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Abstract:        

The recognition of body motion is a central function of the visual system that 

has stimulated substantial interest in neuroscience. At the same time, the 

recognition of body shapes, movements and actions from videos represents a 

complex computational problem, whose difficulty is sometimes bypassed by 

popular explanations of motion recognition in neuroscience. Only a serious 

interaction between neuroscience and computational theory will help to 
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identify the important computational steps of action recognition in the brain, 

and might contribute a clarification of their neural implementation. 

Computational models can specifically help to test the computational 

feasibility of possible explanations of the processing of body movements, and 

they help to derive theoretically well-defined predictions that can be tested 

experimentally. Such theoretical work helps to derive critical constraints for 

explanations of the processing of body motion, since some intuitive theories 

might be computationally not feasible or not robust enough to deal with real-

world stimuli. This chapter reviews a class of neural theories for the 

recognition of body motion, which was originally developed in order to 

account for the processing of biological motion stimuli and the recognition of 

non-transitive body movements, that is non goal-directed movements such as 

walking. We show how these theories can be extended to models for the 

processing of goal-directed transitive actions, that is actions with a goal object 

such as grasping. We show that such an extension is possible by addition of a 

few simple physiologically plausible neural mechanisms. The resulting model 

accounts for the view-independent recognition of hand actions from real 

videos with an accuracy that is sufficient even for the detection of subtle 

differences between grips. In addition, the resulting model reproduces a 

number of key properties of the visual tuning of action-selective neurons in 

visual, parietal and premotor cortex. The relationship between this new model 

and other computational approaches for the visual processing of goal-directed 

actions is discussed.  
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4.1 INTRODUCTION 

The recognition of biological motion and actions is a core function of the 

visual system with crucial importance for survival and social communication. 

Motion recognition addresses the processing of body movements of humans 

and other species. One class of such movements, also called ‘non-transitive 

actions’, is not primarily directed towards goal objects. Examples are 

locomotion, such as walking and running, or many communicative gestures 

like waving. Another important class of movements is goal-directed actions, 

also called ‘transitive movements’. These actions are directed towards 

specific goal objects. Examples are grasping, holding, pushing or pointing 

towards objects. In neuroscience, these two subfunctions of motion 

recognition have been investigated largely independently by different research 

communities. One group of researchers, rather coming from vision research, 

has focused on the visual processing of biological motion stimuli and other 

body movements, often focusing on non-transitive actions. Another 

community, stressing specifically potential links between representations for 

action perception and execution, have often focused on goal-directed actions 

and stressed the dependency of action goals. Theoretical approaches 

accounting for the processing of these two types of body motion stimuli have 

remained largely unrelated, and it is not really clear which processes might be 

shared between the processing of non-transitive and transitive actions.  Many 

details about the neural mechanisms of motion and action recognition are 
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reviewed in Chapters 2, 3, and 17, so that we focus here on the aspects that 

are central for the modeling.   

The systematic study of the visual recognition of non-transitive 

actions (without goal objects) has strongly been influenced by the classical 

work of Johansson (1973). His famous experiments have shown that body 

movements can be recognized from strongly impoverished stimuli, such as 

point-light walkers. Subsequent studies have demonstrated that perception 

from point-light stimuli is amazingly robust, e.g. against displacements of the 

dots along the skeleton of the moving figure (e.g., Dittrich, 1993; Beintema & 

Lappe, 2002), or against masking with substantial numbers of moving noise 

dots (Cutting, Moore & Morrison, 1988; Bertenthal & Pinto, 1994; Thornton, 

Pinto & Shiffrar, 1998). In addition, point-light stimuli can convey subtle 

details about motions style, conveying information about gender, identity or 

the emotion of walkers (e.g. Cutting & Kozlowski, 1977; Beardsworth & 

Buckner, 1981; Dittrich et al., 1996; Pollick et al., 2002; Chouchourelou et 

al., 2006). A detailed discussion on the recognition of bodily expressions is 

given in Chapter 3. 

A variety of models have been developed for the recognition of 

biological motion and actions without goal objects. Early approaches have 

tried to exploit geometrical invariants of body motion, such as the fact that for 

the side view the distance between dots on the same limb remains 

approximately constant over the course of the motion (e.g. Hoffman & 

Flinchbaugh, 1982; Webb & Aggarwal, 1982). Another set of approaches has 
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tried to account for body motion recognition by the fitting of three-

dimensional models of body shapes (e.g. Marr & Vaina, 1982). This approach 

has later been extensively extended in computer vision, combining it with 

probabilistic predictive models (e.g. Blake & Isard, 1999; and many others), 

but typically without claiming that the developed mechanisms are relevant for 

the brain.  

A third class of computational approaches is coarsely inspired by 

cortical mechanisms and tries to account for motion recognition by the 

extraction of form and motion features, or spatio-temporal image features 

from video sequences. Early methods have compared such features with 

templates that were either constructed by hand, or which had been learned 

using sequence recognition methods such as Hidden Markov Models (HMMs) 

(e.g. Niyogi & Adelson, 1993; Bobick, 1997). In general, the most robust 

state-of-the-art body-motion recognition approaches in computer vision are 

based on the extraction of spatio-temporal image features combined with 

appropriate methods for the learning of optimized feature dictionaries and 

powerful classification methods (e.g. Efros et al. 2003; Laptev & Lindberg, 

2003; Dollar et al. 2005; Gorelick et al 2007).  (Much more detailed reviews 

about computer vision methods for action recognition are given, for example, 

in Gavrila, 1999; Moeslund & Granum, 2001; a more detailed review 

stressing the relationship between such methods and biological models see 

Giese, 2004).    

Based on the idea of an extraction of motion and form features a 
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number of biologically-inspired models for the recognition of non-transitive 

actions have been developed that reproduce basic features from experiments 

in electrophysiology, psychophysics and functional imaging (Giese & Poggio, 

2003; Casile & Giese 2005; Lange & Lappe, 2006). These models are based 

on hierarchies of neural detectors for form and / or motion features that mimic 

properties of cortical neurons that are involved in the recognition of motion 

patterns. In addition, these models assume mechanisms for the learning of 

motion and shape templates, which potentially determine the tuning of 

neurons in higher visual areas that are selective for moving bodies, such as the 

superior temporal sulcus (STS).  

While these hierarchical neural models had originally been developed 

to model biological data without any technical relevance, new interest in such 

architectures has recently emerged in computer vision, where it has been 

shown that such architectures can achieve performance levels in motion 

classification that are competitive with non-biological state-of-the-art 

approaches in computer vision (Serre et al. 2007; Jhuang et al. 2007; Escobar 

et al. 2008; Schindler & van Gool, 2008).  

Research on the perception of transitive actions, that is actions that 

are directly directed towards a goal object, has recently become a very 

popular topic in neuroscience. A vast number of studies have investigated the 

perception of goal-directed actions, such as grasping, predominantly using 

behavioral and imaging methods (reviews see for example Rizzolatti et al. 

2001; Rizzolatti & Craighero, 2004; Ferrari et al. 2009). This research interest 
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has been stimulated by the discovery of so called mirror neurons in monkey 

premotor and parietal cortex. These neurons show selective tuning during the 

visual observation of actions as well as during action execution (di Pellegrino 

et al. 1992; Gallese et al. 1996; Rizzolatti et al. 2001; Fogassi et al. 2005), 

specifically if such actions are directed towards a goal object. Imaging studies 

in humans suggest the existence of a mirror neuron system also in the human 

cortex (e.g. Iacoboni et al. 2005; Kilner et al. 2009).  However, the 

significance of such observations in human fMRI experiments is still under 

dispute (e.g., Dinstein et al. 2007). At the single-cell level, neurons with 

visual selectivity for goal-directed actions and for action-related properties of 

the goal-object have been found in the superior temporal sulcus (STS) 

(Perrett et al. 1989; Nelissen et al. 2006), and in the parietal cortex, e.g. in the 

anterior intraparietal sulcus, AIP) (Sakata et al. 1997; Murata et al. 2000; 

Gardner et al. 2007; Baumann et al. 2009). A more extensive review of the 

mirror neuron system in monkeys and humans is given in Chapter 2. 

 

The observation of joint motor and visual tuning for actions in the 

same neurons, or the same areas in imaging studies, has been interpreted as 

evidence for recognition by resonance. This signifies the hypothesis, that 

actions are recognized by an internal simulation of the visually observed 

actions in motor representations, which are also involved in the control of the 

execution of the same action (Rizzolatti et al. 2001). In fact, behavioral 

research has provided an overwhelming amount of evidence (reviews see e.g. 
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Wilson & Knoblich, 2005; Blakemore & Frith, 2005; Schütz-Bosbach & 

Prinz, 2007) that neural representations of action execution and action vision 

are functionally tightly coupled, consistent with the theory of a common 

coding (Prinz, 1997) of actions in perception and execution (an extensive 

review of the principles of common coding is provided in Chapter 20). 

However, it remains an unresolved question how exactly the mirror neuron 

system contributes to the coupling of action execution and perception. A 

simple mechanism for recognition by resonance would, for example, predict 

that the tuning of mirror neurons for executed and perceived actions should be 

highly similar. However, such similarity is far from clearly present in many 

mirror neurons in area F5 (Gallese et al. 1996; Caggiano et al., personal 

commun.).  

Data from behavioral and fMRI studies in humans on action 

recognition have also been used as support for much further-reaching 

speculations. It has been suggested that the mirror neuron system might play a 

fundamental role in the imitation learning of actions and also for the 

development of language (see Arbib, 2008, for a review). In addition, the 

involvement of the mirror neuron system in a variety of other higher cognitive 

functions has been claimed, such as action understanding, theory of mind, 

empathy, and even the perception of esthetic qualities (e.g. Gallese & 

Goldman, 1998; Rizzolatti & Fabbri-Destro, 2008; Frith & Singer, 2008; 

Gallese & Freedberg, 2007). We think that such extensions of the theory of 

‘recognition by resonance’ provide food for many interesting discussions, 
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potentially even including important philosophical implications. However, we 

do not treat such aspects in the remainder of this chapter since many of the 

underlying concepts cannot be easily formulated with sufficient accuracy and 

strict quantitative links to empirical data, so that a treatment in the context of 

mathematical modeling is very difficult.  

