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Abstract. Gaussian Processes (GPs) and related unsupervised learning
techniques such as Gaussian Process Latent Variable Models (GP-LVMs)
have been very successful in the accurate modeling of high-dimensional
data based on limited amounts of training data. Usually these techniques
have the disadvantage of a high computational complexity. This makes
it difficult to solve the associated learning problems for complex hier-
archical models and large data sets, since the related computations, as
opposed to neural networks, are not node-local. Combining sparse ap-
proximation techniques for GPs and Power Expectation Propagation,
we present a framework for the computationally efficient implementa-
tion of hierarchical deep Gaussian process (latent variable) models. We
provide implementations of this approach on the GPU as well as on the
CPU, and we benchmark efficiency comparing different optimization al-
gorithms. We present the first implementation of such deep hierarchical
GP-LVMs and demonstrate the computational efficiency of our GPU
implementation.

Keywords: Deep GP-LVM, hierarchical probabilistic model, dimension
reduction, motion synthesis, Expectation Propagation

1 Introduction

Many applications, e.g. in computer graphics and robotics, require real-time gen-
erative models for complex, high-dimensional, coordinated human motion. One
possible solution of this problem is the use of neural networks [10, 12]. The gen-
eralization properties of such networks are not easy to control, and often they
require substantial amounts of training data to accomplish high accuracy and
robustness of the generated motion. As an alternative to this approach we pro-
pose here probabilistic graphical models [1]. Such models provide an attractive
theoretical framework for the construction of modular and hierarchical models,
and for inference on arbitrary variables within these models. While probabilistic
models have been used extensively for motion synthesis and editing in computer
graphics [5, 2, 13], or robotics [30, 23], many of these techniques result in offline
models that are not suitable for embedding in online control systems, or the
learning from large data sets, due to their high computational complexity.

Gaussian process latent variable models (GP-LVM) provide a successful frame-
work for the very accurate approximation high-dimensional human motion, where
Gaussian processes (GP) can be interpreted as neural networks with infinitely
many hidden units [21]. GP-LVMs have been successfully applied for kinematic
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modeling and motion interpolation [9], inverse kinematics [16], and for the learn-
ing of low-dimensional dynamical models [29]. By inclusion of sparse approxi-
mation techniques, they can be made suitable for real-time applications [25].
However, they have a tendency to overfit and additional limitations, which make
them unsuitable for a variety of applications, e.g. on large data sets. Approxi-
mative inference exploiting sparse approximations of Gaussian processes (GP)
within a variational free energy (VFE) framework control for overfitting [26].
In addition, they are suitable for the formulation of multi-layer architectures
in the form of Deep Gaussian processes (DGP) [14, 27]. Such architectures are
equivalent to deep neural networks with infinite many hidden units per layer
[7]. However, the VFE approach is not parallizable and produces unnecessarily
large memory footprints during learning, which makes it specifically unsuitable
for GPU implementations.

We propose here to use instead approximate inference exploiting Expectation
propagation (EP) [18], resulting in an algorithm that is more suitable for GPU
implementations. The use of stochastic expectation propagation (SEP) [17] it
also reduces the memory overhead. In addition, the underlying learning scheme of
Power EP [19] combines the advantages of VFE and EP within a single algorithm.

Exploiting such DGPs, our main contributions are: a hierarchical probabilis-
tic graphical model in form of hierarchical deep GP-LVMs (hDGP-LVM); im-
plementation of this model on the GPU, exploiting approximate inference using
SEP. We demonstrate the suitability of this method for the learning of online
generative models for complex full-body movements of two interacting humans
with 189 degrees of freedom.

The following sections, first develop the underlying mathematical theory. We
then discuss briefly the implementation details and present our results, compar-
ing the GPU and CPU implementations, followed by a conclusion.

2 Preliminaries

2.1 GP Regression and Approximation

In the function space view GPs can be considered as nonlinear mapping, f(x),
from an input variable x to a one-dimensional real-valued output variable. The
function value fn := f(xn), at a particular input point, xn of an input set
X = [x1, . . . ,xN ]T ∈ ❘

N×Q, is a random variable, and a GP is an infinite
collection of random variables, any finite number of which have a joint Gaussian
distribution [22, 3], where N being the sample size and Q the dimensionality of
the input space.

