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Abstract

In natural motor behaviour arm movements, such as pointing or reaching, often need to be coordinated with locomotion.
The underlying coordination patterns are largely unexplored, and require the integration of both rhythmic and discrete
movement primitives. For the systematic and controlled study of such coordination patterns we have developed a
paradigm that combines locomotion on a treadmill with time-controlled pointing to targets in the three-dimensional space,
exploiting a virtual reality setup. Participants had to walk at a constant velocity on a treadmill. Synchronized with specific
foot events, visual target stimuli were presented that appeared at different spatial locations in front of them. Participants
were asked to reach these stimuli within a short time interval after a ‘‘go’’ signal. We analysed the variability patterns of the
most relevant joint angles, as well as the time coupling between the time of pointing and different critical timing events in
the foot movements. In addition, we applied a new technique for the extraction of movement primitives from kinematic
data based on anechoic demixing. We found a modification of the walking pattern as consequence of the arm movement,
as well as a modulation of the duration of the reaching movement in dependence of specific foot events. The extraction of
kinematic movement primitives from the joint angle trajectories exploiting the new algorithm revealed the existence of two
distinct main components accounting, respectively, for the rhythmic and discrete components of the coordinated
movement pattern. Summarizing, our study shows a reciprocal pattern of influences between the coordination patterns of
reaching and walking. This pattern might be explained by the dynamic interactions between central pattern generators that
initiate rhythmic and discrete movements of the lower and upper limbs, and biomechanical factors such as the dynamic gait
stability.
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Introduction

In everyday life people accomplish many different motor

behaviours that require the coordination of arm movements and

locomotion, such as reaching during walking. Although many

scientific studies have focused on investigating separately these two

motor tasks, surprisingly little research has addressed their

interaction and the underlying coordination patterns. We are

only aware of a few studies addressing related issues: Georgopoulos

and Grillner [1] proposed that reaching and locomotion might

share the same control mechanisms. The authors speculated that

reaching may have an evolutionary origin, and that it may have

evolved from the same neural substrates underling locomotion.

Other studies [2,3] focused on the behavioural aspects of the

execution of reaching while walking, and found that subjects

tended to exhibit an ipsilateral coupling between the grasping

hand and the corresponding foot, potentially to ensure biome-

chanical stability (different from the usual contralateral extension

of upper and lower limbs that is observed during human walking).

Other research [4,5,6,7,8] focused instead on the effects caused by

changes of the features characterizing the reaching (such as the

shape or the position of the object to reach) during locomotion,

showing that almost always subjects had to adjust their gait to meet

the demands of the reaching task. Although all these works

provided interesting behavioural findings, they left however many

questions unanswered and no comprehensive kinematic study has

been presented so far that investigates such coordination patterns

between locomotion (rhythmic task) and arm reaching (discrete

task) in a highly controlled task. To fill this gap we have developed

a paradigm that combines locomotion on a treadmill with

controlled pointing to targets in the three-dimensional space,

exploiting an experimental setup that combines online motion

capture and stereoscopic target presentation in Virtual Reality.

Participants had to walk at a constant velocity on a treadmill.

Synchronized with the heel strike or lift of the toe of either the left

or right foot, visual target stimuli were presented that appeared at

five different spatial locations in front of them. Participants were

asked to reach these stimuli within a short time interval after a

‘‘go’’ signal. By specifying different goal positions and timings of

their appearance we required the participants to realize different

types of coordinative couplings between the arm and the leg

movements, at the same time motion-capturing their body and
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arm movements. We analysed the variability patterns of the most

relevant joint angles, as well as the time coupling between the

pointing and the different critical events in the foot movements. In

addition, we applied a new technique for the extraction of

movement primitives by anechoic demixing in order to identify

components in the kinematic data that might be associated with

control primitives.

In general, one might speculate about possible outcomes of this

experiment, and different hypotheses about the structure of the

coordination patterns between reaching and walking could be

formulated. A first hypothesis is that both tasks might be controlled

simultaneously by exploiting a single coordination strategy. This

would represent an efficient solution in terms of the degrees-of-

freedom problem [9,10,11,12,13], since the dimensionality of the

relevant controller space would be minimized. However, such a

strict coupling of the two behaviours would potentially reduce the

flexibility of the realizable behaviours. Alternatively, both tasks

might be controlled completely separately. This would then

maximize the flexibility, since then both behaviours could be

combined in arbitrary ways. However, such separate control might

be suboptimal in terms of the dynamic stability of the resulting

coordination patterns, since especially for extreme upper-body

movements the gait pattern might have to be modified to prevent

falling. The hypothesis of the separate control of walking and

reaching would be compatible with previous experiments showing

different task-specific coordination strategies for reaching and

postural tasks during whole-body pointing movements to a target,

starting from a standing posture [14,15,16,17]. A third hypothesis

would be a flexible architecture with loosely coupled control

strategies for walking and reaching. This would still allow for

dynamic couplings between both control strategies, if required, but

would maintain a modularity of the underlying controller.

In agreement with the last hypothesis we found a modular

organization relying on two distinct main kinematic components,

accounting for the rhythmic and discrete parts of the movements.

Different from strictly hierarchical organizations of the controller

architecture, where for example (dynamically stable) walking is

controlled with highest priority and provides input to the control

of reaching, or vice versa, we found a mutual interaction between

locomotion and reaching, i.e. each task to some extent modulates

the other one. The fact that we find a strong temporal coupling

between kinematic hand and foot events suggests however that

walking and reaching seem to be integrated in a coherent common

control strategy. These results are interesting because they suggest

that such a mutual interaction might result from the interplay

between central pattern generator networks (CPGs) involved in

upper and lower limb control with voluntary motor commands

descending from supraspinal areas, and biomechanical factors,

such as the need to maintain dynamical stability during

locomotion.

Methods

Subjects
Ten healthy right-handed subjects participated to the experi-

ment, 8 males, 2 female, ages 2465 years (mean 6 standard

deviation), mass 6969 kg, height 1.7560.08 m. All participants

were in good health condition and had no previous history of

neuromuscular disease. The experiment conformed to the

declaration of Helsinki and written informed consent was obtained

from all the participants according to the protocol of the local

ethical committee (Ethik-kommission an der medizischen Fakultät

der Eberhard-Karls-Universität und am Universitätsklinikum

Tübingen). The ethic committee had approved this study in

advance.

Apparatus
The experimental apparatus consisted of a motion capture

system, a virtual reality projection system and a treadmill (figure 1).

Online motion capture was performed using a Vicon (Oxford,

UK) optoelectronic movement recording system with 10 infrared

cameras, which recorded the three-dimensional positions of

spherical reflective markers (2.5 cm diameter) with spatial error

below 1.5 mm. The 42 markers were attached with double-sided

adhesive tape to tight clothing, worn by the participants. Marker

placement was defined by the Vicon’s PlugInGait marker set.

Commercial Vicon software was used to reconstruct and label the

markers, and to interpolate short missing parts of the trajectories.