Corresponding to the strong interest in the relationship between action 

perception and action execution in the context of transitive actions, most 

biologically motivated computational models in this area have focused on the 

potential role of motor representations for action recognition. One of the first 

neural network models with relevance for the biological system (Oztop & 

Arbib, 2002; Fagg & Arbib, 1998) demonstrated that the recognition of goal- 

directed actions from video stimuli is possible by comparison of internally 

simulated sequences of the hand and arm configurations with the visual 

stimulus. This model has later been extended, linking it to the MOSAIC 

model for the selection of motor controllers (Haruno et al. 2001; Oztop et al 

2006) and by inclusion of mechanisms that account for audio-visual 

properties of mirror neurons (Bonaiuto et al. 2007). In general, cortical 

mechanisms of motor control are assumed to rely on forward models that 

compute predictions of the sensory signals dependent on the controller output. 

This prediction can then be compared with the actual sensory feedback. By 

comparing the predictions of different controller models, which realize 

different possible actions, with the actual sensory input it is possible to select 

the most appropriate controller which results in the best prediction of the 
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actual sensory input. Once this controller has been found the underlying 

action has been recognized. (See for example Wolpert & Ghahramani, 2000; 

Wolpert et al., 2003, for further details.)  

The underlying principles are illustrated in Figure 4.1. During action 

execution (Panel a) the motor controller generates a motor command that is 

mapped through a predictive forward model into predicted sensory signals. 

These signals are compared to the true sensory feedback, and the prediction 

error is used to update the controller. In the context of action observation 

(Panel b) the controller runs without this error input and generates predictions 

based on the actual sensory inputs. After optimization of the controller the 

sensory input activates the motor command which would be compatible with 

the actual observed action.  

Figure4.1 
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Biologically-inspired dynamical controller architectures for action 

recognition that are based on these ideas have been successfully applied in the 

context of robot systems (e.g. Schaal et al. 2003; Demiris and Simmons 2006; 

Sauser and Billard 2006). Several models in this context have bypassed 

largely the aspect of visual processing by making strongly simplifying 

assumptions about the processing up to parietal areas and STS. These models 

assume, for example, that the three dimensional structure of effector and goal 

object and their metric relationship is given by the visual system in terms of 

low-dimensional variables, such as joint angles, which then serve as input for 

the dynamic controller architecture (e.g. Wolpert et al. 2003; Tani et al. 2004; 

Erlhagen et al. 2006). However, these approaches do not answer the question 

how a sufficiently accurate estimation of such low-dimensional parameters is 

possible. Such estimation is a difficult computational problem especially from 

monocular image sequences, which do not provide depth information through 

disparity cues. Yet, humans and animals are very good in action recognition 

from stimuli without such depth cues.   

Summarizing, only few of the existing computational approaches for 

the recognition of goal-directed actions work on real video stimuli at all 

(Billard and Mataric, 2001; Oztop and Arbib, 2002; Demiris and Simmons, 

2006; Metta et al. 2006; Kjellström et al. 2008). None of these models 

exploits mechanisms that approximate the functions of neurons in visual 

cortex, except for a single model for the estimation of grip aperture from 
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video sequences (Prevete et al. 2008). 

The previous overview of the existing work raises two questions: 1) 

Which physiologically plausible mechanisms are computationally powerful 

enough to accomplish the visual recognition of transitive, goal-directed body 

movements from real video stimuli? Only architectures based on such 

mechanisms seems ultimately suitable as basis for the development of more 

detailed neural models of visual action recognition. 2) How are the principles 

for the recognition of transitive and non-transitive actions related? Can a part 

of the architecture for the recognition of non-transitive actions be exploited as 

well for the recognition of transitive actions? Which additional computational 

and neural steps are required for the recognition of transitive actions with goal 

objects?  

We will try to provide answers for these questions in this chapter in 

the following steps: Section 4.2 presents a short overview of a, meanwhile 

established, basic architecture for the recognition of non-transitive actions that 

accounts for a variety of experimental data, and which has recently also been 

applied in biologically-inspired computer vision reaching competitive 

performance levels. In Section 4.3 we introduce an extension of this model 

architecture that makes it suitable for the recognition of transitive actions. The 

required additional computational mechanisms are explained in detail. In 

section 4.4 we show a few simulation results, illustrating that the proposed 

models is not only powerful enough to recognize actions from real videos, but 

also reproduces key properties of action-selective cortical neurons. 
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Furthermore, we show some predictions that can be validated easily at the 

level of single neurons. Section 4.5 discusses several limitations of the 

proposed model and presents concluding remarks.  

 

4.2 BASIC MODEL FOR THE VISUAL RECOGNITION OF 

NON-TRANSITIVE ACTIONS 

In the following, we present a basic model architecture for the recogniton of 

body movements that are not directed towards specific goal objects, like 

walking or waving. The presented model has been compared in detail with a 

variety of experimental results (Giese & Poggio, 2003; Casile & Giese, 2005), 

and it has motivated several new experiments that have partially confirmed 

predictions made by the model (e.g. Peuskens at al. 2005; Thurman & 

Grossman, 2008; Vangeneugden et al. 2008; Jastorff et al. 2009; Singer & 

Sheinberg, 2010). Furthermore, the basic architecture of the model has given 

rise to computationally more efficient implementations that have 

demonstrated the feasibility of the proposed approach even for technical 

motion recognition systems, reaching state-of-the-art performance levels (e.g. 

Jhuang et al. 2007).  

The proposed motion recognition model is based on a number of 

principles that are well-established for the visual cortex. Some of them are 

shared with the processing of static shapes (e.g Riesenhuber & Poggio, 1999). 

An overview of the model architecture is shown in Figure 4.2.   
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4.2.1 Two hierarchical neural pathways 

Consistent with the basic anatomical architecture of the visual cortex, the 

model is partitioned into two hierarchical neural pathways that model the 

ventral and the dorsal processing stream (Ungerleider & Mishkin, 1982; 

Felleman & van Essen, 1991; Goodale & Milner, 1992). The first pathway is 

specialized for the processing of form information, while the second pathway 

processes local motion information.  Consistent with electrophysiological data 

(Saleem et al., 2000), these two pathways converge at a level that corresponds 

to the superior temporal sulcus (STS). While in real visual cortex these two 

processing streams likely are connected at multiple levels, the model makes 

the over-simplifying assumption that they remain separate until the level of 

the STS, where they are integrated.   

Both pathways consist of hierarchies of neural detectors. Consistent 

with real neurons in the visual pathway, the complexity of the extracted 

features and the sizes of the receptive fields of the neural detectors increase 

along the hierarchy. The sizes of the receptive fields at different hierarchy 

levels coarsely match the receptive field sizes of corresponding neurons in the 

visual pathway. Invariance against translation and scaling of features is 

accomplished by nonlinear pooling along the hierarchy using a maximum 

operation (Fukushima, 1980; Riesenhuber & Poggio, 1999).  

The neural detectors in the form pathway process form features with 
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different levels of complexity. The first hierarchy level is formed by local 

orientation detectors, mimicking the properties of simple cells in area V1 

(Hubel & Wiesel, 1962). The response properties of these cells were modeled 

by Gabor filters. These are local filters that respond maximally to grating 

stimuli of particular orientation and spatial frequency. The detectors that form 

the next hierarchy level mimic the behavior of complex cells, e.g. in areas V2 

or V4. Their responses were determined by computing the maximum of the 

responses of groups of Gabor filters with the same orientation preference, but 

slightly different receptive field centers and different spatial scales. It has 

been shown that such ‘maximum pooling’ results in (partial) position and 

scale invariance and increases the robustness of the responses of the 

orientation detectors against background clutter (Riesenhuber and Poggio, 

1999). Related models for the recognition of static shapes have added 

additional layers at this level, forming successively more complex form 

features by combination of the features from previous layers (Riesenhuber & 

Poggio, 1999; Serre et al. 2007). The resulting detectors extract form features 

of intermediate complexity and result in tuning properties that match quite 

accurately the ones of neurons in area V4 (Cadieu et al. 2007). However, for 

the recognition of body motion from simple stimuli the inclusion of more 

complex intermediate level form features was not necessary (Giese & Poggio, 

2003).  
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Figure 4.2  
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of RBFs have been proposed in Khou & Poggio (2008). The templates (RBF 

centers) were determined by learning from training image sequences, setting 

them to the output vectors from the previous hierarchy level that resulted for 

keyframes of the motion pattern, which were obtained by sampling with 

equidistant time steps. Neurons with properties similar to such snapshot 

neurons have been observed in the STS in monkey cortex (e.g. Perrett et al. 

1985; Oram & Perrett, 1996; Perrett et al. 2009), and in fact, recently strong 

electrophysiological evidence has been provided for the existence of such 

neurons (Vangeneugden et al. 2009; Singer & Sheinberg, 2010).  

The motion pathway has, in principle, the same architecture as the 

form pathway. In this case, the extracted features depend on the local motion 

in the stimulus. The first hierarchy layer of this pathway contains local motion 

energy detectors that are selective for different local motion directions and 

speeds. These detectors model motion-selective neurons in primary visual 

cortex and the mediotemporal area (MT) (Smith & Snowden, 1994). 

Extensions of the original model have realized this level using different types 

of motion detectors that are suitable for the processing of real video sequences 

(Jhuang et al. 2007; Escobar et al 2008). The second hierarchy level of the 

motion pathway consists of detectors for more complex local optic flow 

patterns, that is motion patterns that integrate different directions and speeds 

with specific local spatial configurations. In the original models these pattern 

were pre-defined (translation, opponent motion in different directions). In 

more recent implementations ‘dictionaries’ of optimized intermediate-level 
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optic flow features have been learned from example videos (Sigala et al. 

2005; Jhuang et al. 2007). The resulting detectors correspond to motion-

selective neurons, potentially in areas MT and MSTl, that are selective for 

complex intermediate optic flow features (e.g. Allman et al. 1985; Xiao et al. 

1995; Eifuku & Wurtz, 1998; Born, 2000).  

The next-higher level of the motion pathway consists of neural 

detectors for complex optic flow patterns that arise temporarily during action 

stimuli. These detectors are equivalent to the snapshot neurons in the form 

pathway. They are modeled by radial basis functions whose centers were 

determined by the feature vectors from the previous level, derived from 

training videos, just like the RBFs of the snapshot neurons in the form 

pathway. Neurons with selectivity for such highly complex motion patterns 

have been found in the STS (e.g. Perrett et al. 1985; Vangeneugden et al. 

2008).  

It is important to notice that the described optic flow pattern detectors 

are selective for patterns of local motion information with complex spatial 

organization. This spatial organization is holistic and covers the whole action 

stimulus. (Such holistic recognition mechanisms are sometimes also termed 

‘configural’ in the psychophysical literature). It is important to notice here 

that holistic recognition can be accomplished as well based on form features 

(as for the snapshot neurons), as based on local motion features, since local 

motion also carries spatial information. The argumentation that holistic or 

configural recognition mechanisms automatically imply form-based 
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processing is thus a conceptual confound, which sometimes can be found in 

the related literature.     

