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Abstract. Dynamic faces are essential for the communication of hu-
mans and non-human primates. However, the exact neural circuits of
their processing remain unclear. Based on previous models for cortical
neural processes involved for social recognition (of static faces and dy-
namic bodies), we propose two alternative neural models for the recog-
nition of dynamic faces: (i) an example-based mechanism that encodes
dynamic facial expressions as sequences of learned keyframes using a re-
current neural network (RNN), and (ii) a norm-based mechanism, rely-
ing on neurons that represent di↵erences between the actual facial shape
and the neutral facial pose. We tested both models exploiting highly
controlled facial monkey expressions, generated using a photo-realistic
monkey avatar that was controlled by motion capture data from mon-
keys. We found that both models account for the recognition of normal
and temporally reversed facial expressions from videos. However, if tested
with expression morphs, and with expressions of reduced strength, both
models made quite di↵erent prediction, the norm-based model showing
an almost linear variation of the neuron activities with the expression
strength and the morphing level for cross-expression morphs, while the
example based model did not generalize well to such stimuli. These pre-
dictions can be tested easily in electrophysiological experiments, exploit-
ing the developed stimulus set.

Keywords: Dynamic facial expressions · recognition · neural network
model · norm-referenced encoding · visual cortex

1 Introduction

Dynamic facial expressions are central for the social communication of humans
and non-human primates. In spite of this importance, the underlying detailed
local neural circuits remain unclear. Single cells responding to dynamic facial
expressions have been investigated so far only in very few studies in the superior
temporal sulcus (STS) [1, 2], and the amygdala [3]. Advances in the technology
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for stimulus generation, e.g the use of highly controlled dynamic avatars, in com-
bination with the simultaneous recording of large numbers of neurons promise
to clarify the underlying mechanisms. For the guidance of such experiments it
seems useful to develop theoretical hypotheses about possible underlying neural
computations and circuit structures for the recognition of dynamic faces.

We propose here two alternative models for the recognition of dynamic faces.
Both models are derived from previous neural models that have provided good
agreement with electrophysiological data from single-cell recordings in visual
areas, either on the recognition of face identity in area IT [4, 5] or for the repre-
sentation of head actions in area F5 of the macaque monkey [6, 7]. From these
previous models we derive two alternative mechanisms for the recognition of dy-
namic facial expressions. We test these models with a highly controlled stimulus
set of monkey facial expressions. We demonstrate that both models are feasi-
ble and derive predictions that can be used to distinguish the two models in
electrophysiological experiments.

After a brief review of related work, we introduce in the following the model
architectures and our simulation studies, followed by a discussion of implications
for electrophysiological experiments.

2 Related work

Most physiologically-inspired models on the processing of faces investigate the
recognition of static faces (e.g. [8]). Biologically-inspired models have been pro-
posed for the recognition of dynamic bodies [9–11]. It seems likely that compu-
tational principles might shared between the processing of di↵erent social stim-
ulus classes. Beyond this, a variety of conceptual models have been developed
in psychology and the funcional imaging literature, e.g. the separate processing
of static and dynamic aspects of faces [12], or the idea of a face space [13] and
a norm-referenced ancoding of static faces relative to an average face (review
see [14]). This work sets important general constraints for the modelling, but
does not provide ideas about specific neural circuits. Dominant approaches on
dynamic face processing in computer vision are based on deep recurrent neural
networks [15], but typically not related to details of the brain.

3 Model architectures

Our model mimics the basic architecture of the visual pathway, from the retina
up to higher-levels that contain neurons that are selective for dynamic facial
expressions. Figure 1 A shows an overview of the model architecture. In the
following, we first describe the mid-level feature extraction hierarchy, which is
identical for both model versions. Then we discuss separately for the two models
the circuits including the face-selective neurons that implement di↵erent com-
putational principles.
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Fig. 1: Model architectures. A) Mid-level feature extraction hierarchy (common to both
models). B) Example-based circuit, and C) Norm-based circuit for the recognition of
one dynamic expression.