Sampling rate was set at 120 Hz. The virtual reality system

consisted of 2 pairs of 3D stereo projectors (NEC NP1150, native

resolution 10246768 ppi, horizontal refresh frequency range 15–

108 kHz, vertical refresh frequency range 48–120 Hz, modified

for stereographic projection by Infitec, Ulm, Germany). Each pair

of projectors was covering one half of a big circular screen located

in front of the treadmill (either the left or the right one). The

motion capture and projection system were controlled by two

workstations which were interconnected via a TCP/IP network.

This made it possible to control the online generation of 3D

stimuli by the actual motion capture data that was processed in

real time. Using this setup, we were able to present visual stimuli

exactly synchronized with specific foot events (heel strike or toe lift-

off of either the right or left foot), which were determined online

automatically. The algorithm for the automatic detection of foot

events was based on the determination of sign changes of the

vertical velocity. This algorithm was suitable for the detection of all

four types of foot events. The accuracy of this algorithm was

validated by comparing the automatically detected event times

with the times obtained by a careful off-line analysis of the motion

capture data by visual inspection. The time difference between the

automatically detected events and this ground-truth data was on

average 22633 ms across all foot step events. This level of

accuracy seemed to justify the use of the automatic detection

results instead of a tedious manual analysis of the trials by the

inspection of the motion trajectories.

Custom-made software was used to integrate the VR and the

Vicon systems, and to generate a geometrically correct stereo-

scopic projection on the spherical screen.

Experimental Protocol
Participants were asked to walk at a constant velocity on the

treadmill. Synchronized with the heel strike or toe lift-off of either

the right or left foot (RHS = Right Heel Strike, RTL = Right Toe

Lift-off, LHS = Left Heel Strike, LTL = Left Toe Lift-off), visual

target stimuli were presented that appeared at five different spatial

locations in front of them. Each stimulus consisted of a virtual ball

of 20 cm of diameter. The five targets were located respectively at

the vertices and at the centre of an imaginary square lying on a

vertical plane parallel to the subjects’ coronal plane. The distance

of the vertical plane from the subject corresponded at 115% of the

subject’s arm length. Before the start of the recordings, the whole

peripersonal space of the subject had first to be calibrated by

learning of a nonlinear function that compensated for nonlinear

distortions introduced by the geometrical projection errors of the

3D projection system and the semicircular screen. For each

participant, the spatial positions of two vertices of the top

horizontal side of the square were determined in the following

way: the participant was presented with two virtual balls, located
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at two different horizontally displaced reachable positions on the

virtual plane. If the participant was still able to reach these

positions with his right hand the virtual balls were located further

upwards, left or right, in steps of 5 cm, until the participant almost

could not reach them anymore. The other two vertices of the

plane were then placed in a way so that they had the same distance

from the subject’s frontal and sagittal plane. The distance of the

balls from the subject’s coronal plane remained constant during

the procedure, and balls remained in the same vertical plane. We

made sure that the most extreme target positions exceeded as

much as possible the outer boundaries of the subjects’ normal

reaching range. In this way the pointing-during-walking task was

made as demanding as possible, since (for biomechanical reasons)

we did not expect pointing within the comfortably reachable part

of the peripersonal space to require specific coordination with

walking. By making the motor tasks challenging instead, we aimed

to push subjects to realize a wider range of coordination strategies

that otherwise would not be necessary to comply with the task.

While continuously walking at a fixed speed (0.8 m/s), the

virtual target appeared in one of the five possible positions,

triggered by one of the four foot events, which were detected in

real time. After the trigger event the colour of the target ball

turned red and the motion recoding started. After one single gait

cycle, at the occurrence of the same foot event, the target turned

yellow in order to notify the subject to get ready for the reaching.

After a further gait cycle, when the same foot even occurred again,

the target turned green and the participant had to reach with the

right hand the virtual ball within a short time interval (duration

0.6 s). The choice of setting the reaching time window 0.6 s long

was based on neurophysiological and mechanical considerations,

and on a pilot experiment testing different durations. The duration

had to be above the sum of the times for the processing of the

visual stimulus (colour change), the movement planning time, and

the time for sending out the motor command to the muscles, and

the time-delay created by the inertia of the musculoskeletal system.

During pilot experiments we tested participants’ performances for

different durations of the interval and found that for time intervals

below 0.6 s the task became too difficult. With the chosen gait

velocity the interval duration of 0.6 s resulted in about 25% of

invalid reaching movements.

The recording stopped three gait cycles after that the target had

turned green. If the target had not been reached within this

maximum trial duration the trial was repeated, while otherwise

another trial followed. Participants were instructed to reach the

balls with the right index finger, although they were told that the

precision of the reaching was not crucial for the experiment. This

reaching instruction allowed simultaneously to drive the hand

close to the targets, and to minimize the variability of the

manipulation patterns that would emerge otherwise (such as

grasping with different grips, or punching). If at the time of the

‘‘go’’ signal the hand was too close to the virtual target (,30 cm)

the trial was discarded and repeated. If, conversely, the pointing

was valid and the target was reached within 0.6 s after the

occurrence of ‘‘go’’ signal the virtual ball exploded in order to give

the participant feedback about the successful pointing. Five

successful trials were collected for each of the 20 different

experimental conditions (4 foot events by 5 target locations),

resulting in a total of 100 trials per subject. The order of the foot

events and the target position during each trial was chosen

randomly. During each trial the system stored the critical

parameters into a log file. Among these parameters were the type

of foot event triggering the ‘‘go’’ signal in that trial, the coordinates

defining the spatial position of the virtual target displayed in that

trial, the time at which the motion capture system detected the foot

event, and the time at which the target was reached (i.e. the time at

which the hand had a distance from the centre of the virtual ball

that was smaller than 5 cm). The walking velocity was chosen

based on previous experience in pilot experiments, where

participants reported this speed as a comfortable pace for walking.

Before starting the data collection, participants were requested to

walk freely for several minutes on the treadmill in order to

familiarize them with the walking situation. All participants

reported at the end that during the walk they felt as comfortable

as during natural walking. The experiment was run in complete

darkness, with the exception of the light provided by the VR

system projecting the stimulus on the screen. None of the

participants reported feeling uncomfortable or impaired in the

execution of the task for this level of illumination. For safety

reasons, the treadmill was equipped with two lateral bars (see

picture in figure 1). After the initial walking training phase subjects

could maintain their balance on the treadmill very well, so that the

lateral bars during the experiment were used only extremely

Figure 1. Experimental setup for the study of the coordination
of reaching and walking movements. The setup combines motion
capture on a treadmill with a virtual reality setup that presents target
objects with a precise spatio-temporal relationship to the specific time
points of the foot movement (foot events) and the actual position of
the participants. Four projectors (two for each half the spherical screen)
allow to display virtual objects (spheres, indicated in green on the left
side of the figure) in the three-dimensional space in front of the
participants, who are walking at a constant speed on a treadmill. Forty-
two reflective markers are attached to the participants, and their spatial
positions are recorded by an infrared motion capture system (Vicon).
The Vicon workstation communicates with the controller of the virtual
reality system through the TCP/IP protocol.
doi:10.1371/journal.pone.0079555.g001
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rarely. The fourteen trials in which participants touched the hand-

rails were excluded from the analysis.

