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Abstract. The detection and categorization of animate motions is a
crucial task underlying social interaction and decision-making. Neural
representations of perceived animate objects are built into cortical area
STS which is a region of convergent input from intermediate level form
and motion representations. Populations of STS cells exist which are
selectively responsive to specific action sequences, such as walkers. It
is still unclear how and to which extent form and motion information
contribute to the generation of such representations and what kind of
mechanisms are utilized for the learning processes. The paper develops
a cortical model architecture for the unsupervised learning of animated
motion sequence representations. We demonstrate how the model auto-
matically selects significant motion patterns as well as meaningful static
snapshot categories from continuous video input. Such keyposes corre-
spond to articulated postures which are utilized in probing the trained
network to impose implied motion perception from static views. We also
show how sequence selective representations are learned in STS by fusing
snapshot and motion input and how learned feedback connections enable
making predictions about future input. Network simulations demonstrate
the computational capacity of the proposed model.

1 Introduction

Animated movements in actions, like walking, turning, etc., can be robustly de-
tected and predictions can be derived from such spatio-temporal patterns. Giese
& Poggio [8] proposed a hierarchical feedforward network architecture that aims
at explaining the computational mechanisms underlying the perception of bi-
ological motion, mainly from impoverished stimuli such as point-light walkers.
The proposed computational framework utilizes two separate visual pathways
for segregated form and motion processing. At the top of this hierarchy pro-
totypical motion patterns are learned (encoded in lateral recurrent asymmetric
couplings) to build sequence-selective action prototypes for characteristic opti-
cal flow patterns and snapshot sequences. The outputs are finally averaged to
get neural responses to biological motion sequences [5]. Several computer vi-
sion approaches have been proposed which adopt similar processing strategies of
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combining form and motion processing [11, 15] or consider details of the motion
processing cascade alone [6]. It is still unclear to a large extent, how motion rep-
resentations in the medial superior temporal area (MST), form represantiations
in the inferior temporal cortex (IT) and sequence-selective patterns in the su-
perior temporal sulcus (STS) interact and which features are used for learning.
Also no top-down influences and transfer of information between pathways has
been considered so far.

Here, we propose a learning-based hierarchical model for analyzing animated
motion to address previously unanswered questions. Prototypes in the form and
motion pathway are established using modified Hebbian learning and we sug-
gest how snapshot prototypes are automatically selected from the input video
streams. Sequence-selective representations of articulated motions in the cortical
area STS are driven jointly by input activations from motion and form proto-
types. In addition, feedback connections are learned to enable STS neurons to
predict expected input from form-selective IT and motion sensitive MST. We
argue that for static articulated postures without continuing motion, STS rep-
resentations are fed by the corresponding snapshot prototype activations [10].
In turn, STS will send feedback to stages in the segregated pathways generating
neural responsiveness in the dorsal pathway on implied motion stimuli [12].

2 Model Architecture

The hierarchical model consists of two separate visual pathways for segregated
form and motion processing as inspired by the work of [8] and extends it by build-
ing upon our previous work on hierarchical feedforward (FF) and feedback (FB)
processing of motion and form along the dorsal and the ventral pathway [9, 3]. In-
termediate level form representations (in model IT) and prototypical optical flow
patterns (in model MST) are established using a modified competitive Hebbian
learning scheme with convergent weight dynamics. A motion-driven reinforce-
ment mechanism automatically selects relevant snapshots in the form path from
video input streams. The activities of the prototypical form and motion cells
converge in the model complex STS, where correlated temporal activations for
specific sequences are learned. Sequence-selective representations are established
by combined bottom-up and top-down learning, both based on Hebbian learning.
The details are outlined below.

2.1 Form and Motion Processing for Animated Motion Recognition

Processing the raw input data utilizes an initial stage of orientation and direction
selective filtering (in model area V1). These responses are fed into separated
pathways which are selective to static form representations (areas V2 and IT)
and characteristic temporal flow patterns (middle temporal area (MT/V5) and
MST). Each model area consists of a three-stage hierarchy of model neurons
whose computational properties have been previously reported in, e.g., [9, 3].
The structure of the processing hierarchy along with characteristic simulation
results are shown in Fig. 1 and will not be further detailed in this paper.
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Fig. 1. Structure of hierarchical feedforward and feedback processing along the ventral
(left) and dorsal (right) pathway. Each pathway is organized in a homologuous fashion,
utilizing receptive fields of increasing size over different model areas. Feedback be-
tween stabilizes the feature processing from raw input. Representations of prototypical
form and motion responses are established by utilizing unsupervised Hebbian learning.
Processing results are shown in the output columns.