3.1 Shape feature extraction hierarchy

The first levels of our model hierarchy extract mid-level form features, similar to
neurons area V4 in the macaque visual cortex. While more sophisticated models
have been proposed for this part of the visual pathway (e.g. [16]), we applied here
a highly simplified implementation that was su�cient for our stimuli since we
wanted to focus on higher-level face-selective circuits, whose behavior is to some
degree invariant against the chosen mid-level feature dictionary that is used as
input. The feature extraction hierarchy of our model can be easily exchanged
against more elaborate models from the literature. Our feature extraction hierar-
chy consists of 3 layers. The face region in our stimulus movies was down-sampled
200 x 200 pixels and converted to gray level for further processing.

First layer. The first layer consists of even and uneven Gabor filters with
8 di↵erent orientations, and 3 di↵erent spatial scales that di↵ered by

p
2. A

constant was subtracted from these filter functions to make them mean-free.
Filter responses for the three spatial scales were computed on rectangular grids
with 49, 69, and 97 points spaced equally along the sides of the image region.
This layer models orientation-selective neurons such as V1 simple cells [17].

Second layer. The second layer models V1 complex cells and makes the re-
sponses of the first layer partially position- and spatial phase-invariant. For this
purpose, the thresholded responses of the even and the uneven Gabor filters with
the same orientation preference and spatial scale were pooled within a spatial
region (receptive field) using a maximum operation. The receptive fields of these
pooling neurons comprised 3 neurons in the precvious layer (respectively one
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for the largest spatial scale). The receptive fields centers of the pooling neurons
were again positioned in quadratic grids with 15, 10 and 14 grid points for the
three spatial scales.

Third layer. The third layer of our model extracts informative mid-level fea-
tures, combining a simple heuristic feature selecting algorithm with a Principal
Components Analysis (PCA). These two steps can be implemented by a sparsely
connected simple linear feed-forward neural network. For feature selection, we
simply computed the standard deviation over all input signals from the previous
layer (after thresholding) over our training set. Only those features were retained
for which this variability measure exceeded a certain threshold. This eliminated
uninformative features that are zero or constant over the training set. In total
we retained 17 % of the original features.

The vector of the selected features was then subject to a PCA analysis. The
activity of the selected features was projected to a subspace that corresponds to
97% of the total variance for the training set. The resulting (thresholded) PCA
features provide the input to the expression-selective neurons that form the next
layer of our model.

3.2 Expression-selective neurons

The next layers of the model were implemented in two di↵erent ways, imple-
mennting two di↵erent computational principles. The first mechanism is based
on the recognition of temporal sequences of learned snapshots from face movies
by a recurrent neural network (RNN), referred to as example-based mechanism.
The second mechanism is based on the concept of norm-referenced encoding, as
discovered in the context of the representation of static images of faces [14]. The
dynamic face is encoded by neurons that represent the di↵erence between the
actual face picture and a norm picture, in this case the shape of a neutral face.
The details of the two implementation are described in the following.

Example-based model. For this model the recognition is accomplished by
using a RNN that detects temporal sequences of learned keyframes from facial
expressions (Fig. 1 B). This type of mechanism has been shown to reproduce
data from cortical neurons during the recognition of body actions (e.g. [9, 7]. It
has been show to reproduce activity data from action selective neurons in the
STS and in premotor cortex.

Expressions were represented by a total of 50 keyframes. The structure of
the example-based encoding circuit for one expression is shown in Fig. 1 B.
The output from the previous layer, signified as vector z, is providing input to
Radial Basis Function units (RBFs) that were trained by setting their centers to
the vectors zpn for the individual expression frames of expression p. The actual
outputs of these neurons are then given by: fp

k = exp((|z � zpk|2/(2�2). (For
su�cent selectivity to distinguish temporally distant keyframes we chose � =
0.1.). The outputs of the RBFs were thresholded with a linear threshold function.
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The output signals of the RBFs were used as input of a recurrent neural
network, or discretely approximated neural field [18], that obeys the dynamics:

⌧ u̇p
n(t) = �up

n(t) +
X

m

w(n�m)[up
m(t)]+ + spn(t)� h� wcI

p
c (t) (1)

