor ANOVAs.
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Data availability

Motion Capture data use to train our Bayesian Algorithm, all the rendered stimuli sequences to

reproduce our experiment, as well as the raw participants’ answers with the source code to repro-
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lExpressions (copy archived at https://archive.softwareheritage.org/swh:1:rev:
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Appendix 1

Supporting Information
Monkey subject

The monkey facial movements were recorded from a 9-year-old male rhesus monkey (Macaca

mulatta), born in captivity and pair-housed. The monkey had previously been implanted with an indi-

vidually adapted titanium head-post to allow head immobilization in unrelated neurophysiological

experiments, and it had been trained to climb into a primate chair and to accept head fixation. The

animal was in daily contact with other macaque monkeys and human caretaking personnel. The

structural model of the monkey’s head was derived from a T1-weighted MRI-scan with an isotropic

resolution of 1 mm. Motion capture recordings were compatible with the guidelines set by the

National Institutes of Health and German national law and were approved by the local committee

supervising the handling of experimental animals (Regierungspräsidium Tübingen, Abteilung Tier-

schutz, permit number N4/14). Human movements were recorded from a 40-year-old male human

subject.

Monkey avatar

The highly realistic monkey avatar was generated exploiting state-of-the-art techniques from com-

puter animation. Such techniques have been applied before for the realization of animation movies

for cinemas (Minty, 2014). However, monkey avatars of high quality have only very recently been

developed for studies on static face perception (Murphy and Leopold, 2019), and to our knowl-

edge, this work is the first one exploiting motion capture from monkeys for generating such dynamic

avatars. The head model was developed based on the MRI scan of an animal (Appendix 1—figure

1A). The scan provides a quite detailed model of the basic shape of the head, but it is characterized

by a highly irregular polygon structure, which makes it difficult to control the deformation during ani-

mation. In order to obtain a mesh model that can be manipulated more easily, we reduced the num-

ber of polygons and created a regularized mesh with clean edge loops (Appendix 1—figure 1B).

This corrected mesh was adjusted for a neutral pose, and control points were specified that control

the mesh deformation during animation. For the regularized mesh, the weighting regions that deter-

mine the influences of the individual control points on the mesh could be exactly controlled. This

developed ‘low-polygon’ model is useful for controlling the animation, but it lacks a lot of high-fre-

quency details that are critical for a realistic appearance of the face. In order to add such details, we

imported the model with the low polygon number into Adobe Autodesk Mudbox, a software that

allows, by subdivision, to generate again a highly regular mesh model with a high number of poly-

gons. This model was further refined by a number of specific editing steps, including clay modeling,

in order to improve 3D shape details. Using a special tool (Alpha Brushes), additional texture details

were added, such as wrinkles and pores (Appendix 1—figure 1C). To transfer the deformation from

the low- to the high-frequency polygon model, we exported displacement maps in Autodesk Mud-

box, which capture the differences between the low and high polygon-density models.
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Appendix 1—figure 1. Details of generation of the monkey head model. (A) Irregular surface mesh

resulting from the magnetic resonance scan of a monkey head. (B) Face mesh, the deformation

of which is following control points specified by motion-captured markers. (C) Surface with a high

polygon number derived from the mesh in (B), applying displacement texture maps, including high-

frequency details such as pores and wrinkles. (D) Skin texture maps modeling the epidermal layer

(left), the dermal layer (middle), and the subdermal layer (right panel). (E) Specularity textures

modeling the reflection properties of the skin; overall specularity (left) and the map specifying oily

vs. wet appearance (right panel). (F) Complete monkey face model, including the modeling of fur

and whiskers.