2.2 Unsupervised Learning of Form and Motion Prototypes

Hebbian learning in the form and motion pathways. In order to select the
image regions that are fed to the learning of prototype representations a region
of interest (ROI) is defined which represents a bounding box around the target
object. Features within the target region are selected for learning feedforward
connection weights in the form and the motion pathway. We employ the modified
Hebbian learning rule

∆wFF,sji = ηs · v̄posti · (uprej − v̄posti · wFF,sji ) (1)

where ∆wFF,sji represents the discretized rate of change in the efficacy of the
weighted connections with the learning rate ηs; s ∈ {form,motion} indicates
that the same core mechanisms are devoted to learning in the form and motion
pathway, respectively. The variables uprej = f(xj) and vposti = f(yi) are the
firing rates driven by the membrane potential of pre- and post-synaptic cells,
respectively, henceforth denoted as activity. The activity v̄i of the postsynaptic
cell is calculated by the temporal trace rule v̄ti = (1 − λ)v̄t−1

i + λvti [7], 0 <
λ < 1. In this combined temporal trace and instar learning [4] the weighting
kernel in the adaptation term (in brackets) is steered by the postsynaptic activity
(Oja’s rule; [13]) and realizes a steepest descent learning with automatic weight
normalization. The post-synaptic cells which gate the learning of their respective
input weights are arranged in a layer of neurons competing for the best matching
response and their subsequent ability to adapt their input weights.

Reinforcing snapshot learning. The Giese-Poggio model [8] suggests that
sequence selectivity for biological motion recognition is driven by sequences of
static snapshots. While the original model relies on snapshots that were reg-
ularly sampled temporally, we emphasize the automatic selection of snapshots
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which correspond to strongly articulated poses. Such snapshot representations
are learned in the form channel by utilizing a gating reinforcement signal which
is driven by the complementary representation of motion in the dorsal stage
MT/MST. Formally, the weighted integration of motion energy over a given
neighborhood is calculated by

me =

∫
Ω

uφ(x) · Λ(x)dxdφ (2)

with Λ(•) denoting a spatial kernel for weighting the relative contribution of mo-
tion responses uφ(•) at spatial locations x and with direction selectivity φ.3 The
motion energy signal itself is a function of time which is used to steer the learning
in the form pathway. We suggest that different subpopulations of static form,
or snapshot, representations can be learned that correspond to either weakly
or strongly articulated postures. Here, we focus on snapshot poses correspond-
ing to highly articulated postures with signatures of maximum limb spreading.
Motion energy at limbs drops during phases of high articulation when their ap-
parent direction of motion reverses. We incorporate the function g(•) to control
a vigilance in snapshot learning to favor form inputs which co-occur with local
motion energy minima, i.e. when ∂tme = 0, ∂ttme > 0. In the weight adaptation,
∆wFF,formji in Eqn.1, the learning rate is now gated by the motion dependent
reinforcement, ηs · g(me).

2.3 Unsupervised Learning of Sequence-Selective Representations

Categorial representations in the form and motion pathway, namely in IT and
MST, which were learned at the previous stage, feed forward their activations to
the stage of STS. In order to stabilize the representations and activity distribu-
tions, even in the case of partial loss of input signals, the STS sequence-selective
representations send top-down signals to their respective input stages.

Feedforward learning of sequence-selective motion representations.
Prototypical representations with spatio-temporal sequence selectivity are learned
by using a modified Hebbian instar learning mechanism similar to the learning
of form and motion prototypes (Eqn.1),

∆win,FFji = ηseqFF · v̄posti · (uprej − v̄posti · win,FFji ). (3)

The weighting kernel win,FFji represents convergent IT→ STS and MST→ STS
bottom-up input to a postsynaptic STS cell (instar). ηseqFF denotes the learning
rate and uj and vi are the firing rates of the pre- and post-synaptic neurons,
respectively (the post-synaptic activity is again calculated via a temporal trace
mechanism). The pre-synaptic activity is generated by concatenating form and
motion output activations, namely u = uIT ∪ uMST.

3 For whole body motion considered here, we simply integrated the motion energy
over the entire ROI without subdividing the image region. An analysis at smaller
scales might necessitate an integration over smaller overlapping patches.
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Learning feedback connections. Sequence-selective prototypes in STS in
turn learn the output weights back to the segregated form and motion prototype
representations, namely STS→ IT + MST. Unlike the FF learning mechanisms,
the learning here is gated by the pre-synaptic cell (in STS) for their top-down
weights, realizing an outstar mechanism [4]. The learning equation reads

∆wout,FBji = ηseqFB · v̄prei · (upostj − wout,FBji ) (4)

with the same components as in the bottom-up learning in Eqn.3. The bottom-
up and top-down learning schemes differ in the definition of the competitive
terms. As a consequence, the sum of weights

∑
i w

out,FB
ji approach the mean

activity upostj so that the sequence selective units vprei memorize an expected
pattern of their driving input configurations.
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Fig. 2. IT prototypes trained using disabled and enabled reinforcement signal. Minima
and maxima in motion energy correspond to articulated and non-articulated postures
(bottom left). Continuous learning of IT prototypes leads to activation profiles with
low selectivity (top right). Motion driven reinforcement leads to IT prototypes which
signal snapshot poses in synchrony with the gait (bottom right; for details, see text).