Data Analysis
Kinematic data were analysed off-line with customized software

written in Matlab (Mathworks, MA). We focused the analysis on a

time window that was two gait cycles long. After manual

interpolation of missing marker trajectories via commercial Vicon

software, only the time intervals of the trajectories from the last lift

off of the right toe preceding or coinciding with the ‘‘go’’ signal

and the next two gait cycles were considered. One gait cycle was

defined as the time between two successive lifts of the same toe.

For each trial we computed several parameters. The mean walking

velocity was defined as the average, over time, of the difference

between the velocity of the belt movement of the treadmill and the

velocity along the walking direction of the reflective marker

applied on the subject’s right iliac crest. For each gait cycle we

computed also its duration and the duration of the stance phase

(i.e. the time interval between a foot strike and the successive lift-

off), as percentage of the whole gait cycle duration. To define the

duration of reaching we considered the temporal evolution of the

spatial distance of the marker placed on the dorsum of the subject’s

right hand (between the most distal ends of the third and fourth

metacarpal bones) and the origin of the world frame of reference,

which coincided with the centre of the horizontal surface of the

treadmill. This distance changed in an oscillatory fashion and was

maximal (in absolute value) at the time at which the target was

reached. The duration of reaching was defined as the time interval

between successive peaks of this distance. Reach duration was also

expressed as percentage of the average gait cycle duration

(computed over the two gait cycles within each trial). We also

computed the peak velocity of the hand.

Joint angles were computed by approximating the marker

positions with a hierarchical kinematic body model (skeleton) with

17 joints (head, neck, spine, and right and left clavicle, shoulder,

elbow, wrist, hip, knee and ankle). Coordinate systems were

attached to each rigid segment of this skeleton. The rotations

between adjacent coordinate systems along this skeleton were

characterized by Euler angles, the pelvis coordinate system serving

as the origin of the kinematic chain. At the end, all trajectories of

the markers and the computed joint angles were resampled with

350 time points and smoothed by spline interpolation. For each

participant and trial we computed the time intervals between the

‘‘go’’ signal and time of pointing, as well as the time intervals

between the time of pointing and the next four foot step events. To

minimize estimation errors, we determined these time intervals in

an off-line analysis, by determining the points of maximum hand

distance from the origin, taking the whole trajectory into account.

Also the times of strike and lift-off of the feet were determined

offline by inspection of the trajectories of the heel and toe markers.

We computed the variability (standard deviation) of the time of

occurrence of the peaks of amplitude for the most relevant joint

angles (specifically those relative to right and left knee and the right

shoulder flexion and extension). These angles were the most

representative ones for the two main sub-tasks to be accomplished,

walking and pointing.

Dimensionality Reduction Analysis
Dimensionality reduction techniques have become a common

tool in the last years in motor control to study the modular

organization of movements in both electromyographic

[15,16,18,19,20] and kinematic [17,21,22] data. It seems thus as

a useful approach for deriving signatures of control modules from

the very high-dimensional kinematic data derived from the full-

body movements in our task. In previous work on kinematic data

the application of principle components analysis (PCA, see [23])

allowed to approximate complex whole-body movements by

superpositions of a relatively small number of task-dependent

kinematic components, which were interpreted as signatures of an

underlying modular control architecture. Kaminski and others

[14,17] showed, for instance, that the identified kinematic

components were associated with either postural or reaching

components of the task. PCA provided, moreover, additional

information about the flexible way how such components were

combined in order to accomplish the relevant motor goal. Inspired

by these previous investigations, we applied dimensionality

reduction algorithms to our data characterizing the coordination

of walking and reaching. Besides classical PCA, we also applied a

new version of an algorithm for anechoic demixing that allows for

temporal shifts in the generative model that reconstructs the

signals from the extracted invariant components. We have shown

in previous works [24,25] that this class of mixture models results

in very compact representations of kinematic data from complex

body movements, often requiring less than half of the number of

components than required by PCA models for the same accuracy

of approximation.

We present in this paper a new algorithm for anechoic

demixing, which is more efficient for problems in motor control

than the other algorithms that we have tested. The new technique

exploits the fact that the relevant trajectories are always smooth

and can be approximated well by anechoic mixtures of smooth

signals [22,26]. Exploiting the smoothness and introducing an

appropriate prior for the recovered source functions, we obtain a

more efficient and stable demixing algorithm than more general

methods that generate estimates assuming more general function

classes that are not low-pass-bounded [24]. The core of the

method results in an EM-like optimization of the parameters of the

following general anechoic mixing model

xi(t)~
XN

j~1

aij
:sj(t{tij) ð1Þ

were xi(t) and sj(t) indicate, respectively, the values of the i-th joint

angle and of the j-th temporal component (source) sj(t) at the time

instant t. The term anechoic is derived from acoustics, where

usually equation (1) is used to describe an acoustic signal as the

results of the superposition of multiple and delayed sources of

sound in a room without acoustic reflexions. In the following, we

will refer to this method as Fourier-based Anechoic Demixing

Algorithm, (FADA). Taking into account that the signals are band-

limited the temporal signals xi(t) and sj(t) can be approximated by

their Fourier expansions:

xi(t)~
X?

k~{?

cikeikt ð2Þ

and sj(t{t)~
X?

k~{?

njke
{iktj eikt ð3Þ

where cik and cjk are complex constants (cik~DcikDe
iQcik and

njk~Dnjk De
iQcjk ). i indicates the imaginary unit. Exploiting the

assumed smoothness of the signals, we can approximate the signals

by the truncated Fourier series
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xi(t)%
XM

k~{M

cikeikt ð4Þ

and sj(t{tij)%
XM

k~{M

nike{iktij eikt ð5Þ

M being a positive integer which is determined by Shannon’s

theorem according to the limit frequency of the signals.

Substituting (4) and (5) in (1), and assuming uncorrelatedness of

the sources sj(t), the computation of the both sides of equation (1)

results in

Dcik D2~
XN

j~1

Daij D2DnjkD2,i~0,1,::Ns and k~0,1,::M ð6Þ

where N is the number of sources and Ns the number of signals xi

or, in other words, the number of rows of the data matrix X = [x(1)

… x(T)]. Since the signals are real the Fourier coefficients

equations (4) and (5) must fulfil ck~c{k* and nk~n{k*, Vi. The

operator * indicates the conjugate of a complex number. For this

reason it is sufficient to solve the demixing problem by considering

only the coefficients with index k§0. As a consequence of equality

(1) also the following equations hold:

cik~
XN

j~1

aijnjke{iktij ~
XN

j~1

aije
{iktij DnjkDe

iQnjk , with

i~0,1,::Ns and k~0,1,::M:

ð7Þ

The previous considerations motivate the following iterative

algorithm for the identification of the unknown parameters in

model (1). After random initialization of the estimated parameters,

the following steps are carried out periodically until convergence:

1) Compute the absolute values of the coefficients cik and solve

the following equation:

Dcik D2~
XN

j~1

Daij D2DnjkD2,i~0,1,::Ns and k~0,1,::M ð8Þ

In our implementation we exploit non-negative independent

component analysis (ICA) [27] to solve this equation.