A particular challenge was the development of a realistic skin model that specifies believable

color and reflectance properties. Skin-surface textures were generated using photographs of a real

monkey as the reference and by painting layer-wise color variations of the skin in order to approxi-

mate maximally its realistic appearance. Specifically, we used multiple layers of diffusive texture to

model the translucent behavior of the skin, separately for the deep layer, subdermal layer, and epi-

dermal layers (Appendix 1—figure 1D). For the deep layer, we hue-shifted the diffuse texture map

toward red colors in order to model the deep vascularization, while the color of the subdermal layers

was shifted more toward yellow in order to simulate the fatty parts of the skin. In order to mimic the

very thin superficial layer of dead skin, we desaturated the diffuse texture for the epidermal layer.

For realistic appearance, it was also important to model the specularity of monkey skin, reproducing

how light is reflected from the skin within different facial regions. For this purpose, we created two
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specular maps for the monkey’s face, one simulating the basic specularity and one describing the oil-

iness vs. wetness of the skin (Appendix 1—figure 1E). Both material channels have an Index of

Refraction (IOR) of 1.375, corresponding to the IOR of water.

A final element that was essential for a realistic appearance was the realistic modeling of the fur.

For this purpose, we exploited the built-in XGen Interactive Groom feature for hair creation of the

animation software Maya. The overall appearance of the hair was controlled exploiting three control

levels. The first level models the base of the fur, defining the direction of the hairs by control splines

and adding some noise to model texture fluctuations and the matting of the fur. The second level

models structures consisting of long hair, including the whiskers and the brows, using a smaller num-

ber of thick hairs. Believability and realism were increased further by adding a third layer of hair, also

known as Peach Fuzz or Vellus, that consists of tiny hairs that are distributed within the face area.

The final result is shown in Appendix 1—figure 1F.

Human avatar

The human avatar was based on a female face scan provided by the company EISKO ( Appendix 1—

figure 2A). The commercial package also includes all main textures (diffuse map, specular map,

base displacement map, etc; Appendix 1—figure 2B and C) for the neutral pose, as well as

the corresponding textures for face compression and stretching (Appendix 1—figure 2B and C).

We applied just small color adjustments to the diffuse and specular maps, similar to texture creation

of the monkey head model. The EISKO model package also included a whole face rig with 154 blend

shapes, suitable for changing the face shape by blending (interpolation), resulting in

naturally looking shape variations (Appendix 1—figure 2A). The interpolation was driven by control

points equivalent to the ones in the monkey model, defined by the motion-captured markers

exploiting a ribbon-like structure that was inspired by the human muscle anatomy (Appendix 1—fig-

ure 2F). Using a tension map algorithm, we determined the local deformations of the texture from

the mesh deformations relative to the neutral pose. For the generation of high-frequency details,

contrasting with the approach for the monkey avatar, we employed a multichannel texture package

from TexturingXYZ. This package provides diffuse maps and high-frequency details as displacement

maps (pores, wrinkles, etc) derived from a scanned real face. Exploiting the programs R3dS Wrap

(trial version) and xNormal, we transferred shape details similar to the ones of the monkey face to

the human face model (Appendix 1—figure 2G). Hair animation used the same tools as for the mon-

key face. The final result is shown in Appendix 1—figure 2H.

Taubert, Stettler, et al. eLife 2021;10:e61197. DOI: https://doi.org/10.7554/eLife.61197 21 of 30

Research article Neuroscience

https://doi.org/10.7554/eLife.61197


Appendix 1—figure 2. Details of generation of the human head model. (A) Human face mesh and

deformations by a blendshape approach, in which face poses are driven by the 43 control points

(top panel). Tension map algorithm computes compression (green) and stretching (red) of mesh

during animation (middle panel). Corresponding texture maps were blended (bottom panel). (B)

Examples of diffuse texture maps (top panel), with additional maps for stretching (middle panel) and

compression (bottom panel). (C) Subsurface color map modeling the color variations by light

scattering and reflection by the skin. (D) Specular map modeling the specularity of the skin. (E)

Wetness map modeling the degree of wetness vs. oilyness of the skin. (F) Regularized basic mesh

with embedded muscle-like ribbon structures (violet) for animation. Yellow points indicate the

control points defined by the motion capture markers. (G) Mesh with additional high-frequency

details. (H) Final human avatar including hair animation.

