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Abstract. For social species, including primates, the recognition of dy-
namic body actions is crucial for survival. However, the detailed neural
circuitry underlying this process is currently not well understood. In
monkeys, body-selective patches in the visual temporal cortex may con-
tribute to this processing. We propose a physiologically-inspired neural
model of the visual recognition of body movements, which combines an
existing image-computable model (‘ShapeComp’) that produces high-
dimensional shape vectors of object silhouettes, with a neurodynami-
cal model that encodes dynamic image sequences exploiting sequence-
selective neural fields. The model successfully classifies videos of body
silhouettes performing different actions. At the population level, the
model reproduces characteristics of macaque single-unit responses from
the rostral dorsal bank of the Superior Temporal Sulcus (Anterior Medial
Upper Body (AMUB) patch). In the presence of time gaps in the stimu-
lus videos, the predictions made by the model match the data from real
neurons. The underlying neurodynamics can be analyzed by exploiting
the framework of neural field dynamics.

Keywords: Action recognition · Silhouettes · Neurodynamical model ·
Neural field · Visual cortex.

1 Introduction

Electrophysiological and neuroimaging studies have uncovered the presence of
body-selective neurons and regions in the visual cortex. Body-selective regions
in the occipitotemporal cortex (OTC), the extrastriate body area (EBA) [3]
and the fusiform body area (FBA) [8, 17] have been discovered in human func-
tional magnetic resonance imaging (fMRI) studies. fMRI studies in monkeys have
demonstrated the presence of numerous body-selective patches [2, 18, 21, 23] in
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the visual temporal cortex, including the Superior Temporal Sulcus (STS). In
these regions, work on fMRI and single-unit responses has demonstrated stronger
responses to bodies than to faces and other categories of objects.

However, the focus of most of these studies has been on static bodies. The
detailed neural computations underlying the visual recognition of dynamic body
actions are not yet well understood. While there have been some single-cell
studies investigating the responses of neurons, especially in the STS, to biologi-
cal motion and body motion [14,15,22], detailed physiologically-inspired neural
models of the processing of dynamic bodies are required to clarify the underlying
neural computations.

Biologically-inspired models have previously been proposed for the recogni-
tion of dynamic bodies [6,9,12]. Older models largely used hierarchies of primi-
tive detectors, such as Gabor filters, for modeling the initial layers of the visual
pathway. More recent studies predominantly model the visual pathway using
feedforward convolutional neural networks (CNNs) [25] and other studies use
different hierarchical neural network architectures [16], but these models do not
make use of physiologically-plausible dynamical neural circuits. Our model com-
bines approaches from deep learning in the form of a front-end CNN architecture
(ShapeComp network [13]) which has been trained to produce perceptually rel-
evant shape features of objects, with a neurodynamical model based on neural
fields that reproduces the dynamic properties of action-selective neurons in the
STS and premotor cortex [4, 6].

In this paper, we aim to present, as a proof-of-concept, a physiologically-
inspired model of the neural circuitry involved in the visual recognition of static
body poses and dynamic body movements. The purpose of our model is to repro-
duce the invariance properties of cortical neurons, and not primarily to achieve
maximum classification performance on large data sets. In its present form, the
model can learn to classify actions from body silhouettes and reproduces activa-
tion dynamics of a population of body-responsive neurons in the macaque STS.
Previous studies [10,19] have shown strong and selective responses in STS body
patches to silhouettes comparable to those to shaded images, which is in agree-
ment with the well-known shape-bias of human vision [11]. We present some
initial comparisons with macaque electrophysiological data recorded from the
AMUB body patch [2] of the rostral dorsal bank of the STS using dynamic sil-
houettes extracted from videos of real macaques. This work provides a starting
point for the development of a detailed model of the shape selectivity and dy-
namic properties of body-selective neurons in the macaque STS. The model also
makes predictions about the output dynamics for stimulus videos, including the
responses to stimuli with time gaps of different durations, which qualitatively
match the data from real neurons.

In the following sections of the paper, we will first present the architecture of
the model. We will then describe the results of the recognition of dynamic human
silhouettes performing actions, after training the model on only a few exemplars.
Following this, we will compare our simulations with macaque electrophysiolog-
ical data. After briefly explaining the behavior of the model for stimuli with
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time gaps by analyzing the underlying neurodynamics, we will finally discuss
the implications of this work.