A real Gaussian process f(x) is characterized through its mean functionm(x)
and kernel function k(x,x′),

m(x) = ❊[f(x)],

k(x,x′) = ❊[(f(x)−m(x))(f(x′)−m(x′))].
(1)

This can be interpreted as f(x) being drawn from a Gaussian process prior with
mean function m(x) and kernel function k(x,x′),

f(x) ∼ GP(f(x);m(x), k(x,x′)). (2)

In most cases we assume a zero mean function, m(x) = 0, since for our applica-
tion the prior knowledge about f(·) can be encoded by the kernel function and
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its hyperparameters. For our model we used in all layers an automatic relevance
determination (ARD) kernel of the form,

k(x,x′) = σ2 exp

(
−1

2

Q∑

q=1

|xq − x′
q|2

l2q

)
, (3)

where σ is the variance and lq the length-scale of the q-th input dimension of

the kernel. For this particular kernel θ = (σ, {lq}Qq=1) are the hyperparameters.

Typically for regression models, a data set {yn}Nn=1 is defined by an un-
known function f(·) := f , evaluated at input location xn and corrupted by some
independent noise εn,

yn = f(xn) + εn. (4)

With the prior p(εn) = N (εn; 0, β
−1) the probabilistic model can be written as

follows,

f |θ ∼ GP(f ; 0, k(·, ·)), (5)

p(y|f, β) =
N∏

n=1

N (yn; f(xn), β
−1), (6)

where y specifies the vector of all one dimensional data points. To find the
noise free function values f and the right hyperparameter set {θ, β} by hand is
quite difficult. The usual Bayesian approach would be to specify a prior over
the hyperparameter set to compute the joint posterior p(f , θ, β|y). For Gaussian
processes this inference problem is typically not analytically solveable, due to
the intrinsic non-linearity of the GP. A common practice to handle this problem
is to optimize the hyperparameter set instead by minimizing the negative log-
marginal likelihood,

L(θ, β) = − log p(y|θ, β), (7)

= − log

∫
p(y|f(xn), β)p(f |θ) df, (8)

= − logN (y;0,Kff + β−1I), (9)

= −N

2
log 2π − 1

2
log |Kff + β−1I| − 1

2
yT(Kff + β−1I)−1y. (10)

This allows to derive a conditioned posterior p(y∗|y, θ, β), based on Gaussian
identities [1], from the joint probability of the prior function of the training set
p(y|θ, β) and the prior function of the test set p(y∗|θ, β) for the prediction of
new test outputs y∗ with given test inputs x∗ and a fixed hyperparameter set
[15],

m̃(x∗) = k∗,f (Kff + β−1I)−1y, (11)

k̃(x∗,x
′
∗) = k(x∗,x

′
∗)− k∗,f (Kff + β−1I)−1kT

∗,f , (12)

which is also a GP. The constructed matrices result from the covariance function
evaluations of the training inputs {xn}Nn=1, i.e [Kff ]n,n′ = k(xn,xn′) and sim-
ilarly between the test inputs {[x∗]i}Ii=1 and training input locations {xn}Nn=1,
[k∗,f ]i,n = k([x∗]i,xn).
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This minimization procedure has several disadvantages: First, it often gets
stuck at local minima and has a computational cost, due to the inversion of
Kff + β−1I, see equation (10), of O(N3) at each iteration step and a O(N2) for
prediction. Second, one has to store the full observation vector y for learning and
prediction, see equations (10) and (11). These limitations prohibit larger scale
learning using this approach, because of time and memory limitations. Especially
the memory aspect is critical if optimization is implemented by GPU comput-
ing. Further, due to intractability of the posterior joint probability p(f , θ, β|y),
the construction of hierarchical (deep) models is not possible, because of the
conditional dependency between the function value sets in the different layers.

In this paper, we show that approximate inference, exploiting Expectation
Propagation (EP) framework in combination with sparse approximations of the
Gaussian processes, offers an elegant solution for these problems.

