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Abstract— The control of the collective behavior of multiple
interacting agents is a challenging problem in robotics and
autonomous systems design. Such behaviors can be character-
ized by the dynamic interaction between multiple locomoting
bipeds with highly nonlinear articulation dynamics. The anal-
ysis and design of the stability properties of such complex
multi-component systems is a largely unsolved problem. We
discuss a first approach to this problem exploiting concepts
from Contraction Theory, a recent framework for the analysis
of the stability of complex nonlinear dynamical systems. We
demonstrate the application of this framework to groups of
humanoid agents interacting collectively in different ways,
requiring different types of control rules for their propaga-
tion in space and their articulation dynamics. We illustrate
the framework based on a learning-based realtime-capable
architecture for simulation of the kinematics of propagating
bipeds, suitable for the reproduction of natural locomotion
trajectories and walking styles. Exploiting central theorems
from Contraction Theory and nonlinear control, we derive
conditions guaranteeing the global exponential stability of the
formation of the coordinated multiagent behavior. In addition,
we demonstrate that the same approach permits to derive
bounds that guarantee minimum convergence speeds for the
formation of ordered states for collective behaviors of multiple
humanoid agents.

Index Terms— walking bipeds, crowd steering, coordination,
distributed control, self-organization, stability.

I. INTRODUCTION

Human movements and the collective behavior of inter-
acting characters in crowds can be described by nonlinear
dynamical systems, e.g.: [1], [2]. The design of stability
properties of multiagents systems is a challenging task in
control theory and robotics. Especially for humanoids agents,
the reason is the complexity of the dynamical systems that
are required for the accurate modelling of human body move-
ments, and even more for the interaction between multiple
interacting agents.

Path planning for multi-agent systems has been studied
extensively in robotics, primarily for cooperative tasks of
multiple robots with relatively simple platform dynamics.
The approach of the centralized planners, which is designing
the motion of all agents through space-time [3], has expo-
nential computational complexity in the number of agents.
And it is not appropriate for large groups, where agents
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optimize for personal goals (like mutual avoidance behavior)
in a presence of global common navigation goal. In contrast
to this approach, decoupled planning strategies, where agents
plan their behaviors individually, require priority schemes to
fix conflicts between the different plans [4].

Another alternative is to use local planners for obstacle
avoidance and goal-directed navigation, but to control glob-
ally the homogeneous interaction forces among agents in
order to re-coordinate them by self-organization after the
accomplishment of the individual subgoals [5], [6]. Such re-
coordination is required to realize controllable and steerable
crowds that pursue common global navigational tasks.

Some works on self-organization in systems of dynam-
ically coupled agents have been inspired by observations
in biology. These works show that coordinated behavior
of large groups of agents, such as flocks of birds, can be
modelled as emergent behavior arising from the dynamical
coupling between interacting agents, without requiring an
external central mechanism ensuring coordination [7], [8],
[9], [10]. These biological observations have inspired a
variety of approaches in robotics. Group coordination and
cooperative control have been studied in the context of
the navigation of groups of vehicles [11], and also with
the objective goal to generate collective behavior by self-
organization, including spontaneous adaptation to perturba-
tions or changes in the number of agents [12]. In addition, the
dynamics of interactive group behavior has been extensively
studied in the field of computer animation [13], [14], [15],
[16]. Specifically, some recent studies have tried to learn
interaction rules from the behavior of real human crowds
[17], [18], [19]. Other recent work has tried to optimize
interaction behavior in crowds by exhaustive search of the
parameter space exploiting computer simulations by defini-
tion of appropriate cost functions (e.g. [20]). However, most
of the existing approaches for the control of group motion in
computer graphics have not taken into account the effects of
articulation during locomotion on the control dynamics [21],
[22], [23].

Distributed control theory has started to study the temporal
and spatial self-organization of crowds of agents by design of
appropriate dynamic interactions, typically assuming rather
simple and often even linear agent models (e.g. [24], [25],
[26]). However, humanoid agents are characterized by highly
complex kinematic and even dynamic properties, c.f. [27],
[5]. This raises the question how approaches for the stability
design of such complex dynamical systems can be developed.