2) Initialize Qjk~0 and iterate the following steps:

i) Update the phases of the Fourier coefficients of the sources by

solving the following non-linear least square problem

min
Q

C{ZjQj

�� ��2

F
ð9Þ

where Cik~cik, Zijk~aije
{iktij Dnjk D, Qjk~e

iQcjk and where we

define the result of the operator Zj0Qj as the matrix of size Ns

by M that is obtained by summing over the index j the

elements of the matrices Z and Q so that (Zj0Qj)ik~

PN

j~1

ZijkQik. F indicates the Frobenius norm.

ii) Exploiting the knowledge of the sources sj(t) identify the

weights aij and delays tij by optimizing the cost function:

½ÂA,t̂t�~ arg min
A,t

xi(t){S(t)Ak k2
F ð10Þ

Optimization can be carried out following [28], assuming

uncorrelatedness for the sources and independence of the time

delays.

The algorithm presented above was inspired by previous work

carried out in [24,26]. Like this previous algorithm, FADA

assumes independence of the sources. Opposed to PCA and ICA

model, the anechoic mixing model allows for time shifts of the

sources. Compared to the our previous algorithm, FADA has

much less free parameters that need to be estimated, which makes

the algorithm much faster and more robust, and much less prone

to get stuck in local minima.

FADA requires to define the number of sources a priori. To

compare different models we characterized the approximation

quality of mixture model by computing the percentage of variance

accounted for (VAF) as a function of the number N of components.

The VAF is defined as

VAF~100:(1{
Xrec{X
�� ��2

F

X{X
�� ��2

F

) ð11Þ

where X is the matrix of the recorded trajectories, Xrec is the

matrix of the reconstructed data obtained using a certain number

of primitives, and X is a matrix of the same size of the matrix X
and whose rows are equal point by point to the mean values of the

corresponding rows of X, i.e. the mean of the angular trajectories

in the rows of X. A simple criterion to determine the relevant

number of primitives is to determine the point where the

cumulative VAF levels of and saturates (‘scree test’). In our study

we varied the number N of temporal components between 1 and 5.

The exact point of change of slope was quantitatively determined

by using a linear regression procedure [15,16,19,20,29]. We

computed a series of linear regressions, starting from a regression

on the entire cumulative VAF curve and progressively removing

the smallest value of the number of components from the

regression interval. We then computed the mean square residual

error of the different regressions and selected the number as

optimal for which the corresponding error was smaller than 0.001.

For cross-validation purposes, we also extracted N = 1…5 source

components from 80% of the total trials. We then used the

components extracted from the training set to reconstruct the

trajectories of the remaining trials (test data set) and computed the

corresponding VAF. To avoid convergence to local minima, we

always ran the algorithm 25 different times on the same data set

and considered only the solutions that provided the lowest

reconstruction errors between original and reconstructed data.

The improvements provided by considering time shifts in the

generative model underlying FADA and with respect to the

performance obtained with standard PCA, which is based on

Coordination of Pointing during Locomotion

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e79555



instantaneous mixing models, were assessed. Because of the large

differences of magnitude between angular displacements of the

upper and the lower-body joints, PCA based on the correlation

matrix rather than based on the covariance matrix was performed.

Control Experiments and Assessment of the Intrinsic
System Delays

A first control experiment (3 subjects, who did not took part in

the main experiment, 3 males, ages 2463 years, mass 6768 kg,

height 1.7460.05 m) was carried to test whether the periods in

which the target turned yellow might have had an influence on the

result by providing a signal that participants could have used to

show predictive behaviour. To preclude such possibility to predict

the target ball remained red even during the step cycle preceding

the ‘‘go’’ signal.

A second control experiment (3 subjects, who did not took part

in the main experiment, 3 males, ages 2564 years, mass 6569 kg,

height 1.6960.04 m) was carried to test whether the temporal

relationships between the first four foot step events following the

‘‘go’’ signal and the time of reaching the target were dependent on

walking speed. The conditions were as in the first control

experiment (no yellow phase anticipating the ‘‘go’’ signal) and

walking speed was, in two separate experimental sessions, either

0.6 m/s or 1.00 m/s (corresponding to 75% and 125% of the

walking velocity in the main experiment). In this control

experiment only two triggering events were considered instead of

four, the lift and the strike of only the right foot (RHL and RTL).

In the Virtual Reality setup an intrinsic time delay between

event detection and stimulus presentation cannot be avoided.

Once the foot event occurs, the system requires some time to

detect the event, process the information and send back a signal to

the VR system to change the colour of the virtual target. It was

thus important to estimate the magnitude of this loop delay. For

this purpose, we computed for all the trials of each participant the

difference between the time of the change of sign of the foot

velocity (determined offline by visual inspection of the time course

of the velocity) and the time of occurrence of the ‘‘go’’ signal stored

in the log files. The average value of these time differences was

then taken as an estimate of the delay introduced by the system

loop. Following to such a procedure we found an average delay of

38615 ms. These temporal delays are so small that they do not

substantially bias the reported delays, so that we neglected this

factor in the interpretation of the data.

Statistical Analysis
Statistical effects were tested by performing 465 (4 foot events

and 5 target locations) multivariate analyses of variance (ANOVA),

where appropriate. Post-hoc analyses were carried out by using a

multiple comparison method (with Tukey–Kramer correction).

Student’s t-test was used to test whether the relative time delays

between time of pointing and a foot event was significantly

different from 0. Student’s t-test was also used to test whether the

times of occurrence of specific foot events were statistically

different or not. In all cases the level of significance at which the

null hypotheses were rejected in the study was set at 1%. A chi-

square goodness-of-fit test was always used to test the normality of

the delay distributions.

Results

General Kinematics
All participants were able to accomplish 100 successful reaching

movements (5 ball positions64 foot events65 movements per

position). However the task requirements made the task quite

difficult to accomplish. Participants had indeed to perform, on

average, 151623 movements in total, including the trials that were

discarded.

Although four foot events were used to trigger the visual stimuli,

one might conclude that only a subset of them is really relevant for

coordination, since some of them were temporally quite close (for

instance LHS might coincide with RTL and RHS with LTL). In

order to rule out this possible confound, we computed the average

time differences, as percentage of the total gait cycle duration, and

the corresponding standard deviations between the time points of

LHS (RHS) and RTL (LTL). We found significant differences of

1367% for RTL - LHS, and of 1365% for LTL - RHS. In both

cases t-tests revealed that these temporal differences were

statistically different from zero (p,0.01), indicating that the four

foot events really were appropriately used as trigger signals. Since

the results for the left foot events were however very similar to

those for the right foot events we report in the following for

simplicity only the results for RTL and RHS.