The activity up
n(t) is the activity of the neuron in the RNN that encodes keyframe

n of the facial expression type p. The resting level constant was h = 1, and the
time constant ⌧ = 5 (using an Euler approximation). The lateral interaction was
asymmetric, inducing a network dynamics that is sequence selective. It was given
by the function w(n) = A exp(�(n�C)2/ (2�2

ker))�B with the parameters A =
1, B = 0.5, and C = 3.5. A cross inhibition term leads to competition between
the neural subnetworks that encode di↵erent expressions. It was defined by the
equation: Ipc (t) =

P
0 6=n[u

p0

m(t)]+ with the cross-inhibition weight wc = 0.5.
The input signals spn(t) was computed from the output signals of the RBF

units that recognize the key frames of expression p. These can be described by
the vector bp = [bp1, ..., b

p
50]

T for the actual time step. The components of this
vector were smoothed along the neuron axis using a Gaussian filter with a width
(standard deviation) of 2 neurons.

The neurons in this RNN are called snapshot neurons in the following. They
are expression-selective and fire phasically during the evolution of the expres-
sions. In addition, they are sequence-selective, i.e. they fire less strongly if the
same keyframe is presented as part of temporally inverted sequence.

The thresholded output signals of the snapshot neurons belonging to the same
expression are integrated by an expression neuron that computes the maximum
over all snapshot neuron outputs (cf. Fig. 1 B). These neurons have a time
constant ⌧v = 4, so that their outputs can be describe by the dynamics:

⌧v v̇p(t) = �vp(t) +
X

n

[up
n(t)]+ (2)

The expressions neuron thus fire continuously during the evolution of the corre-
sponding expression p, but only weakly during the other ones.

Norm-based model. The second mechanism for the recognition of dynamic
expressions is inspired by results on the norm-referenced encoding of face identity
by cortical neurons in area IT [4]. We have proposed before a neural model that
accounts for these electrophysiological results on the norm-referenced encoding
[5]. We demonstrate here that the same principles can be extended to account
for the recognition of dynamic facial expressions.

The circuit for norm-based encoding is shown in Fig.1 C. The idea of norm-
referenced encoding is to represent the shape of faces in terms of di↵erences
relative to a reference face, where we assume that this is the shape of a neutral
expression. In our model postulates a special class of Reference Neurons that
represent the output feature vector zp0 from the mid-level feature hierarchy for
a neutral face picture (e.g. at the beginning of the movies). Representations of
this pattern could be established by learning or robust averaging, for example
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exploiting the fact that the neutral expression is much more frequent than the
intermediate keyframes of dynamic expressions. The prediction from this mech-
anism is thus the existence of a sub-population of neurons that represent the
neutral expression in terms of its multi-dimensional feature vector. The output
activities of these neurons is signified by the reference vector r = zp0.
A physiologically plausible way for the encoding of the vectorial di↵erence d(t) =
z(t)� r between the actual feature input z(t) and the reference vector r can be
based on neurons with the tuning function:

fp = kdk

0

@
dT

kdknp + 1

2

1

A
⌫

(3)

This expression defines the output activity of a directionally tuned neuron whose
maximum firing rate depends linearly on the norm of the di↵erence vector d.
The unit vector np defines the preferred direction of the neuron in a multi-
dimensional space. The term in the parenthesis is a direction tuning function
that is maximal if the di↵erence vector is aligned with this preferred direction
np. The positive parameter ⌫ determines the width of the direction tuning in
multi-dimensional space. As shown by [5], using ⌫ = 1 results in reasonable fits
of neural data from area IT. In this special case if k.k signifies the 1-norm, this
tuning function can be implemented by a simple two-layer network with linear
rectifying units:

fp = 0.5 (1+ np)
T [d]+ + 0.5(1� np)

T [�d]+ (4)

It has been shown in [5] that the tuning fits the properties of face-selective
neurons in area IT. We call this type of neuron face neuron in our model. The
activity of these neurons is expression-selective and increases towards the frame
with the maximum expression strength. However, these neurons also respond to
static pictures of faces.