2 Architecture of the Model

The model combines an image-computable model (‘ShapeComp’ [13]) that pro-
duces high-dimensional vectors describing the shapes of objects, with an existing
neurodynamical model [6] which has previously replicated the neural dynamics
in higher areas of the visual and premotor cortex. The model takes videos (im-
age sequences) of silhouettes performing various actions as input, and the output
layer consists of neurons that classify the various learned body actions. The shape
features extracted from the ShapeComp network are used to train radial basis
function networks whose outputs feed into sequence selective neural fields (re-
current neural networks) that encode temporal sequences of keyframes (dynamic
stimuli). The outputs of individual neural fields representing the different body
actions or movements are temporally summated by motion pattern neurons that
comprise the highest (readout) level of the model.

An overview of the model architecture is shown in Fig.1. Sections 2.1 and 2.2
will describe the components of the model in more detail.

Fig. 1: Overview of model architecture: A CNN architecture (ShapeComp) is
combined with a recurrent network of snapshot neurons that integrate informa-
tion over time.

2.1 Extraction of Mid-Level Shape Features

The initial layers of the visual pathway that detect mid-level features are mod-
eled by a CNN. We initially tested some standard CNNs from the computer vi-
sion literature as alternative front-ends of our model. For the detection of body
postures across different individuals, we found that these networks did not facil-
itate robust recognition of key poses with invariance across different individuals
when the model was only trained on moderately-sized data sets. A more robust
recognition of body pose could be realized using the ShapeComp model [13].
This psychophysically-validated model uses the shape boundaries of objects to
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produce high-dimensional vectors that represent the shapes of objects. As the
shape vectors produced by the ShapeComp model predict human shape similar-
ity judgments better than features output by standard CNN architectures, we
used this architecture as the front-end of our model [13].

The version of the ShapeComp architecture used in the model is a multi-
layer feedforward CNN called KerNet1, pre-trained on 800,000 shapes produced
by a Generative Adversarial Network (GAN), spanning the high-dimensional
shape space. The network takes silhouettes of objects as input and produces
22-dimensional feature vectors as output, that describe the objects’ shapes in a
compact manner. These 22 dimensions are weighted linear combinations of the
original 109 image-computable shape features from the ShapeComp model [13].
The architecture generates shape vectors for every keyframe, which form the
input to the dynamic layers of the network that are described in the following
section.

2.2 Dynamic Recognition Network

Body Shape Neurons The mid-level feature output from the ShapeComp
network was used as input for body shape detectors, which were modeled by
Gaussian Radial Basis functions (RBFs), which we refer to as body shape neu-
rons in the following text. The centers za

n of these RBFs were defined by the
22-dimensional shape vectors za

n from the previous layer representing different
keyframes from the training movies, indexed by n. The different actions are rep-
resented by the integer variable a. The outputs of the body shape neurons were
given by the equation:

ran = exp
(
−|z − za

n|2/2σ2
)
. (1)

The outputs of the body shape neurons ran(t) were smoothed along the neuron
axis using a Gaussian filter (of width 2 neurons) to generate the inputs san(t) for
the next layer.

Snapshot Neurons The smoothed output of the body shape neurons san(t)
provides input to sequence-selective snapshot neurons that encode temporal se-
quences of keyframes. Asymmetric lateral connections between these snapshot
neurons encoding the image keyframes result in recurrent neural networks that
show sequence selectivity i.e. the network only responds strongly if the learned
keyframes occur in the correct temporal order. The underlying network dynamics
can be interpreted as a dynamic neural field [1]. Each learned action is encoded
by such a network. The dynamics of the discretely approximated neural field [1]
is given by the following equation ( [u]+ = u for u > 0, and 0 otherwise):

τ u̇a
n(t) =− ua

n(t) +
∑
m

w(n−m) [ua
m(t)]+ + san(t)− h− wcI

a
c (t) ,

w(n) =A exp
(
−(n− C)2/2σ2

ker

)
−B ,

(2)
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where ua
n(t) denotes the activity of the neuron in the neural field that encodes the

keyframe n of the body action category a, and where the index m runs over all
neurons. The resting level of the neurons is determined by the positive parameter
h (= 1), and τ (= 28 ms) defines the time constant of the dynamics. The func-
tion w is an asymmetric interaction kernel. The neural sub-networks encoding
different actions compete with each other. This is accomplished by the cross-
inhibition term Iac (t) that is given by the equation Iac (t) =

∑
m,a′ ̸=a[u

a′

m(t)]+.
The parameter wc (= 1.5) determines the strength of the cross-field inhibition.

The snapshot neurons are keyframe-selective as well as action-selective, and
exhibit phasic activity during the temporal progression of the presented action
stimuli.