We computed the average values of several kinematic param-

eters in order to characterize the walking and reaching patterns for

the individual participants (Table 1). Although the treadmill was

operating at a constant velocity of 0.8 m/s (2.88 km/h) the mean

walking velocities in table 1 were typically smaller, with a few

exceptions. This indicates that, within the two gait cycles taken

into consideration, the subjects tended to shift slightly backwards

in the direction of walking. This might be a consequence of a

reduction of walking speed that was necessary as preparation of

the arm movement. An ANOVA revealed a significant depen-

dence of the mean cycle duration on both target location

(p,0.001) and triggering event (p,0.001).

The mean stance phase duration was, however, neither

dependent on the target position (p = 0.37) nor on the triggering

event (p = 0.62). The mean reaching duration was found to be

significantly modulated by both target location (p,,0.001) and

foot event (p,,0.001). The durations were higher for the two

highest target positions. Similarly, the hand peak velocity

depended on both target location (p,,0.001) and foot event

(p,0.01). As for the mean reaching duration, the mean hand peak

velocities associated with the two highest target positions were

significantly higher than those of the other locations. No

statistically significant interactions were found between target

locations and triggering events, with the only exception of an effect

on the mean stance duration (p,0.01).

Analysis of the Joint Angles
Figure 2 shows the reconstructed time courses of six flexion-

angles (of both shoulders, hips and knees) from the trials of one

typical subject, reaching towards the highest and most leftward

target location. Note that we decided to display the angles

associated with this position because participants reported it as the

most difficult location to reach. The first two columns from the left

side of the figure display the temporal evolution of the angles from

trials in which the ‘‘go’’ signal was triggered by a specific foot event

associated with the right foot. The third column illustrates instead,

for comparison, the temporal evolutions of the angles during

normal locomotion, when no trigger event occurs. All angles show

a stereotypical time course. Within trials associated with the same

triggering event the flexion-angles of the right shoulder were

always characterized by a discrete, almost bell-shaped angular

profile (average peak-to-peak rotation was 96.8625.8 degrees).

The angles of the left shoulder, however, were characterized by

much smaller rotations (average peak-to-peak rotation 14.365.2

degrees). It is interesting to note that the angles of the left shoulder

were always positively correlated with the ones of the right
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shoulder, even if the bell shape of the left shoulder angles were

much less marked. The angles of the hips presented an oscillatory

trend, and the ones of the left hips were negatively correlated with

those of the right hip. The flexion angles of the knees were instead

characterized by very similar temporal profiles and differed only

by a temporal shift. Clearly, the peaks of the right shoulder

occurred much earlier in condition RTL than in condition RHS,

indicating a modulation of the average times of occurrence of such

peaks by the time of occurrence of the ‘‘go’’ signals. Even if less

clearly defined, the same can be said about the peaks of the left

shoulder. Although the temporal evolutions were quite stereotyp-

ical across subjects and trials, some variability was noticeable. The

most pronounced peaks (figure 2) were those characterizing the

evolution of the right shoulder angles as well as of the angles of the

right and left knees. We computed the standard deviations, across

all the participants, of the times at which these peaks occurred

(figure 3), separately for each position of the virtual ball. The most

variable peak was, in all conditions, the one of the right shoulder.

The least variability was associated with the first peak of the knees

that occurred within the two gait cycles taken into consideration.

Higher variability was associated with the subsequent peaks of the

angles of both right and left knees. This trend was found in all

tested experimental conditions (i.e. for trials with different phase

relationships between foot contact events and the ‘‘go’’ signal, and

for different goal positions). The high standard deviation values for

the knee peaks shown in figure 3 suggest a modification of the gait

pattern by the pointing movement of the arm. Time intervals

between the occurrence of the ‘‘go’’ signal and actual time of

target contact were computed for all trials. The analysis of

variance of these time intervals revealed that there was a

significant dependence of the time intervals on the foot event that

triggered the ‘‘go’’ signal (p,,0.001). A post hoc analysis revealed

that the average time of reaching relative to RTL (0.5260.13 s)

was significantly different from the reaching times relative to RHS

(0.4960.12 s).

Coordination between Feet and Reaching Hand
For each trial the intervals between the time of reaching and the

time of occurrence of the following four foot events were

computed. The average values of these time intervals are shown

if figure 4. The means were computed across the trials in which the

‘‘go’’ signal was triggered with kinematic events of the right foot.

The figure shows that the time of the reaching was always

approximately synchronized with the time of the second foot event

following the ‘‘go’’ signal. Statistical analysis revealed that the

average time interval between the time of target achievement and

the second foot event following the pointing was not significantly

different from 0 for both triggering events (p = 0.4 for RTL and

p = 0.43 for RHS), indicating perfect synchronization of the two

events in two out of four experimental conditions. The same

behavioural trend was observed when within-subject analysis was

carried out, confirming the synchronization of the reaching time

with the second foot step event following the ‘‘go’’ signal.

Dimensionality Reduction
We applied two dimension reduction techniques, PCA and the

new FADA algorithm, to a data set that included the flexion-angle

trajectories from shoulders, hips and knees from all valid trials in

the main experiment. The goal of this analysis was to uncover a

potential modular organization of the coordination patterns that

are apparent in the kinematics of the shoulder, hips and knees.

The two applied unsupervised learning techniques are based on

two different generative models, with and without additional time

delays for the superpositioned source signals. For both methods we

selected the minimum number of primitives (source signals) that

was required to account for the major part of the variance of the

data, by investigating how approximation quality, measured by the

VAF, depends on the number of sources in the fitted model

(figure 5). Qualitatively, it seems evident that the VAF as a function

of the number of sources for the FADA suggests that a model with

two sources approximates the data in an optimal way. The

Table 1. General kinematic parameters (mean 6 SD).

Mean walking vel.
(Km/h)

Mean gait cycle
duration (s)

Mean stance phase
duration (% cycle)

Mean reaching
duration (% cycle)

Hand peak vel.
(Km/h)