A very simple way to generate from the responses fp(t) responses that are
selective for dynamically changing expressions is to add a simple output network
that consists of di↵erentiator neurons that respond phasically to increasing or
decreasing changes of the activity fp(t), and to sum the output signals from these

neurons to obtain the expression neuron output: vp(t) =
dfp
dt + d(�fp)

dt (cf. Fig. 1
C). In fact, such di↵erentiating neurons have been observed and the dependence
of this behavior on channel dynamics has been analyzed in detail (e.g. [19]).

4 Results

In the following, we describe briefly the applied stimulus set, and then show a
number of simulation results that show that both models are suitable to classify
dynamic facial expressions, while they result in fundamentally di↵erent predic-
tion of the behavior of single neurons, especially for morphed stimuli.
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Fig. 2: Monkey Avatar Head. Movies of the three training expressions Fear, Lip Smack-
ing and Angry, and morph (50 % - 50 %) between Fear and Angry.

4.1 Stimulus Generation

In order to test our model we developed a novel highly-realistic monkey head
model that was animated using motion capture data from monkeys. The head
model was based on an MRI scan of a monkey. The resulting surface mesh model
was regularized and optimized for animation. A sophisticated multi-channel tex-
ture model for the skin and fur animation were added. The face motion was
based on motion capture (VICON), exploiting 43 markers that were placed on
the face of a rhesus monkey that executed di↵erent facial expressions. By inter-
action with an experimenter, three expressions (prototypes) were recorded: Fear,
Lip Smacking and a Threat/Angry expression (Figure 2). Exploiting a muscle-
like deformable ribbon structure, the motion capture data was transferred to the
face mesh, resulting in highly realistic face motion. A recent study shows that
the generated facial expressions are perceived by animals as almost as realistic
as videos of real monkey expressions, placing the method on the ’good side’ of
the uncanny valley (Siebert et al., in press).

In addition to the original expression, we generated morphs between them
exploiting a Bayesian motion morphing algorithm [20]. In addition, expressions
with reduced strength were generated by morphing the original expression with
a neutral facial expressions. This allowed us to study the behavior of the models
for gradual variations between the expressions, and for expressions with reduced
strength. Expressions always started with neutral, evolved to a maximally ex-
pressive frame, and went back to the neutral face. Natural durations of the
expressions were between 2 and 3s. All expressions were time-normalized to 50
frames for our analysis of the model. For the experiments reported here, we used
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the prototype expressions, and expressions with reduced strength that included
25-50-75-100 % of each prototype. In addition, morphs between the expressions
Fear and Angry with contributions of 0-25-50-75-100 % of the Fear prototype
were generated.
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Fig. 3: Activity of model neurons. Presentation of the prototypical expressions: Fear,
Lip Smacking and Angry expressions. Upper panels shows data for the original, and
the lower panels the reversely played expression movies. Norm-based model: A, E)
Face neurons, and B, F) Expression Neurons. Example-based model: C, G) Snapshot
neurons, and D,H) Expression Neurons.

4.2 Simulation results

We first tested whether the models can classify the prototypical expressions
that were used for training correctly. Fig. 3 A shows the responses of the face
neurons that are selective for individual expressions. They show a bell-shaped
increase and decrease of activity that is selective for the encoded expression.
Panel B shows the response of the corresponding expression neurons, which is
also selective for the individual expressions. Opposed to the face neurons, these
neurons remain silent during the presentation of static pictures showing the
extreme frames of the expressions. Panels C and D show the responses for the
example-based model. The activity of the snapshot neurons for the three test
expressions is shown in Fig 3 C. Only the frames of the learned expression cause a
travelling pulse solution in the corresponding part of the RNN, while the neurons
remain silent for the other test patterns. This induces a high selectivity of the
responses of the corresponding expression neurons (panel D).

We tested the model also with temporally reversed face sequences in order to
investigate the sequence selectivity. The results are shown in Fig. 3 E-H. Due to
the high temporal symmetry of facial expressions (backwards-played expressions
look very similar, but not identical to forward-played expressions), the responses
of the face neurons in the norm-based model and also the one of the expression
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neurons are very similar the responses in panels A-D. Most prominently, the
responses of the snapshot neurons show now a travelling pulse that runs in
opposite direction. The small di↵erences between forward and backwards movie
result in slightly lower amplitudes of the expression neuron responses, especially
for the example-based model (panel H), but interestingly also for the norm-based
model.