2.2 GP Sparse Approximations

In order to implement the proposed GP framework for large data sets it is essen-
tial to reduce the computational complexity. This can be accomplished by a the
GP sparse approximation approach [4]. For this purpose, the noise-free function
value set f , is approximated by selection of a small set of M ≪ N pseudo-point
inputs {[xu]m}Mm=1, mapped to the function values u. It is assumed that training
and test points of the Gaussian process are approximately conditionally inde-
pendent, if conditioned on their pseudo-points so that f = {f ,u, f 6=f ,u}. Under
this assumption, the GP prior, see equation (5), can be approximated as follows:

q(f |θ) = q(f |u, θ)p(u|θ)p(f 6=f ,u|f ,u, θ), (13)

where p(u|θ) is the GP prior over u. The conditional relationship between u
and f is fundamental for this equation. With the GP priors p(f |θ) and p(u|θ)
it is possible to derive from their joint probability the conditional dependency
p(f |u, θ) = N (f ;KfuK

−1
uuu,Dff ), whereDff = Kff−Qff andQff = KfuK

−1
uuKuf .

The constructed matrices correspond to the covariance function evaluations at
the pseudo-point input locations {[xu]m}Mm=1, i.e. [Kuu]m,m′ = kf ([xu]m, [xu]m′)
and similarly covariance function evaluations between pseudo-point input and
data locations [Kfu]n,m = kf (xn, [xu]m). The matrices of p(f |u, θ) can be ap-
proximated by simpler forms using several approaches, compactly summarized
[3] by:

q(f |u, θ) =
B∏

b=1

N (fb;KfbuK
−1
uuu, αDfb,fb). (14)

where b indexes B disjoint blocks of data-function values with fb = [f1, . . . , fB ]
T.

The Deterministic Training Conditional (DTC) approximation uses α → 0; the
Fully Independent Training Conditional (FITC) approximation uses α = 1 and
B = N ; the Partially Independent Training Conditional (PITC) approximation
uses α = 1 [4, 24]. This approximation assumes that f(x) is fully determined by
the pseudo-point inputs and reduces the computational cost to O(M2N) during
learning and O(MN) for prediction.

The new prior q(f |θ) with approximation can be combined with the data
likelihood to obtain the modified generative model:

q(y, f |θ) = q(f |θ)
N∏

n=1

p(yn|f(xn), θ). (15)
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This modified model is suitable for the construction of hierarchical models,
keeping the memory inference steps node-local because each layer is associated
with its own GP approximation. However, this formulation still leaves some
problems unsolved. One is the intrinsic non-linearity of the data likelihood and
its related analytic intractability. The second problem is that, due to GP ap-
proximation (especially for DTC), the model tends to overfit [26]. Approximate
inference exploiting the EP framework can solve these remaining problems.

3 Methods

3.1 Stochastic Expectation Propagation

Expectation Propagation (EP) is a deterministic Bayesian inference algorithm
[18] which allows to approximate intractable, but factorizable joint-distributions.
EP returns a tractable form of the model joint-distribution, evaluated on the
observed data. In the case of GP regression, the approximation takes the form
of an unnormalized process q∗(f |θ) ≈ p(y, f |θ) (the superscript ∗ defines an
unnormalized process). The basic concept of distributional inference approxi-
mations, like Variational Free Enery (VFE) [26], EP [18] and Power EP [19]
is the decomposition of the joint-distribution into terms of interest, such that
p(f,y|θ) = p∗(y|f, θ) = p(y|θ)p(f |y, θ). They are fully reflected by tractable
terms of the decomposed approximation q∗(f |θ) = Zq(f |θ), where the normal-
ization constant Z approximates the marginal likelihood p(y|θ) ≈ Z and the
posterior is approximated by GP sparse approximation, equation (13), so that
p(f |y, θ) ≈ q(f |θ), i.e. the approximate inference schemes return simultaneously
approximations of the posterior and marginal likelihood in form of an unnor-
malized Gaussian process q∗(f |θ).