Motion capture

Motion capture was realized with a VICON FX20 motion capture system with six cameras (focal

length, 24 mm) using a camera setting that was optimized for face capturing. We used 43 reflecting

markers (2 mm) that were placed in the face, using a marker set that we developed ourselves

(Figure 1B and S1B). Recording frequency was 120 Hz. Trajectories were preprocessed using Nexus

1.85 software by VICON, smoothed and segmented by an expert into individual facial expressions

with a duration between 3 and 5 s. The trajectories were resampled with 150-time steps and 30 fps.

The monkey expressions were recorded from a 9-year-old male animal. The expressions were eli-

cited by showing the animal different objects, including a screw driver, a mirror, and an unknown

male human individual. The animal was head-fixed and observed the stimuli at a distance of 200 cm

in front of the camera set-up. The recorded trajectories were segmented by a monkey expert, who

had extensive experience with macaque monkeys on a daily basis.

The human marker set was corresponding to the one of the monkey, except that it lacked

markers on the ears (Appendix 1—figure 2D). The human actor was instructed to show two facial

expressions ‘anger’ and ‘fear’. Processing was identical to the marker trajectories of the monkey

expressions.
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Motion morphing algorithm

In order to create continuous parameterized spaces of facial movements, we exploited a motion

morphing method that is based on a hierarchical Gaussian process model. The method is in principle

real-time capable, thus allowing for instantaneous changes of motion style modulations based on

the on-line user input. This functionality was not critical for the experiments presented in this paper,

but it is used in ongoing experiments that build on the presented results.

Our motion morphing algorithm is based on a hierarchical probabilistic generative model that is

learned from facial movement data. The architecture (Appendix 1—figure 3A) comprises three

layers. The lower two layers are formed by Gaussian process latent variable models (GP-LVMs)

(Lawrence and Moore, 2007), and the highest layer is formed by a Gaussian process dynamical

model (GPDM) (Wang et al., 2008).
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Appendix 1—figure 3. Motion morphing algorithm and additional results. (A) Graphical model

showing the generative model underlying our motion morphing technique. The hierarchical Bayesian

model has three layers, reducing subsequently the dimensionality of the motion data yn. The top

layer models the trajectory in latent space using a Gaussian process dynamical model (GPDM). The

vectors e and s are additional style vectors that encode the expression type and the species type.

They are binomially distributed. Plate notation indicates the replication of model components for

the encoding of the temporal sequence, and the different styles. Nonlinear functions are realized as

samples from Gaussian processes with appropriately chosen kernels (for details, see text). (B) Results

from Turing test experiment. Accuracy for the distinction between animations with original motion

capture data and trajectories generated by our motion morphing algorithm is close to chance level

(dashed line), opposed to the accuracy for the detection of small motion artifacts in control stimuli,

which was almost one for both avatar types.

The facial motion was given by the M-dimensional trajectories of the control points, which were

parameterized by an N x D time series matrix Y = [y1, . . .,yN ]
T with N = 600 (two expressions) or

N = 900 (neutral expression included for equilibration) and D = 208 dimensions. The two GP-LVM

layers reduce the dimensionality of the patterns in the high-dimensional trajectory space in a nonlin-

ear way. For this purpose, the first layer represents the trajectory points as nonlinear functions of a

lower-dimensional hidden state variable, specifying the N x M matrix H = [h1, . . .,hN ]
T. In our case,

the dimensionality M of the hidden variables hn was six. Signifying (yd)T, the row vectors of the

matrix Y, the trajectory components are modeled in the form

yd ¼ f1 hnð Þ; . . . ; f1 hNð Þ½ �Tþ"dwith"d ~N "dj0;s
2I

� �

;

where the variables "m specify independent Gaussian noise vectors, and with the function f1 being

drawn from a Gaussian process f1 ~GP 0;k1 h;h0ð Þð Þ, that is, all vectors of the