Recent work on similar models for object and motion recognition in 

computer vision has shown that for accomplishing good performance on real 

images and video sequences it is crucial to optimize the tuning properties of 

the neural detectors at the intermediate levels of the hierarchy by learning 

from image data (Serre et al. 2007; Jhuang et al. 2007). This approach is also 

taken in section 4.3.1.  

 

4.2.2 Selectivity for temporal order 

The recognition of action patterns is critically dependent on temporal order, 

i.e. the temporal sequence with which body shapes arise during the stimulus. 

To account for this effect, the model assumes that the snapshot and optic flow 

pattern neurons are embedded in dynamic recurrent neural networks (i.e. 

nonlinear neural networks with lateral connections) that make their responses 

dependent on the sequential temporal order. The details of this network are 

described in Section 4.3.2. As consequence of the lateral connections between 

them, the individual snapshot neurons fire strongly only if the corresponding 

body shapes occur in the right temporal context. Showing the same stimulus 

sequence in reverse or scrambled temporal order results in a substantial decay 

of their neural responses (Giese & Poggio, 2003). Likewise, due to this 

network dynamics the optic flow pattern neurons in the motion pathway 
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respond strongly only if the relevant optic flow patterns arise in the right 

temporal sequence. The form of these lateral connections can be easily 

established by Hebbian learning (Jastorff & Giese, 2004), a physiologically 

plausible learning rule that makes synaptic changes dependent on the 

correlations between pre- and postsynaptic signals and their relative timing.   

The highest hierarchy level of the form and the motion pathway is 

given by motion pattern detectors that temporally smooth and summate the 

activity of all snapshot neurons and the optic flow pattern neurons. These 

neural detectors respond during the presence of a particular action (like 

“walking”, “marching”, “boxing”, etc.). Their response is strongly sequence-

selective so that they do not become activated, e.g. by actions shown in 

reverse temporal order (Giese & Poggio, 2003). Neurons with similar 

properties have been found in the STS (Perrett et al. 1985; Oram & Perrett, 

1996; Jellema & Perrett, 2006; Vangeneugden et al. 2008).   

 

4.2.3 Integration of form and motion 

In the cortex the two visual pathways converge at the level of the STS 

(Saleem et al., 2000). This convergence of form and motion has been a central 

feature of the model by Giese & Poggio (2003) and can be simply modeled by 

summing the responses of the motion pattern neurons in the form and the 

motion pathway. Alternatively, one also could assume common motion 

pattern neurons for both pathways. The detailed mechanisms of the fusion of 
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form and motion in body motion recognition in the visual cortex remain 

unknown and have to be decided based on appropriate data from single cells. 

However, experimental evidence suggests that both pathways interact already 

at earlier levels than the STS and that there are top-down influences from 

motion pattern recognition into earlier levels of the motion and form pathway 

(e.g. Peuskens et al. 2005). Such top-down influences are not captured by the 

existing neural models for motion pattern recognition. A detailed discussion 

of top-down processes is given in Chapter 18. In addition, Chapter 17 gives a 

detailed discussion about the integration of form and motion information in 

biological motion processing based on human imaging data.  

Deviating from the idea of a fusion of form and motion cues, e.g. at 

the level of the STS, as proposed in our model, in the field of biological 

motion processing a vivid discussion has emerged that tried to address the 

question whether the recognition of point-light walkers is based exclusively on 

form or exclusively on motion information. The starting point of this 

discussion was a novel point-light stimulus (Beintema & Lappe, 2002) that 

presented the dots at randomized positions on the skeleton in every frame, and 

which elicited the percept of biological motion in human observers, while it 

reduces the amount of available local motion information. This result has 

motivated the hypothesis that biological motion recognition might be based 

exclusively on form templates, and basically independent of local motion 

except for ‘segmentation’ of the figure from the background. As further 

support for this hypothesis Lange and Lappe (2006) have proposed a neural 
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form template fitting model, which is very similar to the form pathway of the 

model discussed in Section 4.2.1, but lacks mechanisms for scale and position 

invariance. In detailed simulations they showed that, assuming an appropriate 

pre-positioning of the template over the stimulus, the model resulted in good 

curve fits of several psychophysical results. However, more detailed 

simulations with our model including both, a motion and a form pathway 

suggested that spontaneous generalization between normal and point-light 

stimuli might be much easier to obtain in the motion pathway. In addition, 

these simulations showed that the stimulus by Beintema & Lappe (2002) 

contains substantial amounts of local motion information, and is thus also 

suitable for recognition by a purely motion-based model (Casile & Giese, 

2005).. 

The question if form or motion features contribute to the perception 

of body motion and actions seems interesting and has stimulated a large 

number of novel studies (e.g. Casile & Giese, 2005; Beintema et al. 2006; 

Thurman & Grossman, 2008; Thirkettle et al. 2009). From our point of view, 

however, extreme positions like ‘only form’ or ‘only motion’ being relevant 

for the processing of body motion are not particularly helpful for developing a 

deeper understanding of brain function. From the point of computational 

efficiency it seems extremely unlikely that the brain discards robust features, 

like local motion, from the recognition process. Also some of the arguments 

in favor of an exclusively form-based recognition process seem problematic: 

1) The stimulus by Beintema & Lappe (2002) contains substantial local 
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motion (Casile & Giese, 2005) and thus does not provide an example of a 

local motion-free biological motion recognition. 2) The idea of the fitting of 

form templates (Lange & Lappe, 2006) bypasses completely how such 

templates are positioned on the stimulus. This problem is specifically critical 

in the presence of motion clutter. For dynamic backgrounds, clearly a 

‘segmentation’ of the figure from the background ‘by motion’ as basis for a 

subsequent simple fitting of a form template is not possible. In this case, 

segmentation and recognition of the stimulus cannot be decoupled, and a 

simple testing of all possible template positions (and scales) is 

computationally not tractable. However, subjects are easily able to recognize 

point-light stimuli with arbitrary size and position in motion clutter. 3) 

Predictions from the hypothesis of exclusively form-based processing of 

biological motion are contradicted by experimental data (e.g. Thurman & 

Grossman, 2008). Furthermore, there is accumulating evidence from 

behavioral and imaging studies that support an essential involvement of both, 

form and motion information, in the recognition of biological motion. 

Likewise, it would be easy come up with a similar list of arguments against 

‘purely motion-based processing’ of biological motion stimuli. In our view, a 

cue fusion account seems thus not only computationally more efficient, but 

also much more plausible in terms of cortical processing. 
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4.2.4 Limitations of the basic architecture  

The described basic model architecture reproduced a range of empirical facts 

from electrophysiology, psychophysics, functional imaging, and even lesion 

studies in patients (e.g. Giese & Poggio, 2003). It specifically reproduced the 

recognition of point-light stimuli in substantial amounts of motion clutter 

without a priori knowledge of the position of the moving figure, and even 

from stimuli with degraded motion information such as the one proposed by 

Beintema and Lappe (Casile & Giese, 2005). Also the model reproduced the 

view-dependence of neurons that are selective for biological motion stimuli 

(Perrett et al. 1985, Oram & Perrett, 1996).  

However, the original model was tested only with simplified artificial 

stimuli that had been used in neuroscience experiments. Recent extensions of 

such architectures have included neural models for the estimation of optic 

flow from gray-level videos. In addition, some of these studies have included 

learning of optimized mid-level features from example image sequences.  A 

validation on bench-mark data bases from computer vision showed that such 

architectures can reach performance levels that are competitive with the state-

of-the-art action recognition systems in computer vision that are not inspired 

by biology (Huang et al., 2007; Escobar et al. 2008; Schindler & van Gool, 

2008).  

In a biological context, however, a number of serious limitations of 

the proposed basic model architecture have to be addressed in future work. 
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For example, the described models have predominantly a feed-forward 

architecture and neglect the influence of attentional modulation and context 

information that is present in motion recognition in biological systems. (See 

Chapter 18 for a more detailed discussion of these issues.) In addition, this 

biologically-motivated work on action recognition has solely focused on non-

transitive actions, which are not directed towards goals or objects. The major 

purpose of this chapter is to propose an extension of the original architecture 

that can account for the recognition of transitive actions by inclusion of a 

small set of additional neural mechanisms that are consistent with facts known 

from neurophysiology.  

 

 

4.3 NEURAL ARCHITECTURE FOR THE RECOGNITION 

OF TRANSITIVE ACTIONS 

The architecture described so far reproduces a number of properties of the 

neural mechanisms of the recognition of non-transitive actions, such as 

walking or waving, which do not involve a direct interaction with a goal 

object. In the following section we describe several extensions that make the 

general architecture described in Section 4.2 suitable for the recognition of 

transitive actions that are directed towards goal objects and specify 

interactions with them. More specifically, the proposed novel model accounts 

for the visual recognition of grasping acts from natural video sequences. In 
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comparison with the model described above, this novel architecture is 

distinguished by the following features:   

1. In order to limit the computational complexity of the first implementation, 

the present version of the model contains only a form pathway. It turned 

out that form-based recognition was sufficient to accomplish relatively 

robust recognition form grasping videos. However, it seems possible that in 

the brain also the recognition of grasping acts combines form and motion 

features. A later extension of the model by inclusion of a motion pathway 

seems easily possible.  

2. To accomplish robust performance on real video sequences the model was 

extended by an appropriate algorithm for the learning of optimized mid-

level form features at the middle hierarchy levels of the form recognition 

module by unsupervised learning.  

3. The model includes novel neural circuits, modelling computational 

mechanisms likely located in STS, the parietal and premotor cortex, which 

combine the information about the effector (hand) movement and the shape 

and location of the goal object, i.e. the object that is grasped.  



        27 

 

Figure 4.3 

Figure 4.3 presnets an overview of the extended architecture. Panel (a) shows 

the neural hierarchy for the recognition of effector and object shapes. Its 

architecture closely resembles the form pathway of the original model 

presented in Figure 4.3. Panel (b) shows the additional proposed neural 

mechanisms that integrate the information about the goal object and the 

effector, and which are required to realize a view-independent recognition of 

hand actions. These additional mechanisms are sketched below in more detail. 
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A more extensive description of the model can be found in Fleischer et al. 

(2008, 2009a, 2009b).  

 

4.3.1 Shape recognition hierarchy 

The recognition of effector (hand) and object shape is based on the 

hierarchical neural framework introduced in Section 4.2.1, which was derived 

from well-established object recognition models (Perrett & Oram, 1993; 

Riesenhuber & Poggio, 1999; Mel & Fiser, 2000; Rolls & Milward, 2000; 

Serre et al., 2007). An overview of the shape recognition hierarchy is shown 

in Figure 4.3(a).  