This paper presents some first attempts to address this
problem for simplified, but highly nonlinear dynamical
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models of human agents. We propose Contraction Theory
([28], [29]) as a central framework that makes such stability
problems tractable even for agents with multiple coupled
levels of control. Contraction Theory provides a useful
tool specifically for modularity-based stability analysis and
design [30], [31].

Opposed to classical stability analysis for nonlinear sys-
tems, Contraction Theory permits to utilize stability results
for system components to derive conditions that guarantee
the stability of the overall system. In this way, Contraction
Theory is suitable for the derivation of conditions for the
uniform exponential convergence of complex nonlinear sys-
tems.

In this paper, our new approach is demonstrated for a
number of simple scenarios including interactions between
multiple locomoting humanoid agents. These basic scenarios
are implementing simultaneous control of distance and gait
phase of the interacting bipeds.

Our work is based on a learning-based architecture that
approximates complex human behavior by relatively simple
nonlinear dynamical systems, which was developed pre-
viously [32], [33]. Consistent with related approaches in
robotics [34], [35], [36], and related approaches motivated
from biology [37], [38], [39], [40], this method generates
complex movements by the combination of the learned
movement primitives [41], [32]. The resulting system archi-
tecture is rather simple, making it suitable for a mathematical
treatment of dynamical stability properties.

The paper is structured as follows: The structure of the
animation system is sketched in section II. The dynamics
underlying navigation control is described in section III.
Subsequently, in section IV we introduce some basic ideas
from Contraction Theory. The major results of our stability
analysis and some demos of their applications to the control
of crowds are described in section V, followed by the
conclusions.

II. SYSTEM ARCHITECTURE

Our investigation of the collective dynamics of crowds
was based on a learning-based animation system [32] (see
Fig. 1). Based on motion capture data, we learned spatio-
temporal components of sets of different gait types, applying
an algorithm for translation-invariant blind source separation
[41]. The obtained source components were generated online
by nonlinear dynamical systems, whose state dynamics was
given by limit cycle oscillators. The mappings σj between
the stable solutions of the nonlinear oscillators and the
required source functions were learned by application of
kernel methods. Each biped agent is modelled by a single
Andronov-Hopf oscillator [32], whose solution is mapped
nonlinearly onto three source signals. These signals were
then superimposed with different linear weights wij and
phase delays τij in order to generate the joint angle tra-
jectories ξi(t) (see Fig. 1). By blending of the mixing
weights and the phase delays, intermediate gait styles were
generated. This allowed us to simulate specifically walking
along paths with different curvatures, changes in step length

Fig. 1. Architecture of the simulation system.

and walking style. Interactive behavior of multiple agents
can be modelled by making the states of the oscillators and
the mixing weights dependent on the behavior of the other
agents. Such couplings result in a highly nonlinear system
dynamics.

For the scenarios discussed in this paper, the propagation
dynamics of the bipeds was controlled, while the agents
walk along parallel straight lines towards distant goal points.
For the mathematical stability analysis presented in the
following, we neglected the influence of the dynamics of the
control of heading direction, focusing on the order formation
scenarios when the agents’ heading directions are already
aligned. In this case, the positions of the agents can be
described by a single position variable z(t). (See Fig. 2).
An extension of the developed analysis framework including
the control of the heading direction is in progress.

III. CONTROL DYNAMICS

Beyond the control of heading direction, the analyzed
scenarios of order formation in a group of bipeds require
the control of the following variables: 1) phase within the
step cycle, 2) step length, and 3) gait frequency.

The dynamics of each individual agent was modelled
by an Andronov-Hopf oscillator with constant equilibrium
amplitude (r∗i = 1). For appropriate choice of parameters,
these nonlinear oscillators have a stable limit cycle that
corresponds to a circular trajectory in phase space [42].

In polar coordinates and with the instantaneous eigenfre-
quency ω this dynamics is given by: ṙ(t) = r(t)

(
1− r2(t)

)
,

φ̇(t) = ω. Control affects the instantaneous eigenfrequency
ω of the Andronov-Hopf oscillators and their phases φ, while
the first equation guarantees that the state stays on the limit
cycle (r(t) = 1,∀t).

