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Abstract The peristimulus time histogram (PSTH) and its
more continuous cousin, the spike density function (SDF)
are staples in the analytic toolkit of neurophysiologists.The
former is usually obtained by binning spike trains, whereas
the standard method for the latter is smoothing with a Gaus-
sian kernel. Selection of a bin width or a kernel size is of-
ten done in an relatively arbitrary fashion, even though there
have been recent attempts to remedy this situation (DiMatteo et al
2001; Shimazaki and Shinomoto 2007c,b,a; Cunningham et al
2008). We develop an exact Bayesian, generative model ap-
proach to estimating PSTHs. Advantages of our scheme in-
clude automatic complexity control and error bars on its
predictions. We show how to perform feature extraction on
spike trains in a principled way, exemplified through latency
and firing rate posterior distribution evaluations on repeated
and single trial data. We also demonstrate using both sim-
ulated and real neuronal data that our approach provides a
more accurate estimates of the PSTH and the latency than
current competing methods. We employ the posterior dis-
tributions for an information theoretic analysis of the neu-
ral code comprised of latency and firing rate of neurons in
high-level visual area STSa. A software implementation of
our method is available at the machine learning open source
software repository (www.mloss.org, project ’binsdfc’).

Keywords spike train analysis· Bayesian methods·
response latency· PSTH· SDF · information theory

1 Introduction

Plotting a peristimulus time histogram (PSTH), or a spike
density function (SDF), from spiketrains evoked by and aligned
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to the onset of a stimulus is often one of the first steps in
the analysis of neurophysiological data. It is an easy way
of visualising certain characteristics of the neural response,
such as instantaneous firing rates (or firing probabilities), la-
tencies and response offsets. These measures also implicitly
represent a model of the neuron’s response as a function of
time and are important parts of their functional description.
Yet PSTHs are frequently constructed in an unsystematic
manner, e.g. the choice of time bin size is driven by result ex-
pectations as much as by the data. Recently, there have been
more principled approaches to the problem of determining
the appropriate temporal resolution (Shimazaki and Shinomoto
2007c,b,a).

We recently developed an exact Bayesian, generative model
approach to estimating PSTH/SDFs (Endres et al 2008). Our
model encodes a spike generator described by an inhomo-
geneous Bernoulli process with piecewise constant (in time)
firing probabilities. We demonstrated that relevant marginal
distributions, e.g. the posterior distribution of the number
of bins, can be evaluated from the full posterior distribu-
tion over the model parameters efficiently, i.e. in polyno-
mial time. Extending earlier dynamic programming schemes
(Endres and F̈oldiák 2005), we also showed that expected
values, such as the predictive firing rate and its standard er-
ror, are computable with at most cubic effort.

Here we extend the performance comparisons in (Endres et al
2008) and illustrate the usefulness of our method. We also
demonstrate how to use our Bayesian approach for princi-
pled feature extraction from spike trains. Specifically we
examine latencies and firing rates, since previous studies
(Richmond and Optican 1987b; Tovee et al 1993) indicate
that much of the stimulus-related information carried by neu-
rons is contained in these measures (see (Oram et al 2002)
for a review). We give a ’minimal’ definition of latency and
show how the latency posterior distribution and the firing
rate posterior density can be evaluated. These posteriors are
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then employed for an information theoretic analysis of the
neural code comprised of latency and firing rate. Note that
we do in no way claim that a PSTH is a complete generative
description of spiking neurons. We are merely concerned
with inferring that part of the generative process which can
be described by a PSTH in a Bayes-optimal way. This paper
tries to appeal to computational neuroscientists and neuro-
physiologists alike. While the former require sound deriva-
tions to accept a method’s validity, the latter need to be con-
vinced of a method’s superiority through demonstrations if
they are to adopt it. We attempt to present a balanced mix of
both.

2 The model

2.1 Traditional approaches

The traditional approaches to estimating firing probabilities
or firing rates from neurophysiological data can roughly be
divided into two classes: binning and smoothing. The former
yields PSTHs, whereas the latter produces SDFs (Richmond and Optican
1987a). Both are instances of regularisation procedures, which
try to deal with the ubiquitous noise and data scarcity by
making various implicit assumptions. From a generative model
perspective, binning basically presupposes that the firingprob-
abilities are constant within each bin, whereas smoothing
imposes the prior belief that high-frequency fluctuations are
mostly noise. Whether these assumptions are correct can not
be decided a priori, but must be evaluated by comparing the
predictive performances of all models in question on real
neurophysiological data (see section 3.4).