form f1 ¼ f1 hnð Þ; . . . ; f1 hNð Þ½ �T are distributed according to the Gaussian distribution N fj0;Kð Þ with the

covariance matrix K, whose elements are specified by a kernel function k1 in the

form Knn0 ¼ k1 hn;hn0ð Þþg1dnn0 . The kernel function is given by a linear combination of two types of

kernels, a radial basis function kernel and a linear kernel

k1 h;h
0

� �

¼ g2 exp �b1 h�h
0�

�

�

�

2
� �

þg3h
Th

0
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The RBF (Radial Basis Function) part allows to capture nonlinear structures in the data, while the

linear kernel supports smooth and linear inter- and extrapolation in the pattern space. In addition,

we found that the Kronecker delta part of the Kernel matrix is critical for the smoothness of the

learned trajectories in the latent space. The parameter b1 specifies the inverse width of the Gaussian

radial basis functions.

The second layer of the model is defined exactly as the first layer. Here, the dimensionality of the

variables hn is further reduced by generating a nonlinear mapping from the hidden state variables xn
with Q = 2 dimensions, which defines the matrix X = [x1, . . .,xN ]

T. Like in the first layer, the nonlinear

mappings between the components of the variables x and h are defined by functions drawn from a

Gaussian process f2 ~GP 0; k2 x; s; e; x
0
; s0; e0

� �� �

, where the hyper-parameters of the kernel function dif-

fer from the ones of the kernel k1. In addition, the kernel of this layer depends on the style vector

variables e and s. These variables enter the kernel of the Gaussian process as multiplicative linear

kernel terms

k2 x; s;e;x
0

; s0;e0
� �

¼ g4s
Ts

0

eTe
0

exp �b2 x� x
0�

�

�

�

2
� �

þg5x
Tx

0

:

The random variables e and s encode the motion style using one-out-of-two encoding, and they

were estimated from the training data together with the state variables xn using a maximum-likeli-

hood approach. This parametrization turns out to be favorable to separate the different style com-

ponents and the motion content in the latent space, similar to multi-factor models (Wang and Fleet,

2007). We constrained the style vectors for all trials of the training data that represented the same

motion style (e.g., ‘expression 1’, ‘human motion’) to be equal. In this way, the training data specify

estimates ê1 and ê2 that correspond to averages of the expression types 1 and 2, and estimates ŝM

and ŝH that correspond to the average monkey and the human expressions. In order to generate

new intermediate motion styles, we ran the learned Gaussian model in a generative mode, fixing the

values of these style vectors to blends between these estimates. The style vectors for the motion

morphs as functions of the style parameters e and s, as discussed in the main part of the paper,

were given by the relationships e¼ eê1þ 1� eð Þê2 and s¼ sŝM þ 1� sð ÞŝH, respectively.

The highest level of the probabilistic model approximates the dynamics of the trajectories of the

hidden state variables xn using a nonlinear extension of an auto-regressive model, which is known as

GPDM. For this purpose, the state dynamics is modeled as a function of the two-dimensional hidden

state variable xn that obeys the nonlinear dynamics

xn ¼ f3 xn�1;xn�2ð Þþ �n;

where �n is isotropic white Gaussian noise and where the nonlinear function f3 is again specified by a

Gaussian process. The hidden state dynamics can again be learned using a GP-LVM framework

(Wang et al., 2008), where we used a kernel function of the form

k3 xn�1;xn�2;xn0�1
;xn0�2

� �

¼ g6 exp �b3 xn�1 � xn0�1

�

�

�

�

2
�b4 xn�2 � xn0�2

�

�

�

�

2
� �

þg7x
T
n�1

xn0�1 þg8x
T
n�2

xn0�2:

To determine the parameters of the GP-LVMs, we maximized the logarithm of their marginal like-

lihood and fitted all hyper-parameters using a scaled conjugate gradient algorithm (Møller, 1993).