The position zi of each agent along the parallel paths (see
Fig. 2) fulfills the differential equation żi(t) = φ̇ig(φi),
where the positive function g determines the propagation
speed of the agent depending on the phase within the gait
cycle. This nonlinear function was determined empirically
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Fig. 2. Crowd coordination scenario. Every agent i is character-
ized by its position zi(t), the phase φi(t) and the instantaneous
eigenfrequency ωi(t) = φ̇i(t) of the corresponding Andronov-Hopf
oscillator, and a step-size scaling parameter µi(t).

from a kinematic agent model. By integration of this prop-
agation dynamics one obtains zi(t) = G(φi(t) + φ0

i ) + ci,
with an initial phase shift φ0

i and some constant ci depending
on the initial position and phase of biped i, and with the
monotonously increasing function G(φi) =

∫ φi

0
g(φ)dφ,

assuming G(0) = 0. Three control rules described:
I) Control of step frequency: A simple form of speed

control is based on making the frequency of the oscillators
φ̇i dependent on the behavior of the other agents. Let ω0 be
the equilibrium frequency of the oscillators without interac-
tion. Then a simple controller is defined by the differential
equation

φ̇i(t) = ω0 −md

N∑
j=1

Kij [zi(t)− zj(t)− dij ] (1)

The constants dij specify the stable pairwise relative dis-
tances in the formed order for each pair (i, j) of agents.
The elements of the link adjacency matrix K are Kij = 1 if
agents i and j are coupled and zero otherwise. In addition, we
assume Kii = 0. The constant md > 0 defines the coupling
strength.

With the Laplacian Ld of the coupling graph, which is
defined by Ld

ij = −Kij for i 6= j and Ld
ii =

∑N
j=1 Kij , and

the constants ci = −
∑N

j=1 Kijdij the last equation system
can be re-written in vector form:

φ̇ = ω01−md(LdG(φ + φ0) + c) (2)

II) Control of step length: Step length was varied
by morphing between gaits with short and long steps. A
detailed analysis shows that the influence of step length on
the propagation could be well captured by simple linear
rescaling. If the propagation velocity of agent i is vi(t) =
żi(t) = φ̇i(t)g(φi(t)) = ωi(t)g(φi(t)) for the normal step
size, then the velocity for modified step size was well
approximated by vi(t) = żi(t) = (1 + µi)ωi(t)g(φi(t))
with the morphing parameter µi. The range of morphing
parameters was restricted to the interval −0.5 < µi < 0.5,
where this linear scaling law was fulfilled with high accuracy.
The empirically estimated propagation velocity in heading
direction, dependent on gait phase, is shown in Fig.3 for
different values of the step length morphing parameter µi.

Fig. 3. Propagation velocity for 10 different values the of step
length morphing parameter µ = [0 . . . 0.25] dependent on gait
cycle phase φ(t) and ω(t) = 1. The vertical axis is scaled in
order to make all average velocities equal to one for µ = 0
(lowest thick line). This empirical estimates are well approximated
by (1 + µ)g(φ(t)).

Using the same notations as in equation (1), this motivates
the definition of the following dynamics that models the
influence of the step length control on the propagation speed:

ż = ωg(φ + φ0)(1−mz(Lzz + c)) (3)

In this equation Lz signifies the Laplacian of the relevant
coupling graph, and mz the strength of the coupling. For
uncoupled agents (mz = 0) this equation is consistent with
the the definition of propagation speed that was given before.

III) Control of step phase: By defining separate controls
for step length and step frequency it becomes possible to dis-
sociate the control of position and step phase of the bipeds.
Specifically, it is interesting to introduce a controller that
results in phase synchronization between different characters.
This can be achieved by addition of a simple linear coupling
term to equation (1), written in vector form:

φ̇ = ω01−md(LdG(φ + φ0) + c)− kLφφ (4)

with k > 0 and the Laplacian Lφ. (All sums or differences
of angular variables were computed by modulo 2π).

The mathematical results derived in the following section
apply to subsystems of the complete system dynamics that
is given by equations (3) and (4). In addition, simulations
are presented for the full system dynamics.