For the implementation of EP we reformulate the unnormalized form p∗(y|f, θ)
in terms of a dense Gaussian process prior p(f |θ), see equation (5), and the inde-
pendent likelihoods {p(yn|f, θ)}Nn=1. EP constructs the approximate posterior as
a product of site functions tn [20] and employs an approximating family whose
form mirrors that of the target [3],

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
N∏

n=1

p(yn|f, θ)

≈ p(f |θ)
N∏

n=1

tn(u) = Z q(f |θ) = q∗(f |θ), (16)

where tn(u) is approximated by a simple Gaussian. The site functions were iter-
ativly refined by minimizing an unnormalized Kullback-Leibler divergence, KL
[3], between the real posterior and each of the distributions formed by replacing
one of the likelihoods by the corresponding approximating factor [17],

argmin
tn(u)

KL

(
p(f,y|θ)

∥∥∥∥
p(f,y|θ) tn(u)
p(yn|fn, θ)

)

= argmin
tn(u)

KL(p∗\n(f |θ)p(yn|fn, θ) ‖ p∗\n(f |θ) tn(u)), (17)
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Unfortunately, such an update is still intractable as it involves the computation
of the full posterior. Instead, EP replaces the leave-one-out posteriors p∗\n(f |θ) ∝
p(f,y|θ)/p(yn|fn, θ) on both sides of KL by approximate leave-one-out posterior
q∗\n(f |θ) ∝ q∗(f |θ)/tn(u), called the cavity, so that:

KL(q∗\n(f |θ)p(yn|fn, θ) ‖ q∗\n(f |θ)tn(u)) = KL(q∗\n(f |θ)p(yn|fn, θ) ‖ q∗(f |θ)).

The update for the approximating factors are coupled and must be optimized by
iterative updating. EP is doing this in four steps. We apply here a generalized
version, called Power EP [19], where only a fraction α of the approximate or true
likelihood is removed (or included). The steps are as follows:

1. Compute the cavity distribution by removing a fraction of one approximate
factor, q∗\n(f |θ) ∝ q∗(f |θ)/tαn(u).

2. Compute a hybrid or tilted distribution, p̃(f |θ) = q∗\n(f |θ)pα(yn|fn, θ).
3. Project the hybrid distribution onto the approximate posterior by minimiz-

ing unnormalized KL divergence,

q∗(f |θ)← argmin
q∗(f |θ)∈Q

KL(p̃(f |θ) ‖ q∗(f |θ)),

where Q is the set defined in equation (16).
4. Update the approximate factor by including the new fraction of the approxi-

mate factor, tn(u) = [t1−α
n (u)]old[t

α
n(u)]new, with [tαn(u)]new = q∗(f |θ)/q∗\n(f |θ).

The fractional updates are equivalent to running the original EP procedure, but
replacing the KL minimisation with an α-divergence minimisation [31, 19], where

Dα(p
∗(f |θ) ‖ q∗(f |θ)) = 1

α(1− α)

∫
[αp∗(f |θ) + (1− α)q∗(f |θ)

− p∗(f |θ)αq∗(f |θ)1−α] df. (18)

The α-divergence becomes the inclusive KL divergence, KL(p∗(f |θ) ‖ q∗(f |θ)),
when α = 1. It becomes the exclusive KL divergence, KL(q∗(f |θ) ‖ p∗(f |θ)),
when α → 0. Minimising a set of local exclusive KL divergences is equivalent
to minimizing a single global exclusive KL divergence [19] and the Power EP
solution is the minimum of a VFE [3]. Since the unnormalized approximation,
q∗(f |θ), consists of the product of independent approximate factors tn(u), the
data can be partitioned in B disjoint blocks yb = {yn}n∈Bb

. The choice of α
and corresponding approximate factors tb(u) have a strong influence on the GP
sparse approximation scheme, see equation (14) (and [3] for more details) and
enables batch learning, which makes the GP regression task scaleable. However,
local computation comes at the cost of memory overhead that grows with the
number of datapoints, since local approximating factors need to be stored for
every datapoint.