An intuitive understanding of the relative merits and draw-
backs of these two approaches can be obtained from fig.1:
panel A shows a rastergram of 32 spiketrains recorded from
an STSa neuron in response to a stimulus. Each tick repre-
sents a spike, with the spiketrains (rows) aligned to stim-
ulus onset. Panel B shows a PSTH with a fixed bin du-
ration, optimised for the data by the method described in
(Shimazaki and Shinomoto 2007c,b). While a bin PSTH could
in principle model sharp transients, the location of the bin
boundaries are determined by the constant binwidth. There-
fore, the precise onset of the transient is often not captured
well. In addition, the constant bin duration also forces this
method to put many bins into time intervals where the spike-
trains appears relatively constant, e.g. in [200ms,400ms].
Panel C depicts the SDF obtained by smoothing these spike-
trains with a Gaussian kernel of 10ms width. Compared to
the rastergram, high frequency fluctuation in the spiketrains
is reduced to some degree, as can be seen e.g. in the interval
[200ms,400ms]. However, the sharp transient at≈ 100ms
(indicated by the dashed vertical line across panels B-D),
becomes blurred. Thus, relevant timing information might
be lost.
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Fig. 1 Predicting a PSTH/SDF with 3 different methods.A: the dataset
used in this comparison consisted of 32 spiketrains recorded from a
STSa neuron. This neuron was chosen for its clear response profile.
Each tick mark represents a spike.B: bar PSTH (solid line), optimal
binsize≈ 26ms, and line PSTH (dashed line), optimal binsize≈ 78ms,
computed by the methods described in (Shimazaki and Shinomoto
2007c,b).C: SDF obtained by smoothing the spike trains with a 10ms
Gaussian kernel.D: PSTH inferred with our Bayesian binning method.
The thick line represents the predictive firing rate, the thinlines show
the predictive firing rate±1 standard deviation. Models with 4≤ M ≤
13 were included on a risk level ofα = 0.1 (see eqn.(17)).The vertical
dashed line indicates the mode of the latency posterior (see section 4.1
and fig.5).

Finally, both binning and smoothing are often employed
to compute point estimates of the instantaneous firing rate.
Given the typically small sample sizes in neurophysiologi-
cal experiments, reliable point estimates are hard to obtain,
and measures of posterior uncertainty and variability, both
between and within trials, should be a part of the estimation
procedure. Our Bayesian binning method (fig.1, D) achieves
this goal.

2.2 Bayesian binning

We propose a compromise between binning and smoothing
to deal with the problems described in the previous section:
keep the bins to allow for rapid changes in the instantaneous
firing rate, but allow for varying bin durations. This enables
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Fig. 2 A: A spike train, recorded between timestmin andtmax is rep-
resented by a binary vectorzi. B: The time span betweentmin andtmax

is discretised intoT intervals of duration∆ t = (tmax − tmin)/T , such
that intervalk lasts fromk×∆ t + tmin to (k+1)×∆ t + tmin. ∆ t is cho-
sen such that at most one spike is observed per∆ t interval for any
given spike train. Then, we model the firing probabilitiesP(spike|t)
by M + 1 = 4 contiguous, non-overlapping bins (M is the number of
bin boundaries inside the time span[tmin, tmax]), having inclusive up-
per boundarieskm andP(spike|t ∈ (tmin+∆ t(km−1+1), tmin+∆ t(km+
1)]) = fm. C: model posteriorP(M|{zi}) (see eqn.(16)) computed from
the data shown in fig.1. The shape is fairly typical for model posteriors
computed from the neural data used in this paper: a sharp rise at a mod-
erately lowM followed by a maximum (here atM = 6) and an approx-
imately exponential decay. Even though a maximumM of 699 would
have been possible,P(M > 23|{zi})< 0.001. Thus, we can accelerate
the averaging process for quantities of interest (e.g. the predictive fir-
ing rate) by choosing a moderately small maximumM. For details, see
text.

us to put the bin boundaries at only those time points where
the changes in firing rate happen. As a consequence, time
intervals in which the firing rate does not change can now
be modelled by one (or a few) bins, which reduces the risk
of overfitting noise. Uncertainties and variabilities willbe
computed in an exact Bayesian fashion. The resultant ex-
pected firing rates (complete with their uncertainties) will
therefore have a more continuous appearance, similar to the
results yielded by a smoothing technique.