IV. CONTRACTION THEORY

Dynamical systems describing the behavior of autonomous
agents are essentially nonlinear. In contrast to the linear dy-
namical systems, a major difficulty of the analysis of stability
properties of nonlinear is that the stability properties of parts
usually do not transfer to composite systems. Contraction
Theory [28] provides a general method for the analysis of
essentially nonlinear systems, which permits such a transfer,
making it suitable for the analysis of complex systems
with many components. Contraction Theory characterizes the
system stability by the behavior of the differences between
solutions with different initial conditions. If these differences
vanish exponentially over time, all solutions converge to-
wards a single trajectory, independent from the initial states.
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In this case, the system is called globally asymptotically
stable. For a general dynamical system of the form

ẋ = f(x, t) (5)

assume that x(t) is one solution of the system, and x̃(t) =
x(t)+δx(t) a neighboring one with a different initial condi-
tion. The function δx(t) is also called virtual displacement.
With the Jacobian of the system J(x, t) = ∂f(x,t)

∂x it can
be shown [28] that any nonzero virtual displacement decays
exponentially to zero over time if the symmetric part of the
Jacobian Js = (J + JT )/2 is uniformly negative definite,
denoted as Js < 0. This implies that it has only negative
eigenvalues for all relevant state vectors x. In this case, it can
be shown that the norm of the virtual displacement decays
at least exponentially to zero, for t → ∞. If the virtual
displacement is small enough, then

˙δx(t) = J(x, t)δx(t)

implying through d
dt ||δx(t)||2 = 2δxT (t)Js(x, t)δx the

inequality: ||δx(t)|| ≤ ||δx(0)|| e
R t
0 λmax(Js(x,s)) ds. This im-

plies that the virtual displacements decay with a convergence
rate (inverse timescale) that is bounded from below by
the quantity ρc = − supx,t λmax(Js(x, t)), where λmax(.)
signifies the largest eigenvalue. With ρc > 0 all trajectories
converge to a single solution exponentially in time [28].

Contraction analysis can be applied also to hierarchi-
cally coupled systems [28]. Consider a composite dynamical
system with two components, where the dynamics of the
first subsystem is not influenced by the dynamics of the
second one. Such system is called hierarchically coupled.
If the first subsystem does not depend on the second, its
state exponentially converges to attractor solution if the
symmetrized Jacobian of the first subsystem is negative
definite. Then, in case of bounded interaction, the first
subsystem introduces an exponentially decaying disturbance
for the second subsystem. In this case, (see [28] for details of
proof), the uniformly negative definite symmetrized Jacobian
of the second subsystem implies exponential convergence of
its state to an exponentially decaying ball in phase space.
The whole system is then globally exponentially convergent
to a single trajectory.

Many systems are not contracting with respect to all
dimensions of the state space, but show convergence with
respect to a subset of dimensions. Such behavior can be
mathematically characterized by partial contraction [31],
[33]. The underlying idea is to construct an auxiliary system
that is contracting with respect to a subset of dimensions
(or submanifold) in state space. The major result is the
following:

Theorem 1: Consider a nonlinear system of the form

ẋ = f(x,x, t) (6)

and assume that the auxiliary system

ẏ = f(y,x, t) (7)

is contracting with respect to y uniformly for all relevant
x. If a particular solution of the auxiliary system verifies

Fig. 4. a. Symmetric coupling with coupling constant k, Ni

specifying the set of neighbors of i; b.-d. star, chain, ring coupling
schemes.

a specific smooth property, then trajectories of the original
system (6) verify this property exponentially. The original
system is then said to be partially contracting. [31].
A ’smooth property’ is a property of the solution that
depends smoothly on space and time, such as convergence
against a particular solution or a properly defined distance
to a subspace in phase space. The proof of the theorem
is immediate noticing that the observer-like system (7) has
y(t) = x(t) for all t ≥ 0 as a particular solution. Since
all trajectories of the y-system converge exponentially to a
single trajectory, this implies that also the trajectory x(t)
verifies this specific property with exponential convergence.

It is thus sufficient to show that the auxiliary system is con-
tracting in order to prove the convergence to a subspace. Let
us assume that system has a flow-invariant linear subspace
M, which is defined by the property that trajectories starting
in this space always remain in it for arbitrary times (∀t :
f(M, t) ⊂ M). If matrix V is an orthonormal projection
onto M⊥, then sufficient condition for global exponential
convergence to M is: VJsVT < 0, where smaller sign
indicates that this matrix is negative definite (see [29], [33]).