The first hierarchy level consist of orientation detectors that were 

again modeled by Gabor filters, with 12 different preferred orientations and 

two different spatial scales. ‘Complex cell’ responses were computed from the 

output signals of these detectors by pooling of responses of detectors with the 

same orientation preference and spatial scales, but slightly different spatial 

preferences, using a maximum operation (see Section 4.2.1.). The spatial 

receptive fields of these ‘complex cells’ would correspond to a size of about 

1.0 deg, matching approximately the parameters derived from 

electrophysiological experiments. The output signals of all levels of the neural 

hierarchy were thresholded using linear threshold functions.   

The next-higher level extracts form features of intermediate 

complexity. Opposed to the original model described before, the selectivity of 

these mid-level form detectors was optimized by learning. The detectors were 
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modeled by Gaussian radial basis functions (RBFs, see above) whose centers 

were defined by input signals from the previous hierarchy layer that were 

arising for training videos showing grasping actions. For the selection of a 

limited set (dictionary) of such intermediate form features we used a simple 

greedy clustering procedure that preserves frequently occurring features, 

while it tends to eliminate novel features that are redundant based on a 

similarity measure. The learned feature representation thus reflects the feature 

statistics that is present in the training data (Serre et al., 2007; Mutch & Lowe, 

2006; Fidler et al., 2008). The thresholded responses of the learned feature 

detectors were pooled over a local spatial neighborhood diameter of 1.7 deg 

again using a maximum operation, generating detector responses with higher 

position invariance. The same procedure can be cascaded in order to generate 

several intermediate layers that extract more and more complex form features. 

For the given implementation we tested between two and four intermediate 

layers, dependent on the required recognition accuracy.  

As for the model architecture discussed in section 4.2.1, the neural 

detectors at the highest level of the shape recognition hierarchy were given by 

Gaussian RBFs whose centers correspond to keyframes from training image 

sequences. These feature detectors are selective for individual views of 

objects and hands, and they correspond to the body shape snapshot detectors 

described in Section 4.2.1. Opposed to equivalent detectors in most standard 

object recognition models (e.g. Riesenhuber & Poggio, 1999), these highest-

level shape detectors are not completely position-invariant. Instead, there 
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exists a small ensemble of detectors with different spatial preferences (tuning 

width corresponding to about 3.7 deg) for each learned shape. This makes it 

possible to read out the two-dimensional retinal position of the recognized 

shapes from this detector population using a simple population vector 

approach. (An example is an estimate of the stimulus position that is just 

given by a weighted average of the preferred positions of the individual 

detectors, where the weights are given by their normalized responses.) It will 

be shown below that the extraction of position information is important for 

the recognition of effective goal-directed actions, since it is crucial for the 

computation of the spatial relationship between the effector and goal object. 

Several results from electrophysiology support the assumption that 

shape-selective neurons in ventral areas (such as IT) are characterized by a 

limited degree of position invariance (Baker et al., 2000; DiCarlo & Maunsell, 

2003; Lehky et al., 2008, for a review see Kravitz et al., 2008), supporting this 

assumption of our model.  

 

4.3.2 Selectivity for temporal order 

For the recognition of the effector movements (like the closing of the grasping 

hand) the responses of the snapshot neurons were associated over time using a 

dynamic neural network (see section 4.2.2). For this purpose, the responses of 

hand shape detectors with different spatial preferences were pooled using a 

maximum operation, in order to realize position-independent detectors for the 
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recognition of individual hand shapes. In addition, we learned a linear 

remapping of the response of these detectors onto a one-dimensional activity 

map that provides input for the dynamic neural network. This mapping 

compensates for the fact that natural grips are characterized by strongly non-

uniform speeds of the shape variations of the hand.  (See Fleischer et al. 

(2009b) for further details.) The resulting input distribution can be 

characterized by a time-dependent vector with the elements rk(t), where the 

index k indicates the position of  the activity variable in the map. If the trained 

grasping action is presented, an activity peak arises in this map that 

propagates with approximately constant speed.  

A dynamic neural network that results in sequence-selective 

responses can be derived from dynamic neural fields with asymmetric lateral 

connections (Zhang, 1996; Giese, 1999; Xiao & Giese, 2002). (A neural field 

is an idealized model for a network of neurons that encodes continuous 

parameters. In this case, the network can be approximated by a continuous 

neural medium with a continuous instead of a discrete index for the individual 

neurons. This approximation can make the mathematical treatment 

substantially easier (e.g. Amari, 1977; Giese, 1999)). To define the dynamic 

network, we assume the existence of dynamic snapshot neurons whose 

activity uk(t) obeys the differential equation:  

 

          htrtulkwtutu kl
l

kk   )(              (1)    
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The function [.]+ defines a linear threshold function, which is define as  [x]+ = 

max(x, 0). The time constant of the dynamics τ was about 160 ms. The 

positive threshold parameter h determines the resting level of the neural 

network without input. The interaction kernel w(k) was chosen as a smooth 

asymmetric function that was adjusted in order to maximize the amplitude of 

the activity peak that emerged for the training stimulus sequence presented in 

the correct temporal order, and to minimize the response for the sequence 

presented in reverse temporal order. The snapshot neurons in this 

representation become activated strongly only if the presented hand shape 

matches the corresponding training shape, and if it occurs in the right 

temporal context. (See Giese & Poggio (2003) for further details.) The 

appropriate connection strength for the lateral connections w(k) could be 

learned as well using physiologically plausible mechanisms (see Section 

4.2.2). 

The outputs of the snapshot neurons belonging to the same hand 

action were then temporally integrated by motion pattern neurons that obeyed 

the dynamical equation: 

 

       .)(max sk
k

s htutsts          (2) 

 

The time constant of this integrator dynamics was given by τs = 200 ms and hs 
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is a positive threshold parameter. The motion pattern neurons respond for a 

particular view of a particular hand action, but continuously during the whole 

action sequence. If the corresponding hand shapes are presented in the wrong 

temporal order the response of these neurons is strongly reduced (Giese & 

Poggio, 2003).  

 

4.3.3 Integration of the information about effector and object 

The recognition of goal-directed actions requires not only the recognition of 

the effector movement but also the analysis of the relationship between the 

effector and the goal object. A grip that does not reach the goal object would 

be an unsuccessful action, and the same would be true if the hand shape is 

inappropriate for the realization of an efficient grip of the object. 

Neurophysiological data shows that many action-selective neurons show a 

critical dependence of their activity on the fact whether the relationship 

between effector and object is appropriate. For example, action-selective 

neurons in the STS or in area F5 in premotor cortex show strongly reduced 

responses if the grasping hand does not touch the goal object (‘mimicked 

action’) (Perrett et al. 1989; Umilita et al. 2001). A model for the visual 

recognition of goal-directed action thus has to account for this dependence of 

neural activity on the relationship between effector and object. 

The proposed model explains this dependence by an additional circuit 

that receives its input from the hand shape and the object shape detectors 
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(Figure 4.3(b)). The proposed mechanism is critically dependent on the fact 

that, due to the incomplete position invariance of the shape detectors, the 

retinal positions of goal object and effector can be estimated from the 

responses of the shape detectors. The core of the proposed neural circuit is a 

neural map that represents the relative position of effector and object. In this 

two-dimensional relative position map the relative position of object and 

effector is encoded by a neural activity peak (Figure 4.3(b)).  The map can be 

constructed by simple neural operations from the outputs of the shape 

detectors. Let aE(u,v,t) signify the retinotopic spatial activity map that 

represents the current effector position for a particular grip type, and let 

aO(u,v,t) correspond to the activity map that is defined by the object shape 

detectors of an object that can be efficiently grasped with this grip type. Then 

the activity in the relative position map can be computed according to the 

relationship:  

 

   (3) 

 

This convolution can be computed by a simple neural architecture that is 

similar to a gain field (Salinas & Abbott, 1995; Pouget & Seijnowski, 1997), 

just by summing product terms from the two input maps. Gain fields have 

been a fundamental architecture for the realization of coordinate 

transformation, e.g. in parietal cortex. Due to the multiplication, a non-zero 

output signal in the map can arise only if both, effector and object are present 

'.'),','(),','(),,( vddutvvuuatvuatvua EORP  
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in the stimulus, and if the object shape is suitable for a grip that is encoded by 

the corresponding hand shape detectors.  In this way the model matches the 

hand shape and the grip affordance of the object. In our present 

implementation the center of the relative position map corresponds to the 

position of the effector, and the object position is represented relative to the 

effector. Similar implementations of coordinate transformations by gain fields 

have been found in multiple regions in the parietal cortex. Examples are the 

change from an eye-centered to a head-centered frame of reference (Batista et 

al., 1999; Buneo et al., 2002), or the representation of the relative positions of 

object parts (Chafee et al., 2007).  

 A grip will only be successful if the effector is located within a 

certain range of spatial positions relative to a goal object. This range 

corresponds to a well-defined spatial region in the relative position map 

(Figure 4.3(b), region marked by the cyan curve). A further postulate of our 

theory is the existence of a class of neurons, called affordance neurons in the 

following, which sum the activity in the relative position map over these 

spatial regions. As a consequence, these neurons are activated only if both, 

effector and object are present and if they have a spatial relationship that is 

appropriate for a successful grip.  We assume that the receptive fields of the 

affordance neurons are established by learning.  

 As final step of the integration of the information about effector and 

object we assume a multiplicative combination of the output signals of the 

affordance neurons and the motion pattern neurons that are detecting the same 
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grip. This multiplication is computed by the view-dependent action-selective 

detectors in our model (Figure 4.3(b)). These detectors respond only in the 

presence of the appropriate effector motion and of the right spatial 

relationship between effector and object.. Neurons with similar properties 

have been described in area STSa (Perrett et al., 1989) and area F5 (Rizzolatti 

et al., 2001). Motor neurons with specific tuning for object shapes and the 

relationship between object and effector have also been found in the parietal 

area AIP (Murata et al., 2000; Gardner et al., 2007; Baumann et al., 2009).  

 

4.3.4 Integration of different views 

The initial stages of our model realize recognition of learned views of the 

object and the effector. Correspondingly, the action-selective neural detectors 

described before are view-dependent, i.e. they depend on the visual 

perspective in which the action is observed. Their response thus decays if an 

action is presented with views that deviate increasingly from the training 

view. Such view-dependence is in accordance with electrophysiological data. 

View-dependent action-selective neurons have been observed in the STS 

(Perrett et al., 1985; Oram & Perrett, 1996), and the majority of F5 mirror 

neurons are also view-dependent (Caggiano et al., subm). This clearly argues 

in favor of a view-based representation of actions rather than of a full 

reconstruction of the three-dimensional geometry of effector and object. Such 

a full three-dimensional reconstruction is implicitly assumed by many other 
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models for the recognition of goal-directed actions (See Section 4.1).  