*

P1 RTL 2.7760.18 1.1660.20 0.5760.24 1.0560.38 13.6163.84

RHS 2.8360.13 1.2060.14 0.5760.20 1.1160.32 13.7862.32

*

P2 RTL 2.8560.11 1.1960.13 0.6160.15 1.0360.28 13.8963.00

RHS 2.8860.14 1.1860.16 0.6260.04 1.1460.36 13.3062.75

*

P3 RTL 2.8360.10 1.2560.13 0.6160.11 0.8560.21 10.1562.59

RHS 2.8760.11 1.2360.13 0.5960.18 0.8960.27 10.1562.75

*

P4 RTL 2.7960.11 1.1560.20 0.5960.18 0.8360.37 9.3162.65

RHS 2.7960.13 1.1660.14 0.5860.20 0.9060.35 8.4762.46

* *

P5 RTL 2.8160.12 1.2260.15 0.6160.16 0.8860.22 9.1662.34

RHS 2.8760.14 1.2460.14 0.5960.15 0.9460.26 7.5562.23

Mean values ad corresponding standard deviations of walking velocity, gait cycle, stance phase and reaching durations along with the mean hand peak velocity are
reported for each target location (P1,…,P5) and right foot triggering events RTL and RHS. Asterisks indicate significant statistical differences between the average values
of a kinematic parameter for the trigger events RTL and RHS.
doi:10.1371/journal.pone.0079555.t001
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existence of an ‘‘elbow’’ in the VAF curve for N = 2 indicates that

additional sources capture only very small additional amounts of

variance of the data. The VAF curve associated with PCA, instead,

shows a much more gradual increase, and it appears that even 5

sources are not yet sufficient to provide a good approximation of

the data. This qualitative impression is confirmed by the linear

Figure 2. Time course of the main flexion joint angles. Each trace is associated with a single experimental trial. In the first two columns on the
left show the results for the right foot events (heel strike and toe lift-off). The vertical dashed lines indicate the time of the ‘‘go’’ signal. Abbreviations
at the top of the panels indicate the triggering event (RTL = Right Toe Lift-off, RHS = Right Heel Strike). The last column on the right depicts the
evolutions of the joint angles during normal walking.
doi:10.1371/journal.pone.0079555.g002

Figure 3. Variability of the joint angles. Standard deviations of the time of occurrence of the peaks for the right shoulder and the four peaks for
the knee angles. Abbreviations at the top of each panel refer to the experimental conditions/foot events as in figure 2. Results are reported separately
for each target position (P1,…,P5).
doi:10.1371/journal.pone.0079555.g003
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regression procedure that we used to quantitatively validate the

choice of the number of primitives. Only when applied to the

curve relative to FADA the regression procedure could identify the

point at which the mean square error dropped below threshold. In

the PCA case the criterion did not provide a solution, indicating

that a model with less than six sources seem not adequately to

capture the data.

The temporal evolutions of the first 5 PCs are shown in

figure 6A. The identified PCs were characterized by a complex

oscillatory structure. Some components (e.g. PCs 1 and 2) seem to

be characterized by similar frequencies of oscillation, but are time-

shifted against each other. Also PC3 and PC5 seem similar, but

time-shifted against each other. PC4 did not match with any of the

other PCs. The large number of significant PCs makes it difficult

at first sight to provide a meaningful interpretation.

The weight coefficients corresponding to the five PCs are

depicted in figure 6B, separately for the RTL and RHS

experimental conditions. The coefficients belonging to the left

shoulder and the lower body joints have approximately the same

amplitude across the two conditions. The coefficient of the right

shoulder is instead much more variable. It has the same amplitude

when referring to PC3, approximately the same amplitude in

absolute value but opposite sign across condition when referring to

PC2 and PC5 and totally different amplitude when scaling PC1

and PC4. These observations illustrate again that the PCA results

are quite difficult to interpret and to exploit for getting an intuition

about the structure of the underlying coordination patterns.

The two source functions identified by means of the FADA

algorithm are shown in figure 7A. One is a single bump, while the

other one is more oscillatory with two distinct peaks. From the

comparison of these waveforms with the ones in figure 2 it is

straightforward to note that the first primitive seems more related

to the right shoulder angle, while the second primitive seems to be

related to the evolution of the angles of hips and knees. The

relative strength of the effect of each source on a given angle

trajectory is provided by the corresponding mixing weights. The

mean values of these weights, averaged over all subjects and valid

trials with reaches to the most upward and most leftward position

are shown in figure 7B. For each source the weights were

computed separately for experimental conditions and joint angles.

The largest weight coefficient related to the first source was the

one of the right shoulder angle, while for the second source there

was a progressive increase of the amplitude of the weights when

moving from the ones associated with the upper body joints to the

ones of the lower body. The two extracted waveforms seem to be

task-dependent: one more associated with the reaching discrete

sub-task, the second one to the periodic sub-task, i.e. walking.

However, this task separation is not complete in the joint space,

since both primitives contribute actually to the trajectories of all

joints, even if more markedly for some body parts. Although, for

instance, the coefficient of the right shoulder is dominant across all

experimental conditions, even the other coefficients are not zero.

Similarly the weight coefficients for the second source of the

shoulders are low, but non-zero. These considerations, made for

the weights obtained for the most upward and most leftward

Figure 4. Time coupling between target contact and foot events. Mean values (6 SD) of the time interval between time of target contact and
the time of occurrence of the first four foot event following the ‘‘go’’ signals. In the figure, RTL stands for Right Toe Lift-off, RHS, Right Heel Strike, LTL,
Left Toe Lift-off and LHS for Left Heel Strike. Although the results in the figure refer to trials triggered with kinematic events of the right foot, highly
similar findings were obtained for trials triggered by left foot events.
doi:10.1371/journal.pone.0079555.g004

Figure 5. Variance accounted for (VAF) as a function of the
number of primitives. The red squares refer to the level of
reconstruction of the original data obtained with PCA. The blue
triangles refer to the VAF associated with the reconstruction of the
training data with FADA. The cyan circles report the percentage of VAF
associated with the test data set when it is approximated by
superposition of the time shiftable sources learned with FADA applied
to the test data set (cross-validation step).
doi:10.1371/journal.pone.0079555.g005
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Figure 6. Results of dimensionality reduction with PCA. (A) Time functions corresponding to the 5 principal dominant components extracted
from the whole joint-angle data set. (B) Corresponding weighting coefficients.
doi:10.1371/journal.pone.0079555.g006
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reaching position were also valid for the other ball locations. In

order to assess this invariance, we computed the average

correlation coefficients between the weight vectors associated with

different ball positions. We found that, on average,

R = 0.9860.01. A further proof of the strong relationship between

the extracted sources of figure 7A and the two main movement

sub-tasks (the periodic and discrete one) is provided by the

distribution of the temporal delays that correspond to the two

sources. Figure 7C illustrates, for each source and experimental

condition, the distribution of the delays associated with all trials

accomplished to reach the most upward and most leftward

position. The delays are always distributed about well-defined

average values, with approximately Gaussian distributions. Note

that these findings are coherent with figure 2, where the peaks of

the right shoulder angle occur earlier in the data for the triggering

event RTL than for RHS. Also a post-hoc analysis for the delays of

the second source did not reveal statistical differences between the

average delays for the conditions RTL and RHS. These results are

coherent with figure 2.

The findings presented above were further confirmed through a

cross validation procedure. Figure 5 shows the VAF measure for a

training data set, used for the fitting of the generative model (1),

and for a test data set that was not used for this fitting. The

regression procedure confirmed that 2 sources provide a good level

of reconstruction of the data. Moreover, the two sources extracted

from the training data set were found to be very similar to those in

Fig. 7A (average correlation coefficient R = 0.99860.001, after

that the corresponding sources were re-aligned according to their

maximum peaks).