V. EXEMPLARY RESULTS

We derived contraction bounds for three scenarios that
correspond to control dynamics with increasing levels of
complexity.

1) Control of step phase without position control: The
simplest case is a control of the phase within the step cycle of
the walkers without simultaneous control of the position of
the agents. Such simple control already permits to simulate
interesting behaviors, such as soldiers synchronizing their
step phases [33], [Demo1]. The underlying dynamics is given
by (4) with md = 0. For N identical dynamical systems, with
symmetric identical coupling gains k this dynamics can be
written

ẋi = f(xi) + k
∑
j∈Ni

(xj − xi), ∀i = 1, . . . , N (8)

where Ni defines the index set specifying the neighborhood
in the coupling graph, i.e. the other subsystems or agents
that are coupled with agent i (see Fig.4 for examples).

This type of symmetric coupling, where the interaction
forces between subsystems depend only on the differences
of the phase variables is called diffusive coupling. In this
case, the Laplacian matrix of the coupling scheme is given
by L = LG

⊗
Ip, where p is the dimensionality of the

1www.uni-tuebingen.de/uni/knv/arl/avi/huma/video0.avi
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individual sub-systems, and where
⊗

signifies the Kro-
necker product. The Laplacian of the coupling graph is
the matrix LG. The system then can be rewritten com-
pactly as ẋ = f(x, t)− kLx with the concatenated phase
variable x = [xT

1 , ...,xT
n ]T . The Jacobian of this system

is J(x, t) = D(x, t)− kL, where the block-diagonal matrix
D(x, t) has the Jacobians of the uncoupled components
∂f
∂x (xi, t) as entries.

The dynamics has a flow-invariant linear subspace M
that contains the particular solution x∗1 = · · · = x∗n. For this
solution all state variables xi are identical and thus in
synchrony. In addition, for this solution the coupling term
in equation (8) vanishes, so that the form of the solution
is identical with the solution of the uncoupled systems
ẋi = f(xi). If V is a projection matrix onto the subspace
M⊥, then, the sufficient condition for convergence toward
M is V(D(x, t)− kL)sVT < 0, [29], [33], where smaller
sign indicates that the matrix is negative definite. This
implies

λmin

(
V(kL)sVT

)
= kλ+

L > sup
x,t

λmax (Ds)

with λ+
L being the smallest non-zero eigenvalue of sym-

metrical part of the Laplacian Ls. The maximal eigen-
value for the individual oscillator is supx,t λmax

(
∂f
∂x (x, t)

)
.

The sufficient condition for global stability of the over-
all system is given by k > supx,t λmax

(
∂f
∂x (x, t)

)
/λ+

L .
This implies the following minimum convergence rate:
ρc = − supx,t λmax(V(D(x, t)− L)sVT ).

For the special case of (4) with md = 0 this implies the
sufficient contraction conditions k > 0 and (Lφ)s ≥ 0.

Different topologies of the coupling graphs result in dif-
ferent stability conditions, since for example λ+

L = 2(1 −
cos(2π/N)) for symmetric ring coupling, and λ+

L = N for
all-to-all coupling. (N is the number of agents.) See [31] and
[33] for details.

In order to validate these theoretical bounds we com-
puted empirical convergence rates ρexper from our simulated
system. The rates were obtained by analyzing the time
courses of the virtual displacements ||δx|| ∼ e−ρexpert

and approximating them by exponential convergence. The
norm of the virtual displacement ||δx|| was approximated
by the angular dispersion R̂ = (1 − 1

N |
∑

j eiφj |) 1
2 of the

phases φj of Andronov-Hopf oscillators (c.f. [43]), averaged
over many simulations with random initial conditions. After
an initial time interval (offset time), the dispersion shows
exponential decay with time. Convergence rates of this decay
were estimated by linear regression from the logarithm of
dispersion against time, averaged over many trials.