 In our model, view-independent action recognition is accomplished 

by pooling of the output signals of a limited number of view-specific modules 

using a maximum operation (Figure 4.3(b), right part). This realization of 

view-invariant recognition of actions closely matches a widely accepted 

principle for view-invariant object recognition in the ventral stream (e.g. 

Poggio & Edelman, 1990; Logothetis, Pauls & Poggio, 1995). Our 

simulations show that a very limited number of view-dependent modules is 

sufficient to accomplish fully view-independent recognition of actions.   

 

4.4 SIMULATION RESULTS AND PREDICTIONS 

In the following section a number of simulation results are presented that 

illustrate that the model is computationally powerful enough for the robust 

recognition of hand actions from real video sequences. In addition, the 

simulations demonstrate that the model reproduces a number of key properties 

of action-selective neurons in the cortex that have been observed in 

electrophysiological experiments. Further simulation results can be found in 

Fleischer et al. (2009a, 2009b).  

4.4.1 Robust recognition from real video sequences 

The recognition of hand actions from real videos is a challenging computer 

vision problem (e.g. Athitsos & Scarloff, 2003; Stenger et al., 2006; 

Kjellström et al., 2008). The distinction of different types of grips requires 
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highly accurate recognition of shape details. The difference between a 

precision grip (grasping with the index finger and the thumb) and a power 

grip (grasping with the full hand) might, depending on the view angle, be 

defined only by a relatively small number of pixels in a video stimulus. At the 

same time, recognition must be accomplished independent of the view of the 

action and of the position of the action stimulus within the visual field. 

Electrophysiological recordings from area F5 in macaque cortex show that 

action-selective neurons (mirror neurons) are  highly selective for differences 

between different grip types. But also, they often show strong invariance 

against the position of the stimulus within the visual field (Gallese et al. 

1996).  

In order to investigate the behavior of our model with real-world 

stimuli, we recorded video sequences with four different hand actions filmed 

from 19 view angles using a CANON XL1-S camera with a frame rate of 25 

Hz. The videos show a human hand grasping an object with different grip 

types.  Videos were converted to gray-level and had a frame size of 350 times 

315 pixels. The hand shape detectors were trained using example shapes 

derived from the original videos by color segmentation of hand an object. 

However, testing was based on unsegmented gray-level videos. 

 The performance of the snapshot neurons of the model is shown for 

the distinction between precision and power grip in Figure 4.4(a), assuming 

the same view for both grips. In addition, this simulation compared two 

variants of the model, one with sequence selectivity (red line) and one without 
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sequence selectivity (blue line). Classifications were based on the responses 

of the snapshot neurons, assigning the grip type as response that corresponded 

to the more strongly activated snapshot neuron for the same time step. 

Performance (percent of correct classifications) is plotted as function of the 

normalized time as fraction of the duration of the whole grasping action. The 

model was tested with novel grasping sequences that were not used for the 

training of the model.  
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 Figure 4.4  

 

Figure 4.4(a) shows that almost perfect recognition performance is 

achieved already after about half of the overall duration of the action. In 

addition, the comparison between the two model variants shows that sequence 

selectivity results in a slight improvement for the classification in early stages 

of the grips, where the hand shapes of the two grips are still very similar. In 

this case sequential order information can disambiguate information arising 

from intermediate hand shapes. Even though the hand shape detectors were 
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trained with example images that did not contain the goal object the model 

efficiently generalizes to the stimuli including also goal objects.   

A validation of the performance of the model with a variety of views 

is shown in Figure 4.4(b). In this case, the model was trained with 7 different 

views (in steps of 30 deg) of two actions (power grip from above and from the 

side of the object). Again the performance is shown for testing with videos 

that show the same action from novel views that were not presented during 

training. The average performance over all test views of the classification by 

the snapshot neurons is shown as function of the normalized duration of the 

action. Almost perfect performance is accomplished after less than 60 % of 

the overall time of the action, thus before the hand has reached its final 

configuration. This implies that the model accomplishes robust view-invariant 

recognition from real video stimuli, requiring only a relatively limited number 

of view-specific modules for each action. 
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Figure 4.5  

4.4.2 Position invariance  

Many action-selective neurons, e.g. in premotor cortex, show only a weak 

variation of their responses with displacements of the stimulus in the visual 

field (Gallese et al., 1996). The model reproduces this strong position 

invariance.  

In order to test position invariance, two grips (precision vs. power 

grip) were shown at nine different positions within the visual field of the 

model. As shown in Figure 4.5, the responses of action-selective neurons that 

are selective for precision or power grip almost do not change with the 

position of the stimulus within the visual field. This strong position invariance 

is achieved while the model shows high selectivity for the relative position of 

object and effector, as shown in Section 4.4.4. 

 Summarizing, the last two sections show that the proposed neural 

architecture even though it is based on very elementary neural operations, all 

of which in principle could be realized with cortical neurons, is sufficiently 

powerful to solve the hard computational problem of goal directed action 

recognition for real-world stimuli. The challenge of this problem is that high 

accuracy for the recognition of finger positions and the relationship between 

effector and object have to be realized together with substantial invariance 

against stimulus position and view. 
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4.4.3 View-dependence  

View dependence is a natural consequence of the fact that the model is based 

on view-dependent representations of hand and object shapes. Such view 

dependence matches electrophysiological data, since view-dependent action-

selective neurons have been observed in the STS (Perrett et al., 1985; Oram & 

Perrett, 1996) as well as in the premotor cortex of monkeys (Caggiano et al., 

subm.).  View-tuning is also a common observation for neurons in ventral 

shape-selective areas, such as area IT (Logothetis, Pauls & Poggio, 1995; Tarr 

& Bülthoff, 1998). 

The view tuning of action detectors at the highest level of the view-

dependent modules (Figure 4.3(b)) is illustrated in Figure 4.6. In this case, 

seven view-specific modules have been trained that are selective for views 

that differ by 30 degrees. The training actions were power grips of a rod-like 

object from the side and from the top. The thin curves indicate the activities 

for the view-dependent action detectors, different colors indicating different 

view-dependent modules. All test views were different from the training 

views. Panels (a) and (c) show the response for a grip from the top, and panels 

(b) and (d) the responses for a grip from the side. The ‘top grip neurons’ 

(panels (a) and (b)) show strong responses only for the top grip, for views that 

are sufficiently close to their training view. In addition, they show a gradual 

decay of the tuning curve, which corresponds to a tuning width of about 60 

deg. This view dependence and the tuning width match quantitatively 
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electrophysiological results obtained by studying the view dependence of 

mirror neurons in area F5 using similar stimuli (Caggiano et al., subm.). For 

the grip from the side, the ‘top grip neurons’ show only relatively weak 

responses and no clear view tuning. The behavior of the ‘side grip neurons’ 

from the view-dependent modules trained with side-grip stimuli is 

complementary: Strong responses arise only for side-grip stimuli, if their view 

is similar to the training view. Again, one finds smooth view-tuning curves 

with widths around 60 deg.   

 The thick lines in Figure 4.6 indicate the responses at the highest level 

of the model, that is formed by the view-invariant action detectors. These 

detectors show strong responses for all views of the trained action, and much 

smaller responses for the alternative action. Based on the responses of these 

detectors it is trivial to classify the actions (just selecting the action as 

recognized which corresponds to the action-selective detector with the higher 

activity). Most importantly, the direction of the activity difference between 

the two actions has the same sign for all views, and even for the untrained 

ones. This makes it possible to classify all views with only small number of 

trained view-dependent modules. View-independent action-selective neurons 

have been found in area F5 of the macaque (Caggiano et al. subm.), and in the 

STS (Perrett et al., 1989; Jellema & Perrett, 2006).   
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Figure 4.6 

4.4.4 Selectivity for the relationship between effector and 

object  

Many action-selective neurons show high selectivity of their responses for the 

relationship between effector and goal object. Mirror neurons in area F5 have 

been reported to fail to respond when either the effector or the goal object are 

missing in the stimulus (Umilta et al. 2001). In addition, many mirror neurons 

fail to respond for ‘mimicked actions’, where both effector and object are 

present, but where the effector misses the goal object, the experimenter 

grasping next to it.  Similar observations have been made for action-selective 

neurons in the STS (Perrett et al., 1989). 

  The model reproduces this selectivity for the relationship between 
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effector motion and goal object even in quantitative detail. This is shown in 

Figure 4.7 that shows the activity of an action-selective neuron that has been 

trained with a power grip for stimuli that show effector and object with the 

correct spatial relationship, and with incorrect spatial relationship (‘mimicked 

action’). In addition, stimuli were tested which contained only the object or 

only the effector. The inset replots data from an electrophysiological study 

that has investigated the responses of neurons in the anterior STS using the 

same type of stimuli (Perrett et al. 1989). Clearly, the response of the action-

selective detectors decays substantially if either the object or the effector is 

missing in the stimulus, or if a mimicked action is presented. The decay is 

even quantitatively similar to the response profile that was observed in the 

electrophysiological study.    

We conclude that the proposed neural mechanism accounts, at least 

qualitatively, for this neurophysiological data. From the computational point 

of view, it seems not trivial to accomplish this selectivity for the spatial 

relationship between effector and object, at the same time guaranteeing strong 

position invariance for the action recognition.  
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Figure 4.7  

 

4.4.5 Predictions  

The model is formulated largely in terms of mechanisms that could, in 

principle, be implemented in a relatively obvious way by real cortical 

neurons. This makes it possible to derive a number of predictions that can be 

tested immediately in experiments. Here are only a few examples: 

 

 Action selective neurons should show sequence selectivity. This 

implies that the presentation of the same stimulus frames in forward 

and reverse order should result in different neural responses. In fact, 

initial data seems to confirm this prediction for action-selective 

neurons (mirror neurons) in area F5 of the macaque, obtaining a good 
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agreement between the behaviour of individual neurons in this area 

and the model (V. Caggiano, pers. comm.). 

 Changing the relative positions of effector and object should result in 

well-defined gradual tuning curves for the dependence on relative 

position. This dependence should be invariant against position 

changes of the whole stimulus in the visual field. This prediction 

could be confirmed by recording of neurons, for example, in relevant 

areas in the parietal cortex or in area F5.  

 The existence of the postulated neuron classes (affordance neurons, 

motion pattern neurons, view-dependent and view-invariant action-

selective neurons) can be verified in electrophysiological studies. A 

coarse anatomical localization of the different postulated 

computational steps (relative position map, affordance neurons, etc.) 

might also be possible in carefully controlled fMRI experiments.     