In summary, we have shown in this section that the temporal

evolution of the task-relevant joint angle trajectories can be well

described by a modular organization. Comparing PCA as classical

approach that is based on an instantaneous mixture model and the

novel FADA algorithm, which fits an anechoic mixture model, we

found that the FADA algorithm recovers a nicely structured model

with only two source components. Contrasting with this result, the

PCA model requires a large number of components that seem not

to have a clear intuitive interpretation, and results in a weight

distribution that is quite complex and difficult to analyse in

dependence of the experimental conditions. The two source

components extracted by the FADA algorithm map intuitively

onto coordination patterns of the arm and the lower body that

seem to be useful to accomplish the rhythmic subtask (walking) and

discrete sub-task (reaching).

Control Experiments
We described above a dependency of the target reaching time

on the foot step event triggering the ‘‘go’’ signal. To test whether

such a dependency might be caused by some anticipatory

mechanisms induced by the fact that the target balls turned

yellow one gait cycle before the ‘‘go’’ signal, we asked to three

control subjects to perform the same tasks without presenting a

colour switch to yellow before the ‘‘go’’ signal. The ball turned

directly from red to green at the time of occurrence of the

triggering event. Analysis of variance revealed that even in this

case the reaching time was significantly dependent on the foot step

event triggering the ‘‘go’’ signal (p,,0.001). Post hoc analysis

showed that the average time of reaching was that relative to the

triggering event RTL was 0.5060.04 s and it was 0.4860.04 s for

RHS. The control experiment therefore confirmed the results

reported for the main experiment, and thus proves that the phase

with the yellow ball preceding the ‘‘go’’ signal did not play any role

in the modulation of the timing of reaching.

We reported above and in figure 4 a strong time coupling

between the times at which the targets were reached and the times

of occurrence of the second footstep events following the ‘‘go’’

signal. In order to assess whether this temporal coordination is just

an artefact because the time between ‘‘go’’ signal and the reaching

of the goal was close to the duration of a half gait cycle, we realized

a control experiment with three participants that were asked to

walk on the treadmill at two different velocities, corresponding

tom 75% respectively 125% of the walking velocity in the main

experiment. The results reported in figure 8 (top panels) show that

in the case of low velocity the time of the reaching of the target was

not statistically different (p.0.01) from the time of occurrence of

the lift of the left foot when the ‘‘go’’ signal was triggered with the

lift of the right foot. Similarly, when the ‘‘go’’ signal followed a

strike of the right foot, the time of target achievement occurred, on

average, simultaneously with the strike of the left foot (p.0.01).

These results are in agreement with those in figure 4. When the

velocity of the treadmill was increased (and thus the average gait

cycle duration reduced), however, the time at which the target was

reached was still synchronous with a specific footstep event

(figure 8, bottom panels). But in this case it was the third and not

the second event following the ‘‘go’’ signal (p.0.01 in the RTL

and RHS conditions). A within-subject analysis confirmed that

each participant tended to synchronise the time of reaching with

the second foot step event for the two conditions that were run at

low velocity. For the high velocity condition one of the three

participants showed a behaviour that differed from the other two.

All participants synchronized the reaching with a specific foot-step

event. However, the number of the event varied from subject to

subject. (One synchronized with the second, one with the third,

and one with the fourth.).

Discussion

In this study we investigated the kinematic patterns of

coordination that underlie complex whole-body movements,

which combine arm pointing to a virtual target in space and

walking. Consistent with a coordination of specific movement

primitives for locomotion and goal-directed reaching, we found a

modification of the walking pattern subsequent to the arm

movement, as well as a modulation of the arm movement by the

foot events triggering the time of reaching. In particular, we found

a strong temporal coupling between the time when the hand

reached the target and the time of the heel strike and the toe lift.

Furthermore, by applying a new statistical technique for the

extraction of movement primitives from the angle trajectories by

anechoic demixing (using the newly developed FADA algorithm)

we found the existence of two main kinematic components that

were related to the walking and reaching parts of the coordinated

movement. In the following we discuss the possible origins of the

observed coordination patterns between reaching and locomotion.

In addition, we briefly discuss the differences between the FADA

technique and traditional demixing approaches, such as PCA.

Control Mechanisms of Pointing during Locomotion
It is well-known that arm reaching from a standing position

elicits a set of postural adjustments, affecting the lower body joints

in order to counterbalance the perturbations introduced by the

motion of the upper limb [30,31,32,33]. In this case, the postural

task (balance adjustment) seems to be induced by the reaching

task, with the aim to guarantee body equilibrium in spite of the

destabilizing effects caused by the perturbations introduced by the

voluntary movement. Our results show that, when this simple

postural task is replaced by a dynamical one (walking), the
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Figure 7. Results of dimension reduction with an anechoic demixing algorithm (FADA). (A) Time courses of the two temporal sources
extracted with the FADA algorithm, which is based on the generative model (1). (B) Average values of the weighting coefficients associated with the
two sources. (C) Time delays distributions for each source and condition.
doi:10.1371/journal.pone.0079555.g007
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rhythmic pattern associated with the lower limbs is modified as

consequence of the concurrent reaching task. This is in agreement

with the mechanisms that were found regulating the interaction

between voluntary arm movements and posture, and also with the

observations in other studies on the interaction between arm

reaching and locomotion [4,5,6,7,8]. In our experimental para-

digm we had the possibility to control with a high level of precision

the time of the ‘‘go’’ signal in relationship to different foot events

during the gait cycle. This made possible to show that the reaching

task is also to some extent modulated by temporal structure of the

walking task. We therefore found a mutual interaction between

reaching and locomotion. The results of our study motivate

interesting ideas regarding the planning mechanisms that are

required for accomplishing our experimental tasks. They support

in particular the hypothesis that reaching and walking are

integrated within a coherent motor plan, instead of being planned

completely separately. The dependency of the duration of the time

interval between the ‘‘go’’ signal and the target contact on the type

of triggering event suggests, first of all, that the control of the

reaching movement, which potentially involves also internal

models represented in higher brain structures, is dependent on

the states of pattern generators that are involved in the control of

locomotion. Specifically, we found in the main experiment that the

time of target contact was always strongly coupled with the second

foot event occurring after the ‘‘go’’ signal. Thus, for instance, if the

lift of the right toe was the triggering event, the instant of

Figure 8. Time coupling between target achievements and foot events (control experiment). Mean values (6 SD) of the time interval
between time of target contact and the time of occurrence of the first four foot events following the ‘‘go’’ signals. The two top panels show the
results for the conditions RTL and RHS when the treadmill was operating at slow velocity (75% of the velocity in the main experiment). Bottom panels
show the data collected for same conditions with the treadmill operating at high speed (125% of the speed in the main experiment).
doi:10.1371/journal.pone.0079555.g008
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maximum arm extension at which the target was reached