Stochastic Expectation Propagation (SEP) reduces the memory complex-
ity of Power EP by a factor of N . This is accomplished by parameterizing a
global factor, t(u), that captures the average effect of a likelihood on the pos-

terior t(u)N :=
∏N

n=1 tn(u) and combines the benefits of local approximation
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(tractability of updates, distributability, and parallelisability) with global ap-
proximation (reduced memory demands) [17]. The set of the approximate pos-
terior in equation (16) can be rewritten as,

p∗(f |y, θ) = p(f |y, θ)p(y|θ) = p(f |θ)
N∏

n=1

p(yn|f, θ)

≈ p(f |θ)
N∏

n=1

tn(u) = p(f |θ)t(u)N = q∗SEP(f |θ). (19)

One method to implement SEP would be to compute the approximate factoriza-
tions by the iterative procedure of Power EP and optimize the hyperparameters
in an outer loop with Power EP [17]. But, it was shown in [11] that the fac-
tor tying approximation turns the optimization problem into a minimization
problem, i.e. the approximate Power EP energy can be optimized with standard
optimization algorithms (e.g. ADAM, L-BFGS-B) to find the approximate pos-
terior and hyperparameters at the same time for each iteration step. This makes
construction of hierarchical deep GP-LVMs feasible.

3.2 DGP-LVM

Standard GP models with sparse approximation have strong limitations in terms
of real world data sets with large numbers of training examples. This typically
requires a substantial increase of the pseudo-inputs for a good approximation,
resulting in a quadratic increase of computational complexity with the number
of data points. This renders larger-scale learning not practicable. Constructing
a multi-layer GP reduces the computational cost to O(NLM2), where L is the
number of layers. Further, DGPs employ a hierarchical structure of GP mappings
and therefore are arguably more flexible, have a greater capacity to generalize,
and are potentially able to provide better predictive performance [6].

DGPs have relationships to different kinds of GP models, including GP-
LVMs. The basic probabilistic model can be written as,

f (l)|θ(l) ∼ GP(f (l); 0, k(l)(·, ·)), l = 1, . . . , L

p(h(l)|f (l),h(l−1), β(l)) =
N∏

n=1

N (h(l)
n ; f (l)(h(l−1)

n ), [β(l)]−1), h(1)
n = xn, h

(L)
n = yn

where h
(l)
n is the hidden variable associated to the l-th layer, which forms the

output vector h(l) := {h(l)
n }Nn=1, i.e. h

(L) = y, and f (l) is the function of the
l-th layer. In order to infer the posterior distribution over the latent functions
mappings, hidden variables and to obtain an estimate for the marginal likelihood
for hyperparameter tuning the joint probability can be written as follows,

p(h(1:L), f (1:L)|θ(1:L)) =
N∏

n=1

L∏

l=1

p(f (l)|θ(l))p(h(l)
n |f (l), θ(l)), (20)

where h(1:L) is a short notation for h(1), . . . ,h(L), likewise for f (1:L) and θ(1:L).
Again, the joint probability is analytically intractable, due to the non-liniarity
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of the data likelihoods and also the unknown intermediate outputs of each layer.
So we make use of the SEP set for a tied factor constraint, see equation (19), in
combination with GP sparse approximation to approximate the data likelihood
of each layer,

q∗SEP(f
(1:L)|θ(1:L)) = Z

L∏

l=1

q(l)(f (l)|θ(l)) =
L∏

l=1

p(f (l)|θ(l))t(l)(u(l))N , (21)

to obtain a scalable, convergent approximate inference method. The model above
can be extended for unknown and random inputs X, defining a deep Gaussian
process latent variable model (DGP-LVM).

In a GP-LVM regression model, we suppose that each output point yn of a
high dimensional data set Y = [y1, . . . ,yN ]T ∈ ❘N×D is represented by a corre-
sponding, uncertain instance xn of a low dimensional latent input variable, where
D is the dimension of the data space. Each dimension of yn = [yn,1, . . . , yn,D]T

is defined by an unknown function fd(·) := fd, evaluated at input location xn.
The usual generative model can be summarised as follows,

p(X) =

N∏

n=1

p(h(1)
n ) (22)

fd|θ ∼ GP(fd; 0, k(·, ·)), for d = 1, . . . , D (23)

p(Y|X, f1, . . . , fD, β) =
N∏

n=1

D∏

d=1

N (yn,d; fd(xn), β
−1), (24)

where p(X) is an isotropic Gaussian and h1,n = xn. For a DGP-LVM the joint
density in equation (20) has to be extended with the prior overX and dimensions
D,

p(H(1:L), f (1:L)|θ(1:L)) =

N∏

n=1

p(h(1)
n )