 

 

4.5 CONCLUSIONS AND OUTLOOK 

 

We have reviewed in this chapter biologically inspired models for the visual 

recognition of body movements and actions. In Section 4.2 we have provided 

an overview of a class of architectures for the recognition of non-transitive 

actions that are not goal-directed, which meanwhile are relatively well 

established as models for brain functions and as basic architectures for 
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computer vision systems for action recognition. In the second part of this 

Chapter (Sections 4.3 and 4.4), we have presented an extension of this basic 

class of models making them suitable to account also for the recognition of 

transitive actions. We have shown that a model that is based on the proposed 

extensions is computationally powerful enough to realize recognition of 

transitive actions from real videos. In addition, we have shown that the model 

reproduces several neurophysiological results about action-selective cortical 

neurons. While it is still somewhat preliminary, this makes the proposed 

architecture interesting as starting point for the development of more 

elaborated models that can be fitted in much more detail to experimental data.  

 Obviously, the proposed model has a number of limitations, which at 

the same time define topics for future research. We list here only a few of the 

major points:  

 

 The proposed model completely ignores the influence of disparity 

features, which would provide depth information obtained by a 

comparison of the retinal images from both eyes. It is know that many 

neurons, specifically in parietal regions, show disparity tuning 

(Tsutsui et al., 2005; Orban et al., 2006). It remains thus an important 

topic for future research to explore the role of disparity features in 

action recognition. To our knowledge, no neural model so far has 

addressed this topic.  

 There has been an extensive discussion how the perception and 
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execution of actions are linked in the context of research on the 

‘mirror neuron system’ (e.g. Prinz, 1997; Rizzolatti et al. 2001). 

Doubtless, there is strong empirical evidence for a tight interaction 

between neural representations for action execution and action 

perception as reviewed in Chapter 2 and Chapter 20. With respect to 

this discussion, the proposed model provides the insight that many 

visual tuning properties of action-selective visual neurons can be 

explained with relatively standard mechanisms that are also common 

to visual processes outside of action recognition. A direct coupling to 

motor representations or even the time-synchronous internal 

resimulation of the observed motor behavior within the motor system 

(‘motor resonance’) was not necessary to account for these results. 

However, the tight coupling of motor execution and visual 

recognition of body motion raises the question how exactly motor and 

visual representations are linked to each other and how the proposed 

model has to be modified to take this link into account. An interesting 

idea in this context is the existence of predictive dynamic 

mechanisms at multiple levels within a hierarchical system that can 

propagate predictions in a bottom-up and also a top-down fashion 

(Kiebel et al., 2008). 

 The computational limits of the proposed architecture need to be 

investigated much more thoroughly, using more extended data sets 

that include many objects and more types of grips. Only in this way it 



50           
    

will be possible to judge how the proposed solution scales up for 

bigger problems and different tasks, such as the recognition of 

emotional expressions (Schindler et al 2008; See also Chapter 3).  

Another step that will be critical to make the system interesting for 

applications in computer vision and robotics is to improve the 

computational mechanisms at the different levels of the hierarchy in 

order to make the system applicable for action stimuli with 

background clutter.  

 Another important problem that has almost not been addressed in the 

context of action vision is the influence of attention on the processing 

of complex motion stimuli (see e.g. Rodriguez-Sanchez et al., 2007). 

It seems likely that an integration of attentional selection will play a 

key role to make the proposed architecture applicable for more 

complex problems, like for visual scenes where multiple objects or 

effectors are present. Conversely, it also remains a question for future 

research of how action perception influences the control of attention, 

e.g. by directing attention towards action goals. (See also the 

discussion of top-down and bottom-up processes in Chapter 18).  

 

Summarizing, we think that the proposed skeleton architecture might provide 

a first step toward more quantitative models for the visual recognition of goal-

directed actions which make well-defined predictions that can be verified or 

falsified at the level of the behavior of single cells in relevant higher cortical 
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areas. Likely, only this approach will finally help to unravel the real neural 

circuits that underlie the visual processing of action stimuli and body motion.  

 

Acknowledgments 

 

We are grateful to M. Shiffrar for the invitation to write this chapter, to V. 

Caggiano for sharing his electrophysiological data and to L. Omlor for help 

with the video stimuli. We thank P. Thier and A. Casile, L. Fogassi and G. 

Rizzolatti for interesting discussion in the context of a project on ‘mirror 

neurons’. This work was supported by the Deutsche Forschungsgemeinschaft 

(DFG) SFB 550, EC FP6 project COBOL and FP7 project SEARISE. Further 

support from the Hermann Lilly Schilling foundation is gratefully 

acknowledged.  

 

 

REFERENCES 

 

Allman, J., Miezin, F., & Mc Guinness, E. (1985) Direction- and velocity-

specific responses from beyond the classical receptive field in the middle 

temporal visual area (MT). Perception 14, 105-126. 

Arbib, M.A. (2008) From grasp to language: embodied concepts and the 

challenge of abstraction. J Physiol 102, 4-20. 



52           
    
Athitsos, V. & Sclaroff, S. (2003) Estimating 3d hand pose from a cluttered 

image. Proc. IEEE Int. Conf on Computer Vision and Pattern Recognition 

2, 432. 

Baker, C.I., Keysers, C., Jellema, T Wicker, B., & Perrett, D.I. (2000) Coding 

of spatial position in the superior temporal sulcus of the macaque. Curr 

Psychol Lett Behav Brain Cogn 1, 71–87. 

Batista, A.P., Buneo, C.A., Snyder, L.H., & Andersen, R.A. (1999) Reach 

plans in eye-centered coordinates. Science 285, 257. 

Baumann, M.A., Fluet, M-C., & Scherberger, H. (2009) Context-specific 

grasp movement representation in the macaque anterior intraparietal area. J 

Neurosci. 29, 6436-48. 

Beardsworth, T. & Buckner, T. (1981) The ability to recognize oneself from a 

video recording of one's movements without seeing one's body'. Bull. 

Psychon. Soc. 18, 19-22. 

Beintema, J.P., & Lappe M. (2002) Perception of biological motion without 

local image motion. Poc. Nat.l Acad. Sci. U S A. 99, 5661-5663. 

Beintema, J.A., Georg, K., & Lappe, M. (2006) Perception of biological 

motion from limited-lifetime stimuli. Percept Psychophys. 68, 613-24. 

Bertenthal, BI, & Pinto, J. (1994). Global processing of biological motions. 

Psychol. Science, 5, 221-225. 

Billard, A. & Mataric, M. (2001) Learning human arm movements by 

imitation: Evaluation of a biologically-inspired connectionist architecture. 

Robotics and Autonomous Systems 941 , 1–16. 



        53 

Blake, A. &  Isard, M. (1998) Active Contours. Springer, Berlin. 

Blakemore, S.J. & Frith, C. The role of motor contagion in the prediction of 

action. Neuropsychologia 43, 260-67. 

Bobick, A. (1997) Movement, activity, and action: The role of knowledge in 

the perception of motion. Phil. Trans. Royal Society London B 352, 1257-

1265. 

Bonaiuto, J., Rosta, E., & Arbib, M. (2007) Extending the mirror neuron 

system model, I. 

audible actions and invisible grasps. Biol Cybern 96, 9–38. 

Born, R.T. (2000) Center-surround interactions in the middle temporal visual 

area of the owl monkey. J Neurophysiol. 84, 2658-2669. 

Buneo, C.A. Jarvis, M.R., Batista, A.P., & Andersen, R.A. (2002) Nature 416, 

632-36. 

Cadieu, C., Kouh, M., Pasupathy, A., Connor, C.E., Riesenhuber, M. & 

Poggio, T. (2007) A model of V4 shape selectivity and invariance. J 

Neurophysiol. 98, 1733-50. 

Calvo-Merino, B., Grèzes, J., Glaser, D.E., Passingham, R.E., & Haggard P. 

(2006) Seeing or doing? Influence of visual and motor familiarity in action 

observation. Curr Biol. 16, 1905-10.  

Casile, A. & Giese M.A. (2005) Critical features for the recognition of 

biological motion. J Vis. 5, 348-360. 



54           
    
Chafee, M.V., Averbeck, B.B., & Crowe, D.A. (2007) Representing spatial 

relationships in posterior parietal cortex: single neurons code object-

referenced position. Cerebral Cortex 17, 2914-32. 

Chouchourelou, A., Matsuka, T., Harber, K. & Shiffrar, M. (2006) The visual 

analysis of emotional actions. Soc Neurosci. 1, 63-74. 

Cutting, J.E., & Kozlowski, L.T. (1977) Recognizing friends by their walk: 

Gait perception without familiarity cues. Bull. Psychon. Soc. 9, 353-356. 

Cutting, J.E., Moore, C., & Morrison, R. (1988) Masking the motions of 

human gait. Percept. Psychop. 44, 339-347. 

Demiris, Y., & Simmons, G. (2006) Perceiving the unusual: temporal 

properties of hierarchical motor representations for action perception. 

Neural Netw 19, 272–84. 

DiCarlo, J.J. & Maunsell, J.H.R (2003) Anterior inferotemporal neurons of 

monkeys engaged in object recognition can be highly sensitive to object 

position. J Neurophysiol 89, 3246-78. 

Dinstein, I., Hasson, U., Rubin, N., & Heeger, D.J. (2007) Brain areas 

selective for both observed and executed movements. J Neurophysiol. 98, 

1415-27. 

Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992): 

Exp. Brain Res. 91, 176-180.  

Dittrich, W.H. (1993) Action categories and the perception of biological 

motion. 

Perception. 22, 15-22. 



        55 

Dittrich, W.H., Troscianko, T., Lea, S.E., & Morgan, D. (1996) Perception of 

emotion from dynamic point-light displays represented in dance. 

Perception 25, 727-738 

Dollar, P., Rabaud, V., Cottrell, G., & Belongie, S. (2005). Behavior 

recognition via sparse spatio-temporal features. Proc. Intl. Conf. on 

Computer Communications and Networks, 65-72. 

Efros, A., Berg, A., Mori, G., & Malik, J. (2003). Recognizing action at a 

distance. In Proc. IEEE Intl. Conf. on Computer Vision, Vol. 2, pp. 726–

734. 

Eifuku, S., & Wurtz, R.H. (1998) Response to motion in extrastiate area 

MSTl: center-surround interactions. J. Neurophysiol. 80, 282-296. 

Erlhagen,W., Mukovskiy, A., & Bicho, E. (2006) A dynamic model for action 

understanding and goal-directed imitation. Brain Research 1083, 174–88. 

Escobar, M., Masson, G., Vieville, T., & Kornprobst, P. (2009) Action 

Recognition Using a Bio-Inspired Feedforward Spiking Network. Int J 

Comput Vis 82, 284–301. 