Since the evaluation of the marginal requires the inversion of a kernel matrix with a dimensionality

that is given by all pairs of latent points, its direct implementation is computationally infeasible for

large data sets. To render this inversion feasible, we applied a sparse approximation method that

approximates the marginal distribution based on a low number of inducing points in the hidden

spaces (Lawrence, 2007). The model was trained using six motion-captured example trajectories for

each of the two basic human and monkey expressions, sampled with 150-time steps. Training using

an AMD Ryzen Threadripper 1950X CPU with 32 cores with a clock frequency of 3.4 GHz took about

1.5 hr. The most important parameters of the algorithm are summarized in Appendix 1—table 2.

Turing test experiment

The described motion morphing algorithm interpolates between the original motion-captured move-

ments in space-time. It was critical to verify that the morphing algorithm does not destroy the
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naturalness of the facial movements, at least for the prototypical expressions between which we

blended. In order to verify this question, we realized a Turing test experiment that included 16 new

participants. They had to discriminate between animations with original motion capture data (‘origi-

nal trajectories’) and ones generated with movements that were generated by the morphing algo-

rithm (‘algorithm-generated trajectories’). The movements generated with the algorithm

approximated the prototype movements (the style variables e and s being 0 or 1). In order to induce

some variability, we used three different motion capture trials of each of the original human and

monkey expressions, and their approximations based on the morphing model. The compared stimu-

lus pairs were presented sequentially, and motions were presented in a block-randomized order 20

times, in separate blocks for the two avatar types. To verify that participants can pick up artifacts in

the animations, we added a further condition in which instead of movements generated by the

morphing algorithm we used control movements, which were generated by reversing the temporal

order of short four-frame segments in the original motion-captured movements. Animations with

these control movements also had to be distinguished from ones with the original motion capture

data.

The results of this control experiments are shown in Appendix 1—figure 3B. The accuracy of the

detection of original motion capture data, as opposed to the generated one, was 40.6% for the

monkey avatar and 47.5% for the human avatar. Compared to the chance probability 0.5, both val-

ues were significantly lower (�2
1; 16ð Þ ¼ 18:18; p<0:001 for the monkey and �2

1; 16ð Þ ¼ 11:43; p<0:001

for the human avatar). This implies that the animations using motion capture data were judged even

less frequently as ‘original trajectories’ than the animations generated with our motion synthesis

algorithm. The morphing algorithm thus does not degrade the perceived naturalness of the motion.

The even higher perceived naturalness of the algorithm-generated motion likely is a consequence of

the motion being slightly more smooth, due to the smoothing properties of Gaussian process mod-

els. The artificial control movements were detected with very high reliability, as indicated by the

high accuracies 96.88%, for the monkey, and 96.56%, for the human avatars, which are highly signifi-

cantly different from chance level (�2ð1; 16Þ ¼ 35:85; p<0:001 vs. �2
1; 16ð Þ ¼ 34:93; p<0:001).

Comparison of different classification models

Different multinomial regression models were compared in order to find the most compact model

that explains our classification data. The models differed in terms of the predictor variables of the

linear model for the approximation of the variables yj. The six compared models were defined as

. Model 1: yj ¼ b0j.

. Model 2: yj ¼ b0j þ b1je,

. Model 3: yj ¼ b0j þ b2js,

. Model 4: yj ¼ b0j þ b1jeþ b2js,

. Model 5: yj ¼ b0j þ b1jeþ b2jsþ b3;je � s, and

. Model 6: yj ¼ b0j þ b1jeþ b2jsþ b3;jOF.

Apart from the style variables e and s, the variable OF signifies the optic flow computed from the

image sequence with an optic flow algorithm. Models were compared based on two criteria. First,

we required that the introduction of additional predictors did not result in a significantly higher pre-

diction accuracy. According to this criterion, for almost all stimulus types, model four was the most

compact model for the front view stimuli (Appendix 1—table 1). Only for the rotated views of the

avatars, however, we found a slight significant increase of the prediction accuracy (by less than

1.57%). For this reason, we decided to use model four as the basis for our further analyses of all clas-

sification data in the main experiment.