3 Results

The model has been tested in various computational experiments, not all of
which we can present here. In a first experiment, we probed the properties of
snapshot selection from the input streams and their signature concerning static
articulations. The latter property has been motivated by the fact that extremal
articulation indicates configurations of implied motion, in turn, predictive for fu-
ture motions. Results shown in Fig. 2 demonstrate that input activations in V2
with strongly articulated shapes cohere with local motion minima. Such minima
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drive the reinforcement signal for learning whole body form prototypes. Tempo-
ral response signatures for IT prototypes are shown for disabled reinforcement,
g(me) = 0, and when it is enabled, g(me) 6= 0. We studied the response prop-
erties of STS representations and their motion sequence selectivity. Initially, a
prototypical sequence-selective representation is learned at the level of STS for
a walker that is traversing from left to right. The input representations from the
form and motion pathway were established in model IT and MST. The network
is subsequently probed by three different movement scenarios: a forward moving
walker with same profile and movement direction as in the training phase (recall),
a forward moving walker traversing from right to left (opposite), and a backward
moving walker (reverse). Form/motion prototypes and the sequence representa-
tion are triggered maximally in the recall case while in the opposite case form
and motion prototypes only respond minimally, and so do the sequence-selective
cells. In the reverse case the form prototypes selectively match the input at high
articulation configurations, while the motion responses remain minimal. As a
consequence, the sequence-selective representations respond at an intermediate
level (Fig. 3). This evidence is in line with the experimental findings by [14] and
recent observations by [16]. We have further investigated the direction and speed
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Fig. 3. Response behavior of IT snapshot neurons, MST motion pattern neurons, and
sequence-selective STS cells trained by video input for a walker moving from left to
right. Activations in the model areas are shown for different input conditions for recall of
the training sequence (top), opposite walker movement (middle), and walker displayed
in reverse motion (bottom). For details and brief discussion, see text.

tuning of the sequence-selective prototypes. Here, we configured different walk-
ers with varying movement directions and speeds with reference to a previously
learned representation of a rightward moving walker at a speed of 1 m/s. Walk-
ing directions in the test cases were rotated by ±{5◦, 10◦, 20◦, 40◦, 80◦}. Model
simulations result in a direction tuning with half amplitude of approximately
±45 deg. A similar tuning is observed for walkers proceeding at different speeds
(results not shown).
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In a further experiment we investigated the selective lesioning of the model
architecture, particularly the effects of cutting connections between model areas
and the activity flow between learned representations. The fully connected model
with learned IT/MST and STS feedforward and feedback connections was used
as reference. When bottom-up connections from motion input (MST) or from
snapshot input (IT) were cut off the sequence-selective neuron responses in STS
drop to approximately half their response amplitude. Feedback from STS invokes
an amplification of activities in IT and MST representations. We observe that
FF activation from IT alone can drive sequence neurons (in accordance with [1]).
Snapshot representations in IT drive the STS sequence neurons which, in turn,
send feedback signals to the stages of IT and MST prototype representations. In
the motion pathway such feedback elicits an increase in presynaptic activation.
We argue that this reflects the induction of increased fMRI BOLD response in
human MT+ following the presentation of static implied motion stimuli [12].

4 Discussion

We propose a model for learning articulated motion patterns for animated mo-
tion recogntition. The model builds upon neurophysiological knowledge about
the cortical sites and specific neuronal representations which contribute to artic-
ulated motion and implied motion perception. Based on feedforward/feedback
processing in segregated pathways the form and motion prototypes are learned.
Cross-channel interaction enables to select key poses in action sequences. We
argue that such a mechanism is responsible for the development of snapshot rep-
resentations corresponding to signatures of high articulation. Form and motion
responses converge at the stage of STS to learn sequence-selective representa-
tions. Unlike previous approaches as, e.g., in [8, 5], we employ Hebbian learning
of sequence-selective representations in STS by combining both form and mo-
tion, while snapshot and motion pattern prototypes do not employ individual
sequence-selectivity.

Feedback connections learn to represent the expected input and, in turn,
enable the network of IT/MST → STS and STS → IT/MST to predict the op-
tical flow patterns and the associated snapshot sequences. As a result, temporal
action sequences are represented (through learning) in a distributed network of
recurrently connected sites (model IT, MST, and STS) to robustly recall the
saliencies and regularities in presentations of articulated motions. The model
predicts that the presentation of static key poses from previously learned se-
quences alone leads to enhanced activation in STS sequence selective neurons
as observed in [10]. The model also hypothesizes how the presentation of static
articulated poses lead to the emergence of predictive motion perception and en-
hanced neural activations in the motion pathway [12]. Next we will test the cur-
rent model with input point-light stimuli as in biological motion perception. We
predict that motion driven inputs will activate STS movement-selective neurons
while responses in the form pathway will initially respond only at a minor level.
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Feedback from STS cells will then enhance IT snapshot responses representing
meaningful point configurations.
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