Fagg, A.H. & Arbib, M.A. (1998) Modeling parietal-premotor interactions in 

primate control of grasping. Neural Netw. 11, 1277-1303. 

Felleman D.J., & van Essen, D.C. (1991) Distributed hierarchical processing 

in the primate visual cortex.  Cereb. Cortex 1, 1-49. 



56           
    
Ferrari, P.F., Bonini, L., & Fogassi, L. (2009) From monkey mirror neurons 

to primate behaviours: possible 'direct' and 'indirect' pathways. Philos 

Trans R Soc Lond B Biol Sci. 364, 2311-23. 

Filder, S., Boben, M., & Leonardis, A. (2008) Similarity-based cross-layered 

hierarchical representation for object categorization. Proc. IEEE Conf on 

Comp Vision and Pattern Recognition 1. 

Fleischer, F., Casile, A., & Giese, M.A. (2008) Neural model for thevisual 

recognition of goal-directed movements. In: Kurkova V, Neruda R , 

Koutnik J (eds.): Intl Conf Artificial Neural Networks, Part II , LNCS 5164, 

939-948. 

Fleischer, F., Casile, A., & Giese, M.A. (2009a) Bio-inspired approach for the 

recognition of goal-directed hand actions. In: Jiang, X. & Petkov (eds.): 

Intl. Conf on Comp Anal of Images and Patterns, LNCS 5702, 714-722. 

Fleischer, F., Casile, A., & Giese, M.A. (2009b) View-independent 

recognition of grasping actions with a cortex-inspired model. Proc. IEEE 

Intl Conf on Humaniod Robots, Paris, (in press). 

Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. 

(2005) Parietal lobe: from action organization to intention understanding. 

Science 29, 662-67. 

Freedberg, D. & Gallese, V. (2007) Motion, emotion and empathy in esthetic 

experience. Trends Cogn Sci. 11, 197-203. 

Frith, C.D. & Singer, T. (2008) The role of social cognition in decision 

making. Philos Trans R Soc Lond B Biol Sci. 363, 3875-86.  



        57 

Fukushima, K. (1980) Neocognitron. A self-organizing neural network model 

for a mechanism of pattern recognition unaffected by shift in position. Biol. 

Cybern. 36, 193-202. 

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996) Action 

recognition in the premotor cortex. Brain 119, 593-609. 

Gallese, V. & Goldman, A. (1998) Mirror neurons and the simulation theory 

of mindreading, Trends Cogn. Sci. 2, 493–501. 

Gardner, E.P., Babu, K.S., Reitzen, S.D., Ghosh, S., Brown, A.S., Chen, J., 

Hall, A.L., Herzlinger, M.D., Kohlenstein, J.B., & Ro, J.Y. (2007) 

Neurophysiology of prehension. III. Representation of object features in 

posterior parietal cortex of the macaque monkey. J Neurophysiol. 98, 3708-

3730. 

Gavrila, D.M. (1999) The visual analysis of human movement: a survey. 

Comp. Vis. Image Underst. 73,  82-98.  

Giese, M.A. (1999) Dynamic neural field theory for motion perception. 

Kluwer Academic Publishers, Dordrecht, Netherland. 

Giese. M.A. (2004) Neural model for biological movement recognition.  In: 

L.M. Vaina, S. A. Beardsley, S. Rushton (eds.): Optic Flow and 

Beyond.Kluwer, Dordrecht. 

Giese, M.A., & Poggio, T. (2003) Neural mechanisms for the recognition of 

biological movements. Nat. Rev. Neurosci.  4, 179-192. 

Goodale, M.A., & Milner, A.D. (1992) Separate visual pathways for 

perception and action. Trends Neurosci. 15, 97–112. 



58           
    
Gorelick, L., Blank, M., Shechtman, E., Irani, M., & Basri, R. (2007). Actions 

as Space-Time Shapes. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 29, 2247-2253. 

Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for 

sensorimotor learning and control. Neural Comp. 13, 2201–2220. 

Hoffman, D.D. & Flinchbaugh, B.E. (1982) The interpretation of biological 

motion. Biological Cybernetics, 42,195-204. 

Hubel, D.H., & Wiesel, T.N. (1962) Receptive fields, binocular interaction 

and functional architecture in the cat's visual cortex.  J. Physiol (Lond.) 

160, 106-154. 

Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J.C., & 

Rizzolatti, G. (2005) Grasping the intentions of others with one's own 

mirror neuron system. PLoS Biol. 3, e79.  

Jastorff, J., Giese, M.A. (2004) Time-dependent hebbian rules for the learning 

of templates for motion recognition. In: Ilg, U., Bülthoff, H.H., Mallot, 

H.A.M. (eds.): Dynamic Perception Infix, Berlin 5, 151-156 

Jastorff, J. & Orban, G.A. (2009) Human functional magnetic resonance 

imaging reveals separation and integration of shape and motion cues in 

biological motion processing. J Neurosci. 29, 7315-29. 

Jellema, T. & Perrett, D.I. (2006) Neural representations of perceived bodily 

actions using a categorical frame of reference. Neuropsychologia 44, 

1535–1546. 



        59 

Jhuang, H., Serre, T., Wolf, L., & Poggio, T. (2007). A biologically inspired 

system for action recognition. In Proc. IEEE Intl.Conf. on Computer 

Vision, 1–8. 

Johansson, G. (1973) Visual perception of biological motion and a model for 

its analysis. Perc. Psychophys. 14, 201-211. 

Kiebel, S.J., Daunizeau, J., & Friston, K.J. (2008) A hierarchy of time-scales 

and the brain. PLoS Comput Biol 4, e1000209. 

Kilner, J.M., Paulignan, Y., & Blakemore, S.J. (2003) An interference effect 

of observed biological movement on action. Curr Biol 13, 522-25. 

Kilner, J.M., Neal, A., Weiskopf, N., Friston, K.J., & Frith, C.D. (2009) 

Evidence of mirror neurons in human inferior frontal gyrus. J Neurosci. 29, 

10153-9. 

Kjellström, H., Romero, J., Martínez, D., & Kragić, D. (2008) Simultaneous 

visual recognition of manipulation actions and manipulated objects. Proc. 

IEEE Europ Conf on Computer Vision , 336–349. 

Kouh, M. & Poggio, T. (2008) A canonical neuronal circuit for cortical 

nonlinear operations. Neural Comp. 20, 1427-1451. 

Kravitz, D.J., Vinson, L.D., & Baker, C.I. (2008) How position dependent is 

visual object recognition? Trends Cogn Sci. 12, 114-22.  

Lange, J. & Lappe, M. (2006). A model of biological motion perception from 

configural form cues. J.  Neurosci., 26, 2894-2906. 

Lange, J., Georg, K., & Lappe, M. (2006) Visual perception of biological 

motion by form: a template-matching analysis. J Vis 6, 836-49. 



60           
    
Laptev, I. & Lindeberg, T. (2003) Space-time interest points. Proc. IEEE Intl. 

Conf on Computer Vision, 432–439. 

Lehky, S.R., Peng, X., McAdams, C.J., & Sereno, A.B. (2008) Spatial 

Modulation of Primate Inferotemporal Responses by Eye Position. PLoS 

ONE 3, e3492. 

Logothetis, N.K., Pauls, J. & Poggio, T. (1995) Shape representation in the 

inferior temporal cortex of monkeys. Curr. Biol. 5, 552-563. 

Logothetis, N.K., & Sheinberg, D.L. (1996) Visual object vision. Ann. Rev. 

Neurosc. 19, 577-621. 

Marr, D. & Vaina, L.M.V (1982) Representation and recognition of the 

movements of shapes. Proceedings of the Royal Society of London B, 214, 

501-524. 

Mel, B, & Fiser, J. (2000) Minimizing binding errors using learned 

conjunctive features. Neural Comp. 9, 779-796. 

Metta, G., Sandini, G., Natale, L., Craighero, L., & Fadiga, L. (2006) 

Understanding mirror neurons: a bio-robotic approach. Interaction Studies, 

special issue on Epigenetic Robotica 7, 197–232. 

Moeslund, T. B. & Granum, G. (2001) A survey of computer vision-based 

human motion capture. Comp. Vis. Image Underst., 81, 231-268. 

Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). 

Selectivity for the shape, size, and orientation of objects for grasping in 

neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580-2601. 



        61 

Mutch, J. & Lowe, D.G. (2006) Multi-class object recognition with sparse, 

localized features. Proc. IEEE Conf. on Comp. Vision and Pattern 

Recognition 1, 11-18. 

Nelissen, K., Vanduffel, W. & Orban, G.A. (2006) Charting the Lower 

Superior Temporal Region, a New Motion-Sensitive Region in Monkey 

Superior Temporal Sulcus. J. Neurosci. 26, 5929 –5947. 

Niyogi, S.A & Adelson, E.H. (1994) Analyzing and recognizing walking 

figures in XYT. Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition, 1994, 469–474. 

Oram, M.W., & Perrett, D.I. (1996) Integration of form and motion in the 

anterior temporal polysensory area (STPa) of the macaque monkey. J. 

Neurophys. 76, 109-129. 

Orban, G.A., Janssen, P., & Vogels, R. (2006) Extracting 3D structure from 

disparity. Trends Neurosci 29, 466-473. 

Oztop, E. & Arbib, M.A. (2002) Schema design and implementation of the 

grasp-related mirror neuron system. Biol Cybern. 87, 116-140. 

Oztop, E., Kawato, M., & Arbib, M. (2006) Mirror neurons and imitation: 

computationally guided review. Neural Netw 19, 254–71. 

Perrett, D.I., Smith, P.A., Mistlin, A.J., Chitty, A.J., Head, A.S., Potter, D.D., 

Broennimann, R., Milner, A.D., & Jeeves, M.A. (1985) Visual Analysis of 

body movements by neurones in the temporal cortex in the macaque 

monkey: a preliminary report. Behav. Brain Res. 16, 153-170. 



62           
    
Perrett, D.I., Harries, M.H., Bevan, R., Thomas, S.,  Benson, P.J.,  Mistlin, 

A.J., Chitty, A.J., Hietanen, J.K., & Ortega, J.E. (1989) Frameworks of 

analysis for the neural representation of animate objects and actions. J Exp 

Biol 146, 87–113. 

Perrett, D.I. & Oram, M.W. (1993) Neurophysiology of shape processing. 

Img. Vis. Comput. 11, 317-333. 

Perrett, D.I., Xiao, D., Barraclough, N.E., Keysers, C. & Oram, M. (2009) 

Seeing the future: Natural image sequences produce “anticipatory” 

neuronal activity and bias perceptual report. Quart. J. Exp. Psych. 62, 

2081-2104. 

Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G.A. (2005) Specificity of 

regions processing biological motion. Eur J Neurosci., 2864-75.  

Poggio, T. & Edelmann, S. (1990) A network that learns to recognize three-

dimensional objects. Nature 343, 263-266. 

Pollick, F.E., Lestou, V., Ryu, J., & Cho, S.B. (2002) Estimating the 

efficiency of recognizing gender and affect from biological motion. 

Vision Res. 42, 2345-55. 

Pouget, A. & Sejnowski, T.J. (1997) Spatial transformations in the parietal 

cortex using basis functions. J Cogn Neurosci 9, 223-37. 

Prevete, R.,  Tessitore, G.,  Santoro, M., & Catanzariti, E. (2008) A 

connectionist architecture for view-independent grip-aperture computation. 

Brain Research 1225, 133–145. 



        63 

Prinz, W. (1997) Perception and action planning. Europ. J. Cogn. Psychol. 9, 

129-154. 

Riesenhuber, M., & Poggio, T. (1999) Hierarchical models of object 

recognition. Nat. Neurosc. 2, 1019-1025. 

Rizzolatti, G., Fogassi L., & Gallese, V. (2001) Neurophysiological 

mechanisms underlying the understanding and imitation of action. Nat. 

Rev. Neurosc. 2, 661-670.  

Rizzolatti, G. & Craighero, L. (2004) The mirror-neuron system. Annu. Rev. 

Neurosci. 2004. 27, 169–92 

Rizzolatti, G. & Fabbri-Destro, M. (2008) The mirror system and its role in 

social cognition. Curr Opin Neurobiol 18, 179-84. 

Rodriguez-Sanchez, A.J., Simine, E., & Tsotsos, J.K. (2007) Attention and 

visual search. Int J Neural Syst. 17, 275-88. 

Rolls, E.T., & Milward, T. (2000) A model of invariant object recognition in 

the visual system: learning rules, activation functions, lateral inhibition, 

and information-based performance measures” Neural Comput. 12, 2547-

2572. 

Sakata, H., Taira, M., Kusunoki, M., Murata, A., Tanaka, Y. (1997) The TINS 

Lecture: The parietal association cortex in depth perception and visual 

control of hand action. Trends Neurosci 20, 350-357. 

Saleem, K.S., Suzuki, W., Tanaka, K., & Hashikawa, T. (2000) Connections 

between anterior inferotemporal cortex and superior temporal sulcus 

regions in the macaque monkey. J. Neurosci. 20, 5083-5101. 



64           
    
Salinas, E. & Abbott, L.F. (1995) Transfer of coded information from sensory 

to motor networks. J Neurosci 75, 6461-74. 

Sauser, E.L. & Billard, A.G. (2006) Parallel and distributed neural models of 

the ideomotor principle: an investigation of imitative cortical pathways. 

Neural Netw 19, 285–98. 

Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to 

motor learning by imitation. Phil Trans R Soc London. Series B, Biol Sci, 

358, 537–547. 

Schindler, K. & van Gool, L. (2008). Combining densely sampled form and 

motion for human action recognition. In: Rigoll, Gerhard (ed.): Proc. 

DAGM symposium, LNCS 5096, 122-131. 

Schütz-Bosbach, S. & Prinz, W. (2007) Perceptual resonance: action-induced 

modulation of perception. Trends in Cogn. Sci. 11, 349-55. 

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007) Robust 

object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal 

Mach Intell 29 (2007) 411-26. 

Sigala, R., Serre, T., Poggio, T., & Giese, M.A. (2005):  Learning features of 

intermediate complexity for the recognition of biological motion. Proc. Intl 

Conf on Artificial Neural Networks, LNCS 3696, 241-246. 

Singer, J.M. & Sheinberg, D.L. (2010): Temporal cortex neurons encode 

articulated actions as slow sequences of integrated poses. J. Neurosci. 30, 

3133–3145. 



        65 

Smith, A.T., & Snowden, R.J. (1994) Visual Detection of Motion. London: 

Academic Press, 1994. 

Stenger, B. Thayananthan, A., Torr, P., & Cipolla, R. (2006) Model-based 

hand tracking using a hierarchical bayesian filter. IEEE Trans Pattern Anal 

and Mach Intell 28, 1372–1384. 

Tani, J., Ito, M., & Sugita, Y. (2004) Self-organization of distributedly 

represented multiple behavior schemata in a mirror system: reviews of 

robot experiments using rnnpb. Neural Netw 17, 1273–89. 

Tarr M.J., & Bülthoff, H.H. (1998) Image-based object recognition in man, 

monkey and machine. Cognition 67, 1-20.  

Thirkettle, M., Benton, C.E. & Scott-Samuel, N.E. (2009) Contributions of 

form, motion and task to biological motion perception. J Vision 9, 28.1-11. 

Thornton, I. M., Pinto J., & Shiffrar, M. (1998). The visual perception of 

human locomotion. Cognitive Neuropsychology, 15, 535-552. 

Thurman, S.M. & Grossman, E.D. (2008) Temporal "Bubbles" reveal key 

features for point-light biological motion perception. J Vis 8, 28.1-11.  

Tsutsui, K-I., Taira, M., & Sakata, H. (2005) Neural mechanisms of three-

dimensional vision. Neurosci Res 51, 221-29. 

Umiltà, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & 

Rizzolatti, G. (2001) I know what you are doing: a neurophysiological 

study. Neuron 31, 155-65. 



66           
    
Ungerleider, L. G., & Mishkin, M. (1982) Two cortical visual systems. In: 

D.J. Ingle, M.A. Goodale, & R.J.W. Mansfield, R.J.W. (Eds.), Analysis of 

Visual Behavior (pp. 549-586) Cambridge: MIT Press.  

Vangeneugden, J., Pollick, F., & Vogels, R. (2009) Functional differentiation 

of macaque visual temporal cortical neurons using a parametric action 

space. Cereb Cortex. 19, 593-611. 

Webb, J.A. & Aggarwal, J.K. (1982) Structure from motion of rigid and 

jointed objects. Artif. Intell. 19,  107-130. 

Wilson, M. & Knoblich, G. (2005) The case of motor involvement in 

perceiving conspecifics. Psychol. Bull. 131, 460-73. 

Wolpert, D.M. & Ghahramani, Z. (2000) Computational principles of 

movement neuroscience. Nat Neurosci. 3, 1212-1217. 

Wolpert D.M., Doya K. & Kawato M. (2003). A unifying computational 

framework for motor control and social interaction. Philosophical 

Transactions of the Royal Society, 358. 593–602.  

Xiao, D,K., Raiguel, S., Marcar, V., Koenderink, J., & Orban, G.A. (1995) 

Spatial heterogeneity of inhibitory surrounds in the middle temporal visual 

area. Proc. Natl. Acad. Sci. USA 92, 11303-11306. 

Xie, X., & Giese, M.A. (2002) Nonlinear dynamics of direction-selective 

nonlinear neural media. Phys Rev E Stat Nonlin Soft Matter Phys. 65, 

051904. 



        67 

Zhang, K. (1996) Representation of spatial orientation by the intrinsic 

dynamics of the head-direction cell ensemble: a theory. J Neurosci 16, 

2112-26. 

 
Figure Captions 

 
Figure 4.1 Recognition of actions based on predictions generated by forward 

models. (a) During action execution a controller generates a motor command 

that depends on the desired motor state and an error signal, which results from 

a comparison of the true sensory input and the sensory input that is predicted 

from the motor command by an internal forward model. In absence of any 

perturbations the predicted perceptual state matches exactly the sensory 

feedback, so that the error signal disappears.  (b) During action observation no 

real motor output is generated. However, in the context of an internal 

simulation, motor commands might be generated that are mapped onto 

predicted sensory outcomes by forward models. By computation of the 

difference between the predicted sensory outcomes and the true sensory 

information it is possible to determine the dynamic state that would 

correspond to the actually observed movement, and to determine the type of 

the observed action by comparing the prediction errors between multiple 

available controller models. (Modified from Wolpert et al. 2003). 

 
Figure 4.2 Overview of the basic architecture for the recognition of non-goal-

directed body movements with two pathways for the processing of form and 

optic flow information. Abbreviations indicate potentially corresponding 
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areas in monkey and human cortex (V: visual cortex, M(S)T: medial 

(superior) temporal cortex, KO: kinetic-occipital area, IT: inferior temporal 

cortex, EBA: extrastriate body area, FBA: fusiform body area, IPL: inferior 

parietal lobule, F5: premotor cortex). 

 
Figure 4.3 Overview of the extended architecture for the recognition of goal-

directed actions. (a) Neural hierarchy for the recognition of effector and 

object shapes. (b) Mechanisms for the integration of the information about the 

goal object and the effector (hand). 

 

Figure 4.4 Classification performance of the model for real video stimuli. (a) 

Classification performance of the snapshot neurons for precision vs. power 

grip presented with the same view. A model including the neural mechanism 

for sequence selectivity (red curve) was tested against a version of the model 

without sequence selectivity (blue curve). (b) Testing with multiple views. 

Classification performance for a power grip from the top vs. a power grip 

from the side presented with 12 different views that were disjoint from the 

training views. Dashed curves signify standard error over repeated 

simulations.  

 

Figure 4.5: Position invariance for precision vs. power grip. The responses of 

neurons at the highest hierarchy level selective for power grips are shown 

during presentation of power grip stimuli (blue bars) and of precision grip 
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stimuli (green bars) for nine different positions of the stimuli within the visual 

field (indicated by red dots in the insets). 

 

Figure 4.6 Activity of the action-selective neurons (see Figure 4.3). Thin 

lines indicate the activity of the view-dependent detectors and thick lines the 

one of the corresponding view-independent detectors.  Panels (a) and (c) show 

responses to a stimulus showing a power grip from the top, and panels (b) and 

(d) the responses for a power grip from the side.  Panels (a) and (b) show the 

response for the neural modules that have been trained with a top grip (‘top 

grip neurons’), and panels (c) and (d) the responses of the neurons from the 

model trained with the side grip (‘side grip neurons’). Thick lines indicate the 

responses of the corresponding view-independent action detectors. Test views 

were different from the views that were used to train the model.  

 

Figure 4.7 Selectivity for the correct relationship between effector and object. 

Responses are shown for an action-selective detector (selective for power 

grip) for a normal grasping stimulus, a mimicked action (the hand not 

reaching the object), and stimuli where either the hand or the object was 

missing. Error bars indicate standard deviation over ten independent 

simulations. The inset shows corresponding neurophysiological data from an 

electrophysiological experiment by Perrett et al. (1989). 
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