Testing of low-level information that predicts expressivity

Since we found for natural dynamic expressions that a larger part of the tested perceptual space

was classified as monkey than as human expressions (Figure 3C), we suspected this result to be a

potential consequence of monkey expressions specifying more salient low-level features, such as

local motion or geometrical deformations. In order to control for this variable, we created a second

stimulus set for which the amount of low-level information was balanced. Since it was a priori
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unknown which type of low-level information drives the expressivity of facial expressions, we tested

nine possible measures, quantifying the amount of low-level features in a separate psychophysical

experiment with nine participants. These measures were two-dimensional optic flow computed from

the movies with a Horn-Schunck algorithm (MATLAB implementation), the absolute spatial deforma-

tion relative to the neutral frame, and the motion flow computed either from the control point trajec-

tories or from the regularized mesh points, either in three dimensions or after projection to the two-

dimensional image plane.

The spatial deformation relative to the neutral frame was quantified using the measures

DF ¼
X

N

t¼1

Xt �X0k k
2
;

where Xt signifies a vector that contains the relevant control point or (two- or three-dimensional)

mesh point coordinates and where N is the number of stimulus frames. Likewise, the motion flow

was defined by the quantity

MF ¼
X

N

t¼2

Xt �Xt�1k k
2
:

For the true optic flow, the motion measure was computed by summing up the absolute values of

all estimated local motion vectors across the image. The stimuli for this experiment were motion

morphs between each of the four prototype expressions (two human and two monkey expressions)

and a neutral expression. The original expression entered the motion morph with a weight of l, and

the neutral expression with a weight of 1�lð ), where the morphing weight was adjusted to obtain

the same amount of low-level information in all adjusted prototypes.

In order to cut down the number of measures for the amount of low-level information in the first

place, we generated a set of face motion stimuli with reduced and exaggerated expressivity, sepa-

rately for the two face avatars, by choosing six different values for the morphing weight l (values

0–25–50–75–100–125% for the monkey expressions and the values 0-37.5–75-112.5–150% for the

human expressions). For all rendered movies, we computed the nine different measures for the low-

level feature content and analyzed their dependence on the morphing weight l and their similarities.

We found that the measures DF and MF, computed from the two-dimensional and three-dimensional

mesh coordinates, and the control points were very highly correlated (r > 86.24, raverage = 98.74;

p < 0.0403). The mesh point-based measures were monotonically increasing functions of the morph-

ing level l. This was not the case for the quantities computed from the control point trajectories,

due to which we discarded the measures derived from the control point trajectories from the balanc-

ing of the stimuli. Because of the high correlation between the measures computed from the two-

and three-dimensional mesh-point trajectories, and the higher similarity of the two-dimensional tra-

jectories with image motion, we kept only the measures computed from the two-dimensional mesh-

point trajectories for the further analysis. In addition, we tested the optic flow computed by the optic

flow algorithm from pixel images as a third possible predictor of the low-level information. For each

of these three predictors, we constructed a balanced stimulus set by adjusting the morph levels of

all prototypes, except for the one with the lowest low-level feature content, in order to match their

low-level information contents. As a result, we obtained three balanced sets of stimuli, each with

four dynamic expressions, separately for each avatar type.

All stimuli were shown in a block-wise randomized order to the participants who had to rate their

expressivity on a nine-point Likert scale. For the human avatar, the stimuli, the expressivity

of which was balanced using the motion flow measure MF, showed the smallest variability across

participants and the largest expressivity. For the monkey avatar, the expressivity was rated similarly

for stimuli balanced using the measures MF and DF, while it was significantly lower for stimuli bal-

anced using the optic flow (t(275) = 2.8; p = 0.0054 and t(269) = 3.95; p < 0.001). A step-wise

regression analysis, in which we predicted the expressivity ratings from the remaining measures (MF

and DF computed from the two-dimensional mesh motion), showed that the motion flow MF is suffi-

cient, while the other predictor DF did not add significant additional information. Using a model

comparison analysis exploiting the Bayesian Information Criterion (BIC), we found no significant
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difference in the explanatory values of the models including the predictor MF, and the predictors

MF and DF ( �2
1; 284ð Þ ¼ 3:49; p ¼ 0:062).