The comparison results for different coupling topologies
and for different numbers of agents are shown in Fig.5 for
the case of linear diffusive couplings of Andronov-Hopf
oscillators in Euclidian space [33]. Figure 5a) shows the
dependence between the coupling strengths k and the con-
vergence rate ρexper of the angular dispersion in the scenario
of phase synchronization, estimated from simulations in the
regime of the exponential convergence. As derived from the

Fig. 5. a. The relationship between convergence rate and coupling
strength k for different types of coupling graphs; b. Slopes of
this relationship as function of the number N of Hopf oscillators,
comparing simulation results (indicated by asterisk symbols near to
the lines) and derived from the theoretical bounds [33].

theoretical bound, the convergence rate varies linearly with
the coupling strength. In the case of three oscillators the
ring coupling is equivalent with all-to-all coupling. Figure
5b) shows the slope dρexper(k)/dk of this linear relationship
as function of N , the number of oscillators in the network.
We find a close similarity between the theoretically predicted
relationship (dashed curves) and the results from the simu-
lation (indicated by the stars). In addition, it is evident that
for all-to-all coupling the convergence rate increases with the
number of oscillators, while for chain or ring coupling the
convergence speed decreases with the number of oscillators
(for fixed coupling strength). These results show in particular
that the proposed theoretical framework is not only suitable
for proving asymptotic stability, but also for guaranteeing the
convergence speed of the system dynamics.

2) Speed control by variation of step frequency: The
dynamics of this system is given by equations (2) and (3)
for mz = 0. Assuming arbitrary initial distances and phase
offsets for different propagating agents, implying G(φ0

i ) =
ci, ci 6= cj , for i 6= j, we redefine dij as dij − (ci − cj)
in (1), and accordingly redefine c in (2). Assuming this
control dynamics, and two agents i and j that follow a
leading agent, their phase trajectories converge to a single
unique trajectory only if ci = cj . This is a consequence
of the one-to-one correspondence between gait phase and
position of the agent that is given by equation (2). In all
other cases the trajectories of the followers converge to one-
dimensional, but distinct, attractors in phase-position space
that are uniquely defined by ci. These attractors correspond
to a behavior where the follower’s position oscillates around
the position of the leader. Below we provide the sufficient
conditions for the global stability of such attractor states.

For the analysis of contraction properties we regard an
auxiliary system obtained from (2) by keeping the terms
which are only dependent on φ: φ̇ = −mdLdG(φ + φ0).
The symmetrized Jacobian of this system projected to the
orthogonal compliment of flow-invariant linear subspace
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φ∗1 + φ0
1 = . . . = φ∗N + φ0

N determines whether this
system is partially contracting. By virtue of a linear change
of variables the study of the contraction properties of this
system is equivalent to study the contraction properties of
the dynamical system φ̇ = −mdLdG(φ) on trajectories
converging towards its flow-invariant manifold, the linear
subspace of φ∗1 = . . . = φ∗N .

In order to derive an asymptotic stability condition, we
consider the following auxiliary system, corresponding to a
part of (2): φ̇ = −mdLdG(φ). The Jacobian of this system
is given by J = −mdLdDg , where (Dg)ii = g(φi) > 0
is a strictly positive diagonal matrix. Exploiting diagonal
stability theory [44], we introduce the Lyapunov function:
W (φ) =

∑
i D̃ii

∫ φi

0
G(τ)dτ > 0, where D̃ > 0 is some

positive diagonal matrix and where our function G(φ) with
G′(φ) > 0 satisfies: G(φ)φ > 0, G(0) = 0. The time
derivative of this Lyapunov function on the trajectories of our
auxiliary dynamical system is: Ẇ (φ) = −mdG(φ)T (LdD̃+
D̃(Ld)T )G(φ). The condition Ẇ (φ) ≤ 0 is fulfilled if
one can determine a full rank matrix D̃ > 0, such that
(LdD̃ + D̃(Ld)T ) ≥ 0. If Ld = (Ld)T ≥ 0 one can
choose D̃ = I. This guarantees Ẇ (φ) = −mdG(φ)T (Ld +
(Ld)T )G(φ) ≤ 0 for md > 0 and Ẇ (φ) = 0 only if
G(φ) is in the nullspace of Ld, where φ∗1 = . . . = φ∗N .
In this case, the auxiliary system is globally asymptotically
stable and its state converges to an attractor with φ∗1 =
. . . = φ∗N for any initial condition assuming (Ld)s ≥ 0
and md > 0. Thus the sufficient conditions for asymptotic
stability are satisfied for all types of symmetric diffusive
couplings with positive coupling strength. For the case of
asymmetric coupling graphs with more general structure
including negative feedback links some results on asymptotic
stability have been provided in [45].