coincided with the time of occurrence of the next lift of the left

toe (time of maximum extension of on the two legs). This type of

coordination pattern was independent of the gait cycle time. We

do not have yet a direct explanation that can account for this

strong time coupling, which is also described by the features

characterizing the values assumed by the weights and the

distributions of the delays associated with the two components

illustrated in figure 7. It can surely be hypothesized that such a

coupling might be partly due to biomechanical reasons, such as the

need to maintain dynamical stability during locomotion in

presence of the arm movement. Another explanation can be

derived from the neural structures in the spinal cord that are

involved in the control of arm and leg movements during walking

(see [34] for a detailed review). Although in humans it has been

always harder to provide evidence for the existence of central

pattern generators (CPGs) than in animals, some data has become

available that such circuits, which might be partially localized in

the spinal cord and which generate and shape the patterns of the

bursts of motoneurons [35,36], also exist in humans. In addition,

since walking normally is associated with coordinated movements

of arms and legs is seems likely that such networks of pattern

generator affect upper and lower limbs during locomotion. The

CPGs controlling arms and leg likely are coupled with each other,

and their activities are additionally modulated by supraspinal

inputs and sensory feedback. In light of observations provided by a

multitude of previous studies on animals and humans, and of the

results of our study, we agree with a hypothesis suggested by

Georgopoulos and Grillner [1] that the reaching behaviour during

walking might arise from the interaction of voluntary motor

commands originating in the supraspinal regions with the

unconscious control of the CPG networks in the spinal cord,

which might control the rhythmic movement of arms and legs

during locomotion, but which may also be involved also in the

control of non-rhythmic behaviours. A sketch of such an

architecture for motor control organization is illustrated in

figure 9. In this framework the CPGs of arms and legs are

responsible for the generation of the rhythmic oscillations of the

limbs during walking. During the execution of the reaching task,

however, a voluntary motor command is sent from the cortical

regions to the spinal cord through descending pathways. The role

of this command could be exerting (or not) an inhibitory action on

the rhythmic activity provided by the CPGs of the arms while

activating concurrently another spinal network, or primitive, that

mediates the control of the arm movement for reaching. Although

no direct physiological evidence for such a hierarchical control

structure has been provided, computational models have been

developed that support the efficiency of such control structures,

and which have allowed to synthesize realistic complex body

movements involving periodic movement primitives as well as

discrete dynamical primitives [25,37,38,39]. The dependency of

the duration of the time interval between the ‘‘go’’ signal and the

time of target contact on the triggering foot event could reflect an

interaction between the descending central command and inputs

from the CPG network that controls the locomotion, potentially

optimizing the reaching behaviour by ensuring target contact

during specific phases of the gait cycle. In addition, a phase-

dependent modulation of reflexes in the might contribute to the

modulation of the gait pattern in dependence of such top-down

control signals for reaching. It is well established that reflexes are

adaptive and dynamic, as they both depend on intentions and on

the activation states of the muscles [40]. Reflex gains might thus

change dynamically during locomotion and might be modulated

Figure 9. Schematic illustration of a possible control architec-
ture for goal-directed reaching movements while walking.
During normal locomotion CPGs producing periodic signals (sine waves
within the symbols) are responsible for the periodic behaviour of both
upper and lower limbs In addition, another set of CPGs might also be
involved in the control of discrete movements, e.g. of the arm (ramp-
like function in the CPG symbol). All are coupled to each other via
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by additional higher-level commands that optimize the stability of

the walking behaviour for the concurrent reaching action.

The neurophysiological structure potentially underlying the

generation of arm movements during locomotion that we have

proposed above is compatible with a number of evolutionary

considerations. Bipedal human locomotion is the result of a

phylogenetic process that has brought man to walk from a

quadrupedal stance to an erect position. It has however been

shown [41] that bipedal locomotion still shares common spinal

neural control mechanisms with quadrupedal locomotion, such as

the coordination of upper and lower limb movements. In

accordance to this, we have found that the periodic component

in figure 7A is distributed across all body joints (see weight

coefficients in figure 7B). At the same time, switching from

quadrupedal to bipedal locomotion in evolution has allowed to use

of the arms for additional motor tasks, such as grasping and object

manipulation. Such tasks rely, more than locomotion, on the use

of supraspinal and cortical structures. This has resulted in a

superposition of older systems, like CPGs for the generation of

rhythmic patterns from locomotion, by the control or modulation

through higher structures that are responsible for the control of

voluntary and goal-directed movements. In addition, the control of

such goal-directed movements might also include spinal compo-

nents, e.g. in terms of reflex loops. This is illustrated in figure 7 by

the discrete kinematic component, which affects mainly the joints

of the right shoulder.

Decomposition of the Coordinative Kinematic Patterns in
Rhythmic and Discrete Components

An important result of our study was that the FADA algorithm

applied to the trajectories of the most significant joint angles

revealed only two kinematic components, which accounted with

high accuracy for the variance of the relevant joint angle

trajectories, and which were easily interpretable. One component

was found to carry more information about the kinematic co-

variation of the lower body joints, and seems to be related to the

rhythmic walking task. The second component was found to

characterize mainly the angular displacement of the right

shoulder, and seems thus to be related to the discrete pointing

sub-task. Contrasting with this result, the application of PCA that

relies on an instantaneous generative mixing model (where sources

cannot be time-shifted), to the same data resulted in rather

ambiguous results. It appears that even 5 PCs were not sufficient to

capture the variability of the data. Likely, this high number of

sources is a consequence of the inadequacy of the underlying

generative model, which cannot model temporal delays appropri-

ately and requires the introduction of new sources to account for

signals that are time shifted against each other. The observed

much higher compactness of anechoic generative models matches

our previous experience with many other kinematic data sets

[22,26]. As consequence of the inadequacy of the generative

model, PCA requires the introduction of a large number of sources

and mixture weights, resulting in the problem that the parameters

of such models are difficult to estimate robustly from limited

amounts of data, and even more difficult to interpret. This

complexity was reflected in the complex shape of the recovered

source functions (figure 6A) and the very complex dependence of

the mixture weights on the different experimental conditions

(figure 6B).

Unsupervised learning techniques for reduction of dimension-

ality have been widely applied for the study of movement

coordination in the field of movement science. In previous studies

using these techniques, however, purely discrete [14,15,16,17] or

rhythmic [22] movements have been investigated, with very few

exceptions for hybrid behaviours [42]. Our study is, to our

knowledge, the first that has applied such techniques to investigate

the kinematic coordination regulating a combination of rhythmic

and discrete movements. For this case we could show that using

improved generative models for data analysis might help

substantially to uncover the structure of underlying coordination

patterns, and potentially of underlying control modules.

Conclusions

We have studied the kinematic patterns of joint co-variation

associated with a motor task requiring arm pointing while walking.

We found a mutual interaction between walking (rhythmic) and

arm reaching (discrete task). The results suggest that, at execution

level, the two motor tasks may be regulated by the interaction of

two different control modules, whereas they seem, at planning

level, to be integrated in a single motor plan that aims at a

synchronization of the discrete goal-directed movement with

specific events of the rhythmic movement, and a modulation of

walking, potentially optimizing gait stability under the influence of

the additional discrete behaviour.
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