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Abstract. The visual recognition of body motion in the primate brain requires 
the temporal integration of information over complex patterns, potentially ex-
ploiting recurrent neural networks consisting of shape- and optic-flow-selective 
neurons. The paper presents a mathematically simple neurodynamical model 
that approximates the mean-field dynamics of such networks. It is based on a 
two-dimensional neural field with appropriate lateral interaction kernel and an 
adaptation process for the individual neurons. The model accounts for a number 
of, so far not modeled, observations in the recognition of body motion, includ-
ing perceptual multi-stability and the weakness of repetition suppression, as ob-
served in single-cell recordings for the repeated presentation of action stimuli. 
In addition, the model predicts novel effects in the perceptual organization of 
action stimuli. 

Keywords: Action recognition, biological motion, neural field, adaptation,  
superior temporal sulcus, premotor cortex. 

1 Introduction 

Body motion recognition is a central visual function with high importance for social 
communication and the learning of movements by imitation [1]. The cortical core 
circuit of visual action recognition might be based on a competitive network of neu-
rons that are selective for motion and optic flow patterns, and which detect such pat-
terns in a sequence-selective manner [2]. Consistent with this hypothesis is the obser-
vation of neurons in the superior temporal sulcus (STS) that respond selectively to 
snapshots of action movies [3-5], and which often show temporal sequence selectivi-
ty, i.e. they respond differently for action movies shown in normal and inverted tem-
poral order [3]. Neurons with very similar properties were found in higher action-
selective areas, such as area F5 in monkey premotor cortex [Pomper et al., SFN, 2011, 
abstract 914.02/QQ7]. Another interesting property of such visual action-selective 
neurons is that they often show view-dependence, i.e. they respond preferentially to 
one particular view, but much less to other views of the same action [3, 5, 6]. These 
observations constrain a simple neurodynamical model that accounts for the joint 
neural encoding of the view and the time structure of action stimuli.  
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On the behavioral side, body motion perception has interesting dynamic properties 
which so far have not been studied very much by theoreticians. Firstly, body motion 
perception can show multi-stability. This has been first demonstrated by Vanrie and 
collaborators [7], who showed that the same two-dimensional point-light body motion 
stimuli can be interpreted as locomoting in two different directions, e.g. towards or 
away from the observer. This ambiguous percept shows spontaneous perceptual 
switching between the two possible perceptual interpretations, in a similar manner as 
this is known for other multi-stable displays, such as the Necker cube or binocular 
rivalry [8]. This observation suggests the existence of an underlying multi-stable neu-
ral dynamics that gives rise to these perceptual switching, and to decisions between 
the two alternative perceptual interpretations. 

Secondly, many perceptual processes, including object recognition, are character-
ized by adaptation when the same stimulus is presented repeatedly. This fact is fun-
damental for repetition suppression paradigms in fMRI experiments, which have been 
extensively applied in the field of visual object recognition [9]. For action stimuli, 
however, the results on fMRI repetition suppression have been ambiguous, and elec-
trophysiological experiments have either failed to show substantial adaptation effects 
in action-selective areas, such as area F5 in single units [10], or they have reported 
only very week adaptation effects after a large number of stimulus repetitions [11]. 
This raises the question how adaptation interacts with the perceptual organization of 
body motion stimuli, and why adaptation effects are so much weaker in action recog-
nition areas than in object recognition in the inferotemporal cortex (IT) [12].  

We present in the following a relatively simple mathematical neurodynamical 
model that provides an account for these phenomena, and which offers a possible 
explanationation why adaptation effects for action stimuli might be much weaker than 
the ones found in experiments with static shape stimuli. In addition, the model pro-
vides a possibility to coarsely estimate the importance of noise and internal fluctua-
tions (or top-down effects) in the causation of perceptual switches for ambiguous 
body motion stimuli.  

The paper is structured as follows: We first review some related theoretical ap-
proaches. Then the model will be briefly described. In the subsequent section discuss-
es the simulation results and relates them to the experimental literature, followed by 
some conclusions.   

2 Related Theoretical Work 

The experimental literature on body motion perception and perceptual multi-stability 
is vast, and space allows here only to review a few related theoretical models. While 
initial models for body motion perception have been purely computational (e.g. [13]), 
more recently a number of neural models have been developed. Our model is based 
on the dynamical core circuit of a physiologically-inspired hierarchical recognition 
model that integrates form and motion features [2]. More recently it has been shown 
that architectures of this type can be made computationally sufficiently powerful to  
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compete with state-of-the-art algorithms for action detection (e.g. [14]). Many neural 
models exist for the perceptual multistability of static stimuli, e.g. the Necker cube, or 
ambiguous coherent or apparent motion displays (e.g. [15-17]). Typically, such mod-
els are based on competitive dynamic neural networks. More recently, perceptual 
multi-stability for such phenomena has been analyzed using probabilistic approaches 
for the analysis of the activity of competing neural ensembles [18]. While we 
acknowledge that some phenomena, such as synchronized oscillations, might necessi-
tate the use of spiking neuron models, we reside to a mean-field approximation for 
this paper because it results in a model that is in principle mathematically tractable, 
and permits a qualitative understanding of the underlying dynamical phenomena.  