Motion Pattern Neurons The responses of the snapshot neurons encoding
the same action are temporally smoothed and summated by motion pattern
neurons that form the next layer of the model. The response of these neurons
is dependent on the sum of the (thresholded) activity of the snapshot neurons
encoding the corresponding actions and given by the equation:

τv v̇a(t) = −va(t) +
∑
n

[ua
n(t)]+ . (3)

In the above equation, va(t) denotes the activity of the motion pattern neu-
rons, and τv (= 28 ms) denotes the time constant of their dynamics.

Each motion pattern neuron encodes a particular action and is active during
the corresponding action. It is at this level of the hierarchy that the model
classifies the different types of actions. The responses of these motion pattern
neurons have been compared (at the population level) with single-unit responses
recorded from the macaque STS in section 3.2.

3 Results

3.1 Testing the Model on Sequences of Human Silhouettes

Videos of silhouettes of 9 human subjects performing 5 types of actions that were
clearly distinguishable from silhouettes were used to test the model’s ability to
learn actions. The selected action sequences, chosen from the publicly available
Weizmann Human Action Dataset [7], were: walking, running, jumping jacks,
waving with one arm, and waving with two arms. The Weizmann Human Action
Dataset includes videos of the silhouettes of the subjects performing the actions,
which were used for training and testing the model.

Image sequences of 25 black-and-white silhouette keyframes per action were
extracted from the longer video sequences (deinterlaced 50 frames/s). The im-
age sequences from the various subjects were coarsely time-normalized by visual
inspection, such that the first and last images of the sequences of a particu-
lar action contained the corresponding poses across all subjects. The available
silhouette images were already aligned/centered to a reference point, removing
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any effects of translation of the subject within the image. The silhouettes con-
tained multiple “leaks” and “intrusions”, which served as a test of the model’s
robustness. The images, which were of different sizes, were resized to uniform
dimensions of 224 x 224 pixels.

Averaged across all action types, we achieved a performance of 97.77% cor-
rect classifications on the test set, determined by cross-validation (leave-one-out
analysis on 9 videos per action type). The classification accuracy of the neu-
rodynamical model using ShapeComp as its front-end was compared with that
using a CNN architecture, ResNet-101, coupled with different unsupervised di-
mensionality reduction algorithms. ResNet-101 has been shown to predict hu-
man shape similarity better than other standard CNNs [13] and was used to
produce mid-level features. The network (pre-trained on ImageNet) was read
out just before the fully connected layer (at layer “Pool5”). Only output fea-
tures showing high variance over time were retained (feature selection), and 3
types of unsupervised dimensionality reduction methods were applied to con-
struct a lower-dimensional mid-level feature space (of 15 dimensions) - Principal
Component Analysis (PCA), Non-negative Matrix Factorization (NNMF) and
Independent Component Analysis (ICA). Increasing the number of dimensions
of these mid-level feature vectors beyond 15 was found to decrease classification
accuracy, probably due to overfitting to the training data.

As shown in Table 1 below, our model outperforms the CNN architecture
combined with any of the three unsupervised dimensionality reduction algo-
rithms. As another test of performance, we also added Gaussian random noise
to all the models at 2 dynamic neural levels during the simulations: at the level
of the snapshot neuron responses and at the level of the motion pattern neuron
responses. We then re-computed the accuracy values, shown in Table 2, and per-
formed this analysis for 3 levels (σ = 2, σ = 6, σ = 10) of noise. The model with
the ShapeComp front-end shows the highest classification accuracy even in the
presence of added noise.

Table 1: Accuracy of our model com-
pared with a CNN model and differ-
ent dimension reduction methods.

Model Front-End Accuracy

ShapeComp 97.8%

ResNet-101 + PCA 68.8%

ResNet-101 + NNMF 75.6%

ResNet-101 + ICA 55.6%

Table 2: Accuracy of our model com-
pared with the other models for different
levels of added noise

Model Front-End σ = 2 σ = 6 σ = 10

ShapeComp 86.7% 82.2% 80%

ResNet-101 + PCA 66.7% 48.9% 48.9%

ResNet-101 + NNMF 71.1% 51.1% 51.1%

ResNet-101 + ICA 53.3% 55.6% 60%

3.2 Simulations in Comparison with Macaque Electrophysiological
Data

A stimulus set of 20 videos of silhouettes of rhesus monkeys performing different
dynamic body movements was created for use in the experiments and modeling.
The silhouettes were centered in the videos, removing any effects of translation
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of the macaque within the images. Image sequences of 60 grayscale keyframes
(1s) were extracted from the videos (480 x 480 pixel images, 60 frames/s). A set
of different stimulus conditions per video were used for both the experiments and
modeling: Image sequences taken in the correct temporal order (“forward” con-
dition), temporally inverted image sequences (“reverse” condition), and videos
with different lengths of time gaps, during which frames of the video were re-
placed by blank frames for both forward and reverse conditions. The time gaps
used were of 2, 4, 6, 8, 10, and 13 frames (approximately 33, 67, 100, 133, 167,
and 217 ms respectively). The positions of the rest of the frames containing the
macaque were unaltered in the image sequences.