Details of the formal model have been described in (Endres etal
2008). Briefly, we model a PSTH on[tmin, tmax] discretised
into T contiguous intervals of duration∆ t = (tmax − tmin)/T
(see fig.2, A and B). We select a discretisation fine enough
(here 1ms) so that we will not observe more than one spike
in a ∆ t interval for any given spike train. Spike traini can
then be represented by a binary vectorzi of dimensionality
T . We model the PSTH byM+1 contiguous, non-overlapping
bins having inclusive upper boundarieskm, within which
the firing probability fm = P(spike|t ∈ (tmin + ∆ t(km−1 +

1), tmin +∆ t(km +1)]) is constant. Importantly, the bin size
(distance between bin boundaries) is not fixeda priori but
can vary depending on the observed data. The relationship
between the firing probabilitiesfm and the instantaneous fir-
ing rates is given by

firing rate=
fm

∆ t
. (1)

M is the number of bin boundaries inside[tmin, tmax]. The
probability of a spike trainzi of independent spikes/gaps is
then

P(zi|{ fm},{km},M) =
M

∏
m=0

f s(zi,m)
m (1− fm)

g(zi,m) (2)

wheres(zi,m) is the number of spikes andg(zi,m) is the
number of non-spikes, or gaps in spiketrainzi in bin m,
i.e. between intervalskm−1 + 1 andkm (both inclusive). In
other words, we model the spiketrains by an inhomogeneous
Bernoulli process with piecewise constant probabilities.We
also definek−1 = −1 andkM = T −1. Note that there is no
binomial factor associated with the contribution of each bin,
because we donot want to ignore the spike timing informa-
tion within the bins, but rather, we try to build a simplified
generative model of the spike train. Therefore, the probabil-
ity of a (multi)set of spiketrains{zi}= {z1, . . . ,zN}, assum-
ing independent generation, is

P({zi}|{ fm},{km},M) =
N

∏
i=1

M

∏
m=0

f s(zi,m)
m (1− fm)

g(zi,m)

=
M

∏
m=0

f s({zi},m)
m (1− fm)

g({zi},m) (3)

wheres({zi},m)=∑N
i=1 s(zi,m) andg({zi},m)=∑N

i=1 g(zi,m).

2.3 The priors

We make a non-informative prior assumption for the joint
prior of the firing probabilities{ fm} and the bin boundaries
{km} given the total number of bin boundariesM, namely

p({ fm},{km}|M) = p({ fm}|M)P({km}|M). (4)

i.e. we have no a priori preferences for the firing rates based
on the bin boundary positions. Note that the prior of thefm,
being continuous model parameters, is a density. Given the
form of eqn.(2) and the constraintfm ∈ [0,1], it is natural to
choose a conjugate prior

p({ fm}|M) =
M

∏
m=0

B( fm;σm,γm). (5)

The Beta density is defined in the usual way (see e.g. (Berger
1985)):

B(p;σ ,γ) =
Γ (σ + γ)
Γ (σ)Γ (γ)

pσ−1(1− p)γ−1. (6)

There are only finitely many configurations of thekm. As-
suming we have no preferences for any of them, the prior
for the bin boundaries becomes

P({km}|M) =
1

(

T −1
M

) . (7)

where the denominator is just the number of possibilities in
which M ordered bin boundaries can be distributed across
T −1 places (bin boundaryM always occupies positionT −

1, see fig.2, B, hence there are onlyT −1 positions left).
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2.4 Computing the evidence and other posterior
expectations

To calculate quantities of interest for a given number of bin
boundariesM and a set of spiketrains{zi}, e.g. predicted fir-
ing probabilities, their variances and expected bin boundary
positions, we need to average the quantity of interest over
the posterior of the firing rates in the bins{ fm} and the bin
boundaries{km}:

p({ fm},{km}|M,{zi}) =
p({zi},{ fm},{km}|M)

P({zi}|M)
(8)

which requires the evaluation of the evidence, or marginal
likelihood of a model withM bins:

P({zi}|M) =
T−2

∑
kM−1=M−1

kM−1−1

∑
kM−2=M−2

. . .

. . .
k1−1

∑
k0=0

P({zi}|{km},M)P({km}|M) (9)

where the summation boundaries are chosen such that the
bins are non-overlapping and contiguous and

P({zi}|{km},M) =

=
∫ 1

0
d{ fm}P({zi}|{ fm},{km},M)p({ fm}|M). (10)

with
∫ 1

0
d{ fm}=

∫ 1

0
d f0

∫ 1

0
d f1 . . .

∫ 1

0
d fM. (11)

Computing the sums in eqn.(9) might seem difficult.M sums
over O(T ) summands suggest a computational complexity
of O(T M), which is impractical. To appreciate why, let’s
consider an example: In a typical neurophysiological sce-
nario, we might want to estimate the PSTH in aT = 700ms
time window with∆ t =1ms. If we tried to model this distri-

bution byM+1= 11 bins, we would have to check

(

699
10

)

configurations, i.e. the number of possibilities to distribute
10 ordered bin boundaries across 699 places. This is> 1021.
Even if we checked 10 configurations per microsecond, we
would take more than 20 million years to finish.