The sufficient conditions for (exponential) partial
contraction towards flow-invariant subspace are:
VJs(φ)VT = −mdVB(φ)VT < 0, introducing
B(φ) = LdDg + Dg(Ld)T and V signifying the projection
matrix onto the orthogonal complement of the flow-invariant
linear subspace. For diffusive coupling with symmetric
Laplacian the linear flow-invariant manifold φ∗1 = . . . = φ∗N
is also the null-space of the Laplacian. In this case, the
eigenvectors of the Laplacian that correspond to positive
eigenvalues can be used to construct the projection matrix
V. For md > 0 the contraction conditions are thus satisfied
if VB(φ)VT = V(LdDg + Dg(Ld)T )VT > 0 for any
diagonal matrix Dg > 0.

Next we prove the exponential contraction conditions
for the particular case of symmetrical all-to-all coupling.
In this case Ld = NI − 11T ≥ 0, where I is iden-
tity matrix of size N . Since V1 = 1T VT = 0, we
obtain 1

2V(LdDg + Dg(Ld)T )VT = NV(Dg)VT >
0 for Dg > 0. A lower bound for the contraction
rate is computed from the projected symmetrized Jacobian
VJs(φ)VT = −md

2 VB(φ)VT . This results in the guaran-
teed contraction rate ρmin = md minφ (g(φ))λ+

Ld , where for
all-to-all symmetric coupling λ+

Ld = N .
Next we regard two additional important cases:

a) In order to reduce oscillatory fluctuations of the po-
sitions of the follower around the leader (see above), the
dynamics of the former can be extended by a low pass
filtering: ż(t) = −αz(t) + G(φ(t)). By introduction of a
linear coordinate transformation, bounds for the positive filter
constant α can be derived that guarantee globally stable
behavior of the system. The dynamics of the system with
low-pass filtering is given by{

φ̇ =−mdLdz

ż =− αz + G(φ) + c

This system can be further transformed linearly by in-
troduction of the new coordinates y = −(md/α)Ldz and
x = y + φ. In these new coordinates the Jacobian of the

system is J(φ) = −md/α

[
LdDg −LdDg

LdDg (α2/md)I− LdDg

]
.

The symmetrized Jacobian does not contain the off-diagonal
block terms. This implies that two conditions are sufficient
to guarantee that the system is partially contracting: The
first condition, which is identical to the case without fil-
tering, is given by (md/α)VBVT > 0. This is fulfilled
if g(φ) > 0, md > 0, α > 0, and (Ld)s ≥ 0
for all-to-all symmetric couplings. The second condition is
α2/md > 1

2λmax(VBVT ) with (Ld)s ≥ 0. This inequality
results in a sufficient lower bound for the filter coefficient
α >

√
md maxφ (g(φ))λmax((Ld)s).

An illustration of these stability bounds if given by the
[Demo2]; that shows convergent behavior of the bipeds when
the contraction condition md > 0, (Ld)s ≥ 0 is satisfied for
all-to-all coupling. [Demo3] shows the divergent behavior of
a group when this condition is violated when md < 0.

b) The same proof can be extended for nonlinear control
rules. In this case the eigenfrequency is given by a nonlinear
modification of the control rule in eq. (1), for agent i
coupled to agent j as: ωi = ω0 + mdh(zj − zi + dij),
where the saturating nonlinear function h could be given,
for example by h(z) = 1/[1 + exp(−γz)] with γ > 0.
This nonlinear function limits the range of admissible speeds
for the controller. Using the same notations as above, the
dynamics of a single follower that follows a leader at position
P (t) is given by: φ̇(t) = ω0 + mdh(P (t)−G(φ(t)) + c).
The Jacobian of this dynamics Js = −mdh

′g(φ) < 0 is
negative, which follows from md > 0, g(φ) > 0 and taking
into account h′(z) = dh(z)/dz > 0,∀z, what guarantees
contraction.

Again this dynamics can be extended for N agents,
resulting in the nonlinear differential equation system:
φ̇i(t) = ω0 −md

∑N
j=1 Kijh(G(φi)−G(φj) + dij),∀i.