Asymmetry index

The deviation of the four discriminant functions Pi e; sð Þ from the completely symmetrical case, where

all four discriminant functions have the same basic shape (with their peaks centered on the different

prototypes), was quantified by defining the asymmetry index AI. This index is exactly zero if the four

discriminant functions are exactly symmetrical with respect to the axes e ¼ 0:5 and s ¼ 0:5. This

implies the symmetry relationship P1 e; sð Þ ¼ P2 1� e; sð Þ ¼ P3 e; 1� sð Þ ¼P4 1� e; 1� sð Þ. In order to

compute the index, we first computed a symmetrized average of all four discriminant functions

according to the formula

Psym e; sð Þ ¼
P1 e; sð ÞþP2 1� e; sð ÞþP3 e;1� sð ÞþP4 1� e;1� sð Þ

4

Likewise, we defined a standard deviation relative to this symmetrized average by the expression

SDsym e; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qsym e; sð Þ=3
q

with the least square deviation sum

Qsym e; sð Þ ¼ P1 e; sð Þ�Psym e; sð Þ
� �2

þ P2 1� e; sð Þ�Psym e; sð Þ
� �2

þ

P3 e;1� sð Þ�Psym e; sð Þ
� �2

þ P4 1� e;1� sð Þ�Psym e; sð Þ
� �2

The asymmetry index was defined by the expression

AI¼

RR

1

0
SDsym e; sð Þdeds

RR

1

0
Psym e; sð Þdeds

The AI increases with the deviation from the completely symmetric case, where all four categories

are represented equally well.

Appendix 1—table 1. Model comparison.

Results of the accuracy and the Bayesian Information Criterion (BIC) for the different logistic multino-

mial regression models for the stimuli derived from the original motion (no occlusions) for the monkey

and the human avatar. The models included the following predictors: Model 1: constant; Model 2:

constant, s; Model 3: constant, e; Model 4: constant, s, e; Model 5: constant, s, e, product s�e; Model

5: constant, s, e, Optic Flow.

Model comparison

Monkey front view Model Accuracy [%] Accuracy increase [%] BIC Parameters df c
2 p

Model 1 38.29 7487 33

Model 2 57.86 19,56 (relative to Model 1) 5076 36 3 2411 <0,0001

Model 3 49.49 11,2 (relative to Model 1) 6125 36 3 1362 <0,0001

Model 4 77.53 19,67 (relative to Model 2) 3586 39 3 1490 <0,0001

Model 5 77.53 0 (relative to Model 4) 3598 42 3 11.997 <0.0074

Model 6 77.42 �0,11 (relative to Model 4) 3580 42 3 5.675 0.129

Human front view

Model 1 36.84 7481 33

Model 2 54.22 17,38 (relative to Model 1) 5541 36 3 1940 <0,0001

Model 3 53.56 16,72 (relative to Model 1) 5847 36 3 1633 <0,0001

Model 4 81.56 27,35 (relative to Model 2) 3420 39 3 2120 <0,0001
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Appendix 1—table 1 continued