3 Model Architecture 

The model is based on a two-dimensional neural field [19], that represents the view 
and the keyframe (time point) of body shapes within an action sequence. The model 
represents a two-dimensional extension of the dynamic layer of a model in [2], which 
did not represent views in a continuous manner. The input of this neural field is given 
by the responses of shape-selective neurons that are selective for particular body pos-
tures and views arising during action stimuli. The selectivity of such neurons can be 
established by learning [2]. For the simulations presented in this paper we assumed an 
idealized input signal, where we replaced the real input by moving peaks in the input 
distribution. However, the same model has also been tested also while embedded in 
the hierarchical visual recognition architecture from [2], using real stimuli as input. In 
the following we focus on the neural encoding of periodic body motions, such as 
walking. In this case, the neural field is periodic in the view as well as in the direction 
of the stimulus frame.  

The proposed model is defined by two dynamic equations. The first defines an ac-
tivation dynamics, which is modeled by a two-dimensional neural field, where the 
first dimension φ specifies the stimulus view, and where the second dimension θ de-
fines the frame or snapshot (e.g. within the gait cycle) that is represented by corre-
sponding neuron (or point within the neural field). The second equation specifies a 
‘point-wise’ simple linear adaptation dynamics that is associated with each neuron 
(point) in the field. More specifically, the model is defined by the equations:  

 

(1) 
 

 (2) 
 
In equation (1) the variable u specifies the (average) membrane potential for a neu-

ron ensemble representing view φ and snapshot (body configuration) θ . The constant 
h specifies the resting potential. The recurrent interaction kernel w specifies the inter-
action between different points in the field. It is symmetric with respect to the origin  
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in the φ-direction (view), and asymmetric in the θ-direction (snapshot), with an addi-
tional strong inhibitory component. Its functional form is given by equations 

0)()(),( wwww −= θφθφ θφ , with the functions )/)1exp((cos)( φφ σφφ −=w  

and )/)1)exp((cos()( θθ σηθθ −−=w and the global inhibition w0 > 0. The param-

eters σφ and σθ specify the tuning width, and the parameter η specify the asymmetry 
of the kernel in θ-direction. It has been shown elsewhere that such asymmetric ker-
nels, if designed appropriately, result in temporal sequence selectivity and a well-
defined speed tuning curve of the neurons in the field with respect to this direction 
[20]. The symbol * signifies a spatial convolution, which is periodic since the field is 
periodic in both directions. The step threshold function 1(u) takes the value 1 for u > 
0, and zero otherwise.  

The stimulus input signal s models an (idealized) activity distribution over shape-
selective neurons. The value ),,( ts φθ defines the average input activity of shape-

selective neurons (neuron ensembles) that respond maximally to the body configura-
tion appearing at (normalized) time θ  of the gait / action cycle, and with the view 
angle φ. The stimulus input was modeled in an idealized manner, assuming peaks of 
activity with amplitude s0 that propagate in the θ-direction with speed v. More specif-
ically, these peaks were specified by the equation: 

)/)1)exp((cos()/)1))(exp((cos(),,( 0 ScSc tsts σφφσθθφθ −−−−= , where 

the peak center θc in θ-direction was moving with speed v, and where the φc corre-
sponds to the view angle of the body in the corresponding frame. The parameters σs 
defines the width of the idealized input peak. For ambiguous action stimuli that simul-
taneously activate two different competing views [7], we added a second peak with 
view angle the -φc to the input signal distribution. The noise distribution ξ  is defined 
by a Gaussian process whose kernel function is the product of a spatial kernel func-
tion that was fitted in order to reproduce coarsely the correlation statistics, dependent 
on the tuning similarity of the neurons [21], and a delta function with respect to time.  

The dynamic neural field define by equation (1) stabilizes a stimulus-locked travel-
ling peak solution in θ-direction, i.e. an activation peak that follows the stimulus 
peak, if the frames of an action stimulus appear in the correct temporal order, and if 
the speed of the input peak falls in the range of preferred speeds that is determined by 
the parameters of the neural field. If the frames of an action movie are shown in the 
wrong temporal order, or if the speed of the presentation of the movie deviates very 
strongly from the natural speed of the action (that matches the preferred speed of  
the field) the activation in the neural field remains relatively small [2]. In addition,  
the lateral interactions in (view) φ-direction result in a winner-takes-all competition 
along this dimension, resulting in a decision for one stimulus view for stimuli that  
are ambiguous and activate simultaneously interpretations corresponding to multiple 
views.  

Equation (2) specifies a simple adaptation process, independently for each point in 
the neural field. The adaptation variable a(φ,θ) feeds back negatively in the activation 
field with a strength that is determined by the positive parameter α. It is driven by  
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the output activity of the corresponding point in the neural field. The time scales  
of the activation and the adaptation dynamics were given by positive parameters  
τu = 120 ms and τa = 2.4 s.   