The Jacobian of the system is: J(φ) = −mdLd(φ)Dg ,
where Ld

ij(φ) = −Kijh
′(G(φi) − G(φj) + dij),

Ld
ii(φ) =

∑N
j 6=i Kijh

′(G(φi)−G(φj) + dij), dii = 0,
(Dg is defined as before). Furthermore, the even function
h′(z) > 0 implies that the Laplacian Ld(φ) is symmetric
diagonally dominant and it stays positive semidefinite for

2www.uni-tuebingen.de/uni/knv/arl/avi/huma/video1.avi
3www.uni-tuebingen.de/uni/knv/arl/avi/huma/video2.avi
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any positive Kij > 0, by Gershgorin’s Theorem [46]. This
implies that the system is asymptotically stable, its solutions
converging to an attractor. The analysis of exponential
convergence requires further steps that exceed the scope of
this paper.

3) Stepsize control combined with a control of step
phase: The dynamics is given by equations (3) and (4) with
md = 0. This dynamics defines a hierarchically coupled
system (Section IV, [28]). The dynamics for z(t) given
by equation (3) is partially contracting in case of all-to-
all coupling for any bounded external input φ(t), if mz >
0, Lz ≥ 0 and ω(t) > 0. These sufficient contraction
conditions can be derived from the requirement of the
positive-definiteness of the symmetrized Jacobian applying a
similar technique as above. The Jacobian of this subsystem
is J(φ,ω) = −mzDz

g(φ, ω)Lz , with the diagonal matrix
(Dz

g(φ, ω))ii = ωig(φi + φ0
i ) > 0 that is positive definite

since g(φ) > 0 and ω > 0. This subsystem is (exponentially)
contracting and its relaxation rate is determined by ρz =
mz minφ (g(φ))λ+

Lz (in the case of all-to-all coupling) for
any input from the dynamics of φ(t) eq. (4). The last
dynamics is contracting when (Lφ)s ≥ 0 and its relaxation
rate is ρφ = kλ+

Lφ , where λ+
Lφ is the smallest non-zero

eigenvalue of (Lφ)s. The effective relaxation time of the
overall dynamics is thus determined by the minimum of the
contraction rates ρφ and ρz .

Demonstrations of this control dynamics satisfying the
contraction conditions are shown in [Demo4], without control
of step phase, and in [Demo5], with control of step phase.

4) Advanced scenarios: A simulation of a system with
stable dynamics with both types of speed control (via step
size and step frequency) and step phase control is shown
in [Demo6]. Using the same dynamics, a larger crowd
simulated with the open-source animation engine Horde3d
[47] is shown in [Demo7]. In this scenario, dynamic obstacle
avoidance and control of heading direction were activated in
an initial time interval for unsorting of a formation of agents.
In a second time interval navigation is deactivated, and speed
and position control according to the discussed principles
takes over. [Demo8] demonstrates a large synchronizing
crowd with 36 avatars. The development of stability bounds
and estimates of relaxation times for even more advanced
scenarios including multiple control levels of navigation is
the goal of ongoing work.

VI. CONCLUSIONS

For the example of a learning-based system for the
simulation of locomoting groups, we have demonstrated
first examples of an application of Contraction Theory for
the analysis and the design of stability and convergence
properties of collective behaviors in animated crowds. The
approximation of the essential dynamic properties of the

4www.uni-tuebingen.de/uni/knv/arl/avi/huma/video3.avi
5www.uni-tuebingen.de/uni/knv/arl/avi/huma/video4.avi
6www.uni-tuebingen.de/uni/knv/arl/avi/huma/video5.avi
7www.uni-tuebingen.de/uni/knv/arl/avi/huma/video6.avi
8www.uni-tuebingen.de/uni/knv/arl/avi/huma/video7.avi

humanoid agents is critical to make the systems accessible
for the analysis of stability. Obviously, future work has to
extend this work to more complex scenarios and platform
dynamics. A generalization of this approach to other prob-
lems in robotics, such as the control of goal-directed behavior
and an extension for non-periodic movements seems possible
[48], [49], [50]. Such extensions form the core of the planned
future work.
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