L∏

l=1

D(l)∏

d=1

p(f
(l)
d |θ(l))p(h(l)

n |f (l)
d , θ(l)), (25)

where H(l) = [h
(l)
1 , . . . ,h

(l)
N ]T ∈ ❘N×D(l)

for l = 1, . . . , L. The approximate joint
density takes the following form,

q∗SEP(f
(1:L)|θ(1:L)) = p(H(1))γ(H(1))N

L∏

l=1

D(l)∏

d=1

p(f
(l)
d |θ(l))t

(l)
d (u(l))N , (26)

where γ(H1)
N is the global site function of X. The prior over X can be replaced

by top-down influences and enables, together with the approximate Power EP
energy and the resulting minimization problem, hierarchical structures of mul-
tiple DGP-LVMs.

4 Hierarchical interaction model

We tested the proposed novel statistical framework by learning of the high di-
mensional kinematic data of two interacting humans (actors). The interactive
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motion of a pair of actors was modeled using DGP-LVMs for successive dimen-
sion reduction, see Figure 1. The model is composed of three DGP-LVMs which
were learned jointly. Learning includes both the bottom-up and top-down con-
tributions at each hierarchy level. The right part of the figure represents the
kinematic data of each actor a ∈ {1; 2} by a DGP-LVM. The left part of the
graph corresponds to a top level DGP-LVM that represents the interaction of
both actors in a lower-dimensional latent space.

Modeling of the human actors. The bottom layers of our model represent the
observed kinematic data of each actor Ya. The dimensionality of each of these
data sets is reduced by a DGP-LVM with the same sample size (Na = 360)
and dimensionality (Da = 159). Each hidden layer reduces the dimensionality

by a factor of two (i.e. D
(3)
a = 80, D

(2)
a = 40 and D

(1)
a = 20), resulting in

a dimensionality Qa = 10 on the top layer (X1,X2). The hidden layers are

approximated sparsly by a pseudo-input set [Xu]
(l)
a of size M

(l)
a = 30.

Modeling of the interaction between the human actors. The top levels of
our model represents the interaction of both actors, also with a DGP-LVM with

two hidden layers. The mapping function of h
(2)
3 maps onto the concatenated

set [X1,X2] with dimension D[X1,X2] = 20. Similarly to the bottom DGP-LVMs

each hidden layer reduced the dimensionality by a factor of two (D
(2)
3 = 10,

D
(1)
3 = 5). Again, each mapping function is approximated by a pseudo-input

set [Xu]
(l)
3 of size M

(l)
3 = 100. The latent inputs X3 have a dimensionality of

Q3 = 2. The unnormalized, approximated process of the whole model can be
written as follows,

q∗SEP(f
(1)
1 , f

(2)
1 , f

(3)
1 , f

(1)
2 , f

(2)
2 , f

(3)
2 , f

(1)
3 , f

(2)
3 |θ

(1)
1 , θ

(2)
1 , θ

(3)
1 , θ

(1)
2 , θ

(2)
2 , θ

(3)
2 , θ

(1)
3 , θ

(2)
3 )

= p(X3)γ3(X3)
N

L3∏

l=1

D
(l)
3∏

d=1

p(f
(l)
3,d|θ

(l)
3 ) t

(l)
3,d(u

(l))N

× p(X2|f (2)
3 )γ2(X2|f (2)

3 )N
L2∏

l=1

D
(l)
2∏

d=1

p(f
(l)
2,d|θ

(l)
2 ) t

(l)
2,d(u

(l))N

× p(X1|f (2)
3 )γ1(X2|f (2)

3 )N
L1∏

l=1

D
(l)
1∏

d=1

p(f
(l)
1,d|θ

(l)
1 ) t

(l)
1,d(u

(l))N . (27)

5 Results

We tested our method by modeling of the body movements of two interacting
subjects, each with 189 DOFs, performing a ‘high five’ movement with different
emotional expressions. The kinematic data (BVH format) was converted into
exponential maps [8], and we computed also velocities within this representation.
Our GP model was trained on a small set of 360 data points (6 trajectories, each
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Fig. 1. Graphical model of the hierarchical DGP-LVM for modeling the interac-
tive motion of two actors. The model consists of three DGP-LVMs, where each
actor ∈ {1, 2} is represented by a DGP-LVM on the right. The interaction of
both actors is represented by the third DGP-LVM on the left side of the graph.

normalized to 60 frames (2 angry, 2 sad, 2 neutral). We varied the α-values (0.1,
0.25, 0.5, 0.75, 0.9) and tested different optimizers: ADAM and L-BFGS-B. The
second algorithm was implemented with different line search algorithms: Armijo
Backtracking (AB), More Thuente (MT), Wolfe Backtracking (WB).