For this analysis, from the responses of 32 cells recorded from the AMUB
body patch, the response (averaged across 5 trials) to the video that produced the
highest response over time (“best” stimulus) was chosen for each cell. There were
16 different best stimuli in total for the population. The responses of each cell
were recorded for the different stimulus conditions for each video. The baseline-
subtracted activity of each cell was normalized by dividing by the maximum
firing rate value (bin-width = 20 ms) of the net response of that cell across
all the stimulus conditions under consideration. All the cell responses were then
averaged to produce the population response. Finally, the neural response curves
were smoothed over time by Gaussian filtering. Likewise, the model was tested
on the 16 best stimulus videos of the neurons for the same stimulus conditions.
The responses of each of the motion pattern neurons to its preferred stimulus
video were normalized in the same manner as in the data. The individual motion
pattern neuron responses were averaged to obtain the population activity.

The model successfully reproduces the sequence selectivity of the population
response of the real neurons (Fig. 2A and Fig. 2B). Interestingly, the model pre-
dicts that the difference in the population activity for the forward and reverse-
ordered sequences should significantly decrease in the presence of large time
gaps in the stimuli, which is actually found to be the case in the data from
the experiments (Fig. 2C and Fig. 2D). In the model, this behavior can be ex-
plained by the recurrent network dynamics. If the input activity is not sufficiently
continuous, a self-organized solution, which corresponds to a traveling pulse in
the neural field [24], cannot emerge. In this case, the direction selectivity of the
model disappears. This is systematically tested in the simulations shown in (Fig.
2E) showing the population responses of the motion pattern neurons, averaged
over all time points, for different lengths of stimulus time gaps, for both the
forward and reverse conditions. For larger durations, the strong sequence selec-
tivity present for continuous stimuli disappears, while the output neurons are
still significantly active. Fig. 2F shows the corresponding plot for the population
responses from the neural data averaged during the stimulus period (accounting
for the 60 ms response latency period of the neurons), which corresponds well
with the model’s prediction.
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Fig. 2: Simulation results: A Simulated population response for forward and re-
verse ordered continuous sequences. B Population response from AMUB body
patch neurons for the same continuous stimuli. C Simulated population response
for the largest time gap (217 ms) condition of the forward and reverse-ordered
stimuli. D Population response from AMUB body patch neurons for the same
time gap length. E Predicted responses from the model for forward and reverse-
ordered sequences containing different lengths of time gaps. F Population re-
sponse from AMUB body patch for the same time gap stimuli.
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3.3 Mathematical Analysis of the Dependence of Sequence
Selectivity on Gap Duration

The core module of our model that integrates information over time is the re-
current neural network (2). Sequence selectivity and its dependence on the time
gaps in the stimulus are most easy to analyze by describing the recurrent neural
network in a continuum limit, resulting in the following neural field (ignoring
the cross-field inhibition):

τ
∂u(x, t)

∂t
+ u(x, t) =

∫
w(x− x′) θ(u(x′, t)) dx′ + s(x, t) . (4)

Here, we integrate the resting level parameter h into the input signal s(x, t)
for simplicity. The function θ(·) defines the output threshold characteristics of
the neurons. For θ(u) ≡ u, one obtains a linear neural field that is particularly
easy to analyze. We treat this case here, and the analysis of nonlinear threshold
functions will be treated in future publications. The input signal is assumed to
be a traveling Gaussian peak of the form s(x, t) = exp(−(x− vt)2/(2η2)) ·Ξ(t),
where the function Ξ(t) is one while stimulus frames are present and zero during
the time gaps. The traveling speed v of the input is determined by the frame
rate of the stimulus video.