4 Simulation Results 

I) Multi-stability: The proposed neural model defines a multi-stable dynamics. For 
ambiguous stimuli activating the views ±φc that deviate sufficiently from the side 
view (φc = 0) of a walker, the field has two alternative stable travelling pulse solu-
tions, moving together with the stimulus peaks in the θ-direction with speed v. One of 
these solutions is depicted in the first three panels of Fig. 1A, where the selected view 
is the one corresponding to the view angle (φc = -72 deg). Strong noise can induce a 
spontaneous switch to the other stable travelling pulse solution, corresponding to (φc = 
72 deg). Such a spontaneous switch is taking place in panels 3 and 4 of Fig. 1A. After 
the switch the activity peak propagates with speed v along a horizontal line that corre-
spond to the view angle 72 deg. 

This behavior is confirmed by an analysis of the sum of the activity in the field.  
Fig 1B shows the sums of the thresholded activity over all values of θ, and the regions 
with positive respectively negative values of the variable φ. Due to the noise, these 
sum activity show strong fluctuations. A spontaneous transition to the other stable 
solution occurs within time interval close to t = 8 s, corresponding to a perceptual 
switch between the two alternative views that are compatible with the stimulus.,  

In addition, the model predicts an interesting bifurcation (see Fig. 1C): For view 
angle differences below ±21 deg the bistability disappears, and only a single stable 
traveling pulse solutions exists that follows the average of the compatible stimulus 
views ±φc. Initial psychophysical observations seem to confirm this bifurcation.  

II) Adaptation: The adaptation dynamics was fitted using data from single cell re-
cordings in inferotemporal (IT) cortex [12]. To account for the recognition of static 
stimuli, the interaction kernel was made symmetrical (choosing η = 0), and a static 
stimulus distribution s was used. The time course and the maximum rate of adaptation 
in these experiments were coarsely matched (Fig. 2A). The adaptation results in a 
flattening of the tuning curve, not just in a multiplicative rescaling (Fig. 2B), con-
sistent with the data [12]. Applying the same adaptation mechanisms to the original 
model in absence of internal noise (ξ ≡ 0) was insufficient to account for spontaneous 
switches, suggesting that these perceptual switches are not adaptation-induced.   

The repetition of a single action stimulus (one gait or action cycle), following the 
procedure in fMRI studies and in [10], results in a very small adaptation effect that is 
difficult to detect in presence of noise (red curve, Fig 2C). (The noise level here was 
far below the one required for inducing perceptual switches.) Using a special stimulus 
that repeats a fragment from an action movie with a duration of about 200 ms very 
quickly, but keeping the total stimulus time (3 s) constant, results in a much stronger 
adaptation effect. The model thus predicts that such stimuli might be more efficient 
adaptors than the repetition of whole actions.  
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Fig. 1. Multi-stability of the neural field dynamics. A For an ambiguous body motion stimu-
lus that equally activates two view directions (φc = ±72 deg relative to the side view; indicated 
by the pink lines) the solution peak first propagates along with the stimulus peak at φ = -72 deg. 
A spontaneous transition to the other stable travelling pulse solution, centered at the view angle 
φ = 72 deg occurs after some time (panel 4)). B The sum activity over frames and over positive, 
respectively negative view angles shows strong random fluctuations, resulting in a spontaneous 
switching between the two stable solutions for t around 8 s. C For view angles φc that deviate 
less form the side view than ±21 deg the bistability disappears (bifurcation). Only a single 
stable travelling peak solution exists that follows the midpoint of the two peaks of the input 
signal distribution in φ direction (which are indicated by the pink lines). 
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Fig. 2. Activation-dependent adaptation. A Simulating adaptation effects in area IT [12], using 
static stimuli and a field with symmetric interaction kernel (v = 0), the repeated presentation of 
static patterns results in a maximum adaptation of the neuron activity of about 30 %. B The 
adaptation results in a widening of the tuning curve, consistent with the experimental data from 
area IT. C Using the same adaptation dynamics, only very weak adaptation is found for repeti-
tion of action stimuli (red curve: sum activity for one stimulus repetition). A different stimulus 
with fast repetition of the same short action fragment (duration of about 200 ms) results in 
much stronger adaptation for the same total stimulus duration. 

5 Conclusions 

This paper proposed a neurodynamical model that captures several aspects of the 
perceptual dynamics in body motion perception. It provides a unifying explanation for 
several phenomena: i) multi-stability in the perception of views of body motion; ii) a 
possible cause for the difficulty to demonstrate adaptation effects for the stimulus 
repetition of action stimuli. In addition, the model makes a number of predictions: a) 
It predicts a bifurcation of the dynamics in dependence of the deviation of the stimu-
lus views from the side view. b) It suggests a new action stimulus that might result in 
stronger adaptation effects than simple stimulus repetition. Furthermore, the proposed 
model is mathematically quite simple and thus accessible for mathematical analysis. 
Experimental testing of these predictions and such a mathematical analysis are the 
topics of ongoing work.  
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