However, we can expedite this process. As previously
demonstrated (Endres et al 2008), using dynamic program-
ming the computational complexity can be reduced toO(MT 2).
In the above example, the time to compute the evidence re-
duces to≈ 0.5 s, which is fast enough to be useful. We give
a description of the algorithm in appendix A. This algorithm
is also the basis for the latency calculations in section 4.1.

Posterior expectations can be evaluated in a similar fash-
ion. For example, given the model parameters{km},{ fm}
andM, the predictive firing probability at time indext can
formally be written as

P(spike|t,{ fm},{km},M)=
M

∑
m=0

fmT (t ∈{km−1+1,km})(12)

where the indicator functionT (x) = 1 iff x is true and 0 oth-
erwise. Thus, the sum will have exactly one nonzero contri-
bution from that bin which containst. Multiplying the r.h.s.
of eqn.(12) with the r.h.s. eqn.(8) and marginalising{ fm}

and{km} yields the predictive firing probability att givenM
and the data{zi}:

〈P(spike|t)〉 (13)

where〈. . .〉 denotes a posterior expectation. The necessary
summations/integrations can be done by a modified version
of the algorithm described in appendix A: since eqn.(12)
puts a factorfm into the bin which containst, we only need
to add an ’extra’ spike in this bin in eqn.(A-5), run the al-
gorithm and divide the result by the evidence to obtain the
predictive firing probability.

To compute the standard deviation of the firing probabil-
ity, we need the posterior expectation of

P2(spike|t,{ fm},{km},M)=
M

∑
m=0

f 2
mT (t ∈{km−1+1,km})(14)

The factorf 2
m amounts to puttingtwo spikes in the bin which

containst. Then,

Var(P(spike|t)) =
〈

P2(spike|t,{zi},M)
〉

−
〈

P(spike|t,{zi},M)2〉 (15)

2.5 Model selection vs. model averaging: how many bins
do we need?

To choose the bestM given{zi}, or better, a probable range
of Ms, we need to determine the model posterior

P(M|{zi}) =
P({zi}|M)P(M)

∑m P({zi}|m)P(m)
(16)

whereP(M) is the prior overM, which we assume to be uni-
form. The motivation for this choice is simply that we have
no a priori preferences for any model complexity, but we
would rather drive the choice ofM as completely as possi-
ble by the data. The sum in the denominator runs over all
values ofm which we choose to include, at mostm ≤ T −1.

OnceP(M|{zi}) is evaluated, we could use it to select
the most probableM′. However, making this decision means
’contriving’ information, namely that all of the posteriorprob-
ability is concentrated atM′. Thus we should rather aver-
age any predictions over all possibleM, even if evaluating
such an average has a computational cost ofO(T 3), since
M ≤ T −1. If the structure of the data allow, it is possible,
and useful given a large enoughT , to reduce this cost by
finding a range ofM, such that the risk of excluding a model
even though it provides a good description of the data is low.
In analogy to the significance levels of orthodox statistics,
we shall call this riskα. If the posterior ofM is unimodal
(which it has been in most observed cases, see fig.2, C, for
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an example), we can then choose the smallest interval ofMs
around the maximum ofP(M|{zi}) such that

P(Mmin ≤ M ≤ Mmax|{zi})≤ 1−α (17)

and carry out the averages over this range ofM after renor-
malising the model posterior. We useα = 0.1 unless stated
otherwise.

3 Simulations and comparison to other methods

3.1 Predicted PSTH convergence to simulated generator
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Fig. 3 Performance comparsion on artificially generated spiketrains.
The generators (thick, square-wave (left) and smoothed square-wave
(right) lines in top panels) are the rate profiles from which the spike
trains were drawn.Top panels show typical PSTH/SDFs obtained from
datasets containing 1 and 30 trials. ’Typical’ means that the time-
averaged Kullback-Leibler divergence (tKLd) between the generator
and the estimated PSTH/SDFs is close to the average tKLd for a given
number of trials.Dashed: smoothing with a Gaussian kernel of 10ms
width, Solid: Bayesian binning.Bottom panels: average tKLd between
generator and estimated PSTH/SDFs across 100 simulations as a func-
tion of trials per dataset. The generator on the left is comprised of bins,
which Bayesian binning should be able to model perfectly given alarge
enough