The analysis of the dynamics becomes easier in a traveling coordinate system,
exploiting the identities U(y, t) = u(x, t) and S(y, t) = s(x, t) = exp(−y2/(2η2))·
Ξ(t), where y = x− vt. The resulting transformed dynamics are given by:

τ
∂U(y, t)

∂t
− τv

∂U(y, t)

∂y
+ U(y, t) =

∫
w(y − y′) θ(U(y′, t)) dy′ + S(y, t) . (5)

For the case of θ(u) ≡ u, the last equation can be solved by Fourier trans-
formation in the space-time frequency domain. The 2D Fourier transforma-
tion of the solution is given by the following product Ũ(k, ω) = S̃(k, ω)H̃(k, ω),
where S̃(k, ω) is the Fourier transformation of the input signal. The function
H̃(k, ω) = 1/(1 + iωτ − iτvk − w̃(k)) is the impulse response of the dynamics.
The amplitude of this function is illustrated in Fig. 3 (panels A and D). It
changes for opposite signs of the velocity v, modeling the forward and reverse
temporal orders of the stimulus video frames. w̃(k) is the Fourier Transform of
w(x).

In this analytically solvable linear neural field, we also observe a dependence
of the temporal order selectivity on the presence and duration of stimulus gaps.
This is illustrated in Fig. 3B and Fig. 3C that show the computed solutions
u(x, t) for forward vs. reverse presentation of the stimulus frames without time
gaps, which show different maximum (and average) amplitudes. Contrasting with
this observation, the computed solutions for the stimulus with time gaps (shown
in Fig. 3E vs. Fig. 3F) show only a minimal amplitude difference between the
forward and reverse presentation orders.

This dependence of the amplitude difference on the presence of gaps in the
stimulus signal is caused by the fact that the stimulus with gaps activates high-
frequency components along the ω axis in the (k, ω)-frequency space. For these
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components, the denominator of H̃(k, ω) is effectively less sensitive to the pa-
rameter v, and thus on the presentation order of the stimulus.

Fig. 3: Linear neural field: Fourier Spectra of the impulse response H̃(k, ω): A for
(v > 0) (forward temporal order), and D for (v < 0) (reverse temporal order).
Panels B and C show the computed solutions u(x, t) for forward vs. reverse
temporal orders for a stimulus without time gaps. Panels E and F show the
computed solution with time gaps of a duration of 7 stimulus frames. Amplitude
difference between the solutions is lower for the stimulus with gaps.

An important observation is that for the linear neural field it is critical to sum
up thresholded output amplitudes, as assumed in equation (3) of our model. Just
integrating the signal u(x, t) over x turns out to be equivalent to computing the
Fourier back-transformation (in time) of the function H̃(0, ω). This function does
not depend on the velocity v and therefore fails to imply sequence selectivity.

4 Conclusions

In this paper, we have presented a neurodynamical model for the recognition
of dynamic bodily actions performed by silhouettes, as a proof of concept. De-
spite the simple architecture of the model, even when trained with relatively few
training examples, it accomplishes robust recognition of body poses and actions
across different individuals. Using a standard CNN architecture, ResNet-101,
combined with different unsupervised learning techniques, we were not able to
reproduce the same robustness in body shape recognition. We think that this lack
of performance could be related to the tendency of standard CNNs to overem-
phasize shape differences that are not relevant for keyframe pose recognition.
Using modified standard CNN architectures as potential front-ends of the model
with further optimization of the feature selection procedure may possibly yield
higher accuracy values, but this was outside the scope of the current study.
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Our model also reproduces signatures of the activity dynamics of popula-
tions of body-responsive neurons in the AMUB body patch of the STS. We
could reproduce the sequence selectivity of this response, and also the fact that
introducing large time gaps in the stimuli destroys this sequence selectivity. In
our model, this is a consequence of the recurrent network dynamics. We mathe-
matically analyzed this dependence of sequence selectivity on gap duration using
analysis methods from linear neural field dynamics.

A major limitation of the model is that it works only on silhouettes. In future
work we will try to extend the front-end of our model for more natural stimuli,
where a key problem is to overcome the texture bias that is present in standard
CNN architectures [5]. Furthermore, it is likely that the shape descriptors pro-
duced by the ShapeComp architecture do not exactly match those used in the
brain for shape recognition. Nevertheless, we have used the ShapeComp CNN
architecture to model to realize a front-end of our model that reproduces in-
variance properties of human shape perception better than other standard CNN
networks. Another limitation of the model is the absence of neurons exhibiting
both phasic and tonic responses to continuous dynamic sequences, which is an
oversimplification. Finally, it is likely that neurons in the AMUB body patch are
also selective for motion or optical flow features. Our model cannot account for
the selectivity for local motion features. Building two pathway architectures that
can reproduce these properties remains an important challenge in the modeling
of the detailed properties of cortical body action-selective neurons. [6, 20]
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