Model comparison

Model 5 81.35 �0,22 (relative to Model 4) 3309 42 3 112 <0,0001

Model 6 81.38 �0,18 (relative to Model 4) 3389 42 3 31.66 <0,0001

Monkey 30-degree

Model 1 35.32 6913 33

Model 2 57.40 22,08 (relative to Model 1) 4314 36 3 2622 <0,0001

Model 3 49.36 14,04 (relative to Model 1) 5179 36 3 1757 <0,0001

Model 4 84.04 26,64 (relative to Model 2) 2359 39 3 1977 <0,0001

Model 5 84.88 0,84 (relative to Model 4) 2335 42 3 48 <0,0001

Model 6 84.08 0,04 (relative to Model 4) 2331 42 3 28 <0,0001

Human 30-degree

Model 1 37.40 6819 33

Model 2 55.72 18,32 (relative to Model 1) 4843 36 3 1975 <0,0001

Model 3 54.36 16,96 (relative to Model 1) 5217 36 3 1602 <0,0001

Model 4 81.32 25,6 (relative to Model 2) 2910 39 3 1956 <0,0001

Model 5 82.88 1,56 (relative to Model 4) 2809 42 3 101 <0,0001

Model 6 81.92 0,6 (relative to Model 4) 2890 42 3 19 0.0002

Appendix 1—table 2. Parameters of the Bayesian motion morphing algorithm.

The observation matrix Y is formed by N samples of dimension D, where N results from S * E trails

with T time steps. The dimensions M and Q of the latent variables were manually chosen. The inte-

gers S and E specify the number of species and expressions (two in our case).

Parameters of motion morphing algorithm

Parameters Description Value

D Data dimension 208

M First layer dimension 6

Q Second layer dimension 2

T Number of samples per trial 150

S Number of species 2

E Number of expressions two or 3

N Number of all samples T * S * E

Hyper parameters (learned) Size

b1 Inverse width of kernel k1 1

b2 Inverse width of kernel k2 1

b3 Inverse width for non-linear part one of kernel k3 1

b4 Inverse width for non-linear part two of kernel k3 1

g1 Precision absorbed from noise term "d 1

g2 Variance for non-linear part of k1 1

g3 Variance for linear part of k1 1

g4 Variance for non-linear part of k2 1

g5 Variance for linear part of k2 1

g6 Variance for non-linear part of k3 1
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g7 Variance for linear part one of k3 1

g8 Variance for linear part two of k3 1

Variables Size

Y Data N x D

H Latent variable of first layer N x M

X Latent variable of second layer N x Q

sM Style variable vector for monkey species S x 1

sH Style variable vector for human species S x 1

e1 Style variable vector for expression one E x 1

e2 Style variable vector for expression two E x 1

Appendix 1—table 3. Detailed results of the two-way ANOVAs.

ANOVA for the threshold: two-way mixed model with expression type as within-subject factor and

the stimulus type as between-subject factor for both the monkey and the human avatar. Steepness:

two-way ANOVA with avatar type and expression factor for each stimulus motion type (original,

occluded, and equilibrated). The mean square is defined as Mean Square = Sum of Square/df;

df = degree of freedom.

ANOVAs

Threshold Monkey avatar Sum of square df Mean square F p

Stimulus type 0,00 2 0,00 0,00 0999

Expression type 1,20 1 1,20 188,83 0000

Stimulus * Expression 0,06 2 0,03 4,51 0015

Error 0,42 60 0,01

Total 1,72 65

Human avatar

Stimulus type 0,00 2 0,00 0,01 0993

Expression type 0,40 1 0,40 46,37 0000

Stimulus * Expression 0,05 2 0,03 3,15 0049

Error 0,57 60 0,01

Total 1,02 65

Steepness Original motion stimulus

Avatar type 376,68 1 376,68 6,3 0016

Expression type 0,36 1 0,36 0,01 0939

Avatar * Expression 0,16 1 0,16 0 0959

Error 2391,21 40 59,78

Total 2768,41 43

Occluded motion stimulus

Avatar type 286,17 1 286,17 3,33 0076

Expression type 0,02 1 0,02 0 0988

Avatar * Expression 0,00 1 0,00 0 0995

Error 3094,54 36 85,96

Total 3380,73 39
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Equilibrated motion stimulus

Avatar type 1,57 1 1,57 0,4 0533

Expression type 0,25 1 0,25 0,06 0803

Avatar * Expression 0,02 1 0,02 0 0945

Error 174,76 44 3,97

Total 176,60 47
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