Learning was implemented on the CPU with an AMD Ryzon Threadripper
1950X 16 core processor 3.4 GHz with 64 GB RAM, and on GPU with a NVIDIA
Quadro P600 graphics card with 24 GB RAM. Both implementations were real-
ized in C++ using the ArrayFire framework [28] which allows to implement just
one code for CPU and GPU solutions.

For maximal 2000 iteration steps in each learning condition this took in av-
erage 3.63h on CPU and 1,21h on GPU. ADAM, due to stochastic gradient
decent, was always the fastest optimizer in each condition (Table 1 right). The
GPU implementation with ADAM was almost seven times faster than the one
on the CPU (GPU: 0.48h vs. CPU: 3.39h in average). For the L-BFGS-B im-
plementation on the GPU the line search, which includes several internal loops,
turned out to be the bottleneck in terms of computation time.

To determine the reconstruction performance of our model we computed the
normalized mean squared error (NMSE) for the different optimization methods.
On the one hand, overall ADAM performed best on average (Table 1 left). We
found an increase of NMSE with higher α-values (i.e. the approximation being
closer to a Power EP than to VFE). On the other hand the algorithm converged
faster for larger values of α. An α-value of 0.5 seems to be the best trade-of be-
tween reconstruction performance and optimization time. Our probabilistic gen-
erative motion model is fully real-time capable for computer-animation applica-
tions with the GPU implementation, since the computation time is only 0.0035ms
per frame. An example movie of the reconstructed data and the corresponding
ground truth can be found at https://hih-git.neurologie.uni-tuebingen.
de/ntaubert/highfive_icann.

6 Conclusion

Combining methods from Bayesian unsupervised learning and inference, we de-
vised a novel real-time-capable method for the realization of Deep Gaussian Pro-

10 ICANN2021, 507, v2 (final): ’Hierarchical Deep Gaussian Processes Latent Variable Model . . .



Hierarchical Deep GP-LVM via Expectation Propagation 11

NMSE

ADAM
L-BFGS-B

AB MT WB

α

0.1 0.0210 0.0725 0.0485 0.0645
0.25 0.0213 0.0615 0.0419 0.0766
0.5 0.0309 0.0733 0.0898 0.0643
0.75 0.0900 0.1357 0.2419 0.2238
0.9 0.3175 0.3068 0.2408 0.2789

Average 0.0961 0.1300 0.1326 0.1416

Optimization Time

ADAM L-BFGS-B

GPU CPU GPU CPU

α

0.1 0.54h 3.75h 3.34h 6.89h
0.25 0.53h 3.73h 2.23h 4.38h
0.5 0.51h 3.66h 1.83h 3.79
0.75 0.48h 3.47h 1.65h 3.04
0.9 0.34h 2.32h 0.65h 1.25

Average 0.48h 3.39h 1.94h 3.87

Table 1: Normalized Mean Square Error (NMSE) and optimization time for dif-
ferent learning conditions. Reconstructions from a model optimized with ADAM
results in the smallest reconstruction error (left) and lowest optimization time
(right). The optimization time of the line search algorithms are averaged for
L-BFGS-B, due to similarity of inner loops.

cess Latent Variable models (DGP-LVMs). Our method combines sparse GP ap-
proximations with Stochastic Expectation Propagation, and we provide a GPU
implementation of the developed algorithms. To our knowledge, implementa-
tions of hierarchical DGP-LVMs have never been developed before. We found
that optimization using ADAM results in the highest prediction accuracy of the
model and optimization speed. In spite of the sophisticated underlying underly-
ing probabilistic model, we demonstrated that the algorithm is real-time-capable
when implemented on the GPU for applications in computer animation.

Future work will extend such architectures by applying a dynamical system
in form of a state space model to learn also time evolution. Further we plan to
apply our algorithm on bigger data sets, exploiting batch learning on the GPU.
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