Interesting di↵erential predictions emerged when the models were tested with
the stimuli of variable expression strength, which were generated by morphing
between the prototypes and neutral facial expressions. Here the Face neurons
as well as the Expression neurons in the norm-based model show a gradual,
almost linear variation of their activations with the expression level (Fig. 4 A
and B. Strongly deviating from this behavior, the snapshot neurons do not gen-
erate a travelling activity pulse for all stimuli with reduced expressivity levels.
Only for the expression level 75 % some activity emerges for the snapshot neu-
rons that represent frames that deviate from the neutral expression. As conse-
quence, the expression neurons do not show significant activity for the condi-
tions with reduced expression strength. This behavior could not be improved by
making the snapshots less selective in order to support generalization to more
dissimilar patterns. It was not possible with this model to obtain pattern- and
sequence-selectivity together with generalization to patterns with reduced ex-
pression strength.

The norm-based model showed also very smooth an gradual generalization
between di↵erent expressions. This is shown in Fig. 4 E-F that shows the re-
sponses of the Face and the Expression neurons for morphs between the Fear
and the Angry expression. Both neuron types show a very smooth change of their
activity with the morph level, which is antagonistic for the neurons with selec-
tivity for the two expressions. Also in this case, the example-based model failed
to show generalization to stimuli with intermediate morph levels (not shown).

5 Conclusions

Based on previous models that are grounded in electrophysiological data, we
have proposed two alternative mechanisms for the processing of dynamic facial
expressions. Both mechanisms are consistent with physiological data from other
cortical structures that process social stimuli, static faces and dynamic bodies.
Both models were able to recognize monkey expressions from movies. Also the
recognition of reversed movies of facial expressions could be accounted for by
both models. Testing the models with morphed expressions, and expressions
with reduced expression strength, however, resulted in fundamentally di↵erent
predictions. The norm-based model showed smooth and almost linear variation of
the activity patterns with the expression strength and the morph level, while the
example-based model had problems to generalize to such morphed patterns. In
addition, the models make specific predictions about the activity dynamics of the
di↵erent postulated neuron classes. For example, an example-based mechanism
predicts a traveling pulse of activity, as observed e.g. in premotor cortex [6]. The
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Fig. 4: Upper panels: Neuron activities for stimuli with di↵erent expressivity levels
(25-50-75-100%). Lower panels: Neuron activities for cross-expression morphs of the
neurons of the norm-based model. A) Normalised activity of Face neurons, and B)
maximum activity of Expression neurons as function of the expressivity level for the
norm-based model. C) Normalised activities of snapshot neurons, and D) maximum
activity of Expression neurons in example-based model. E) Normalised activity of Face
neurons, and F) maximum activity of Expression neurons as function of the morph
level form morphs between Fear and Angry expressions.

norm-based mechanism predicts a linear tuning of the activity with the distance
from the neutral reference pattern in morphing space for the Face neurons, etc.

Obviously, the proposed models are only a very simple proof-of-concept
demonstration of the discussed encoding principles that need a much more thor-
ough investigation. First, the initial stages of the models have to be replaced
by more powerful deep recognition networks that result in mid-level feature dic-
tionaries that make recognition more robust against variations in lighting, tex-
ture, etc. Second, the proposed encoding principles have to be tested on much
larger sets of dynamic face stimuli, including specifically human facial expres-
sions, to test whether the proposed coding principles can be extended to more
challenging recognition problems. Only this will allow to verify whether the pro-
posed norm-based encoding has computational advantages to the more common
example-based encoding that underlies many popular RNN-based technical so-
lutions. In addition, such extended models need to be tested against optic flow-
based recognition models [21]. Predictions from such models then can be tested
against the measured behavior of recorded dynamic face-selective neurons. Even
it its present simple form, however, our model makes some interesting predic-
tions that can help to guide the search for the tuning properties of neurons in
areas (patches) with neurons that are selective for dynamic facial expressions.
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Likewise, the developed stimulus sets will likely be useful to characterize the
computational properties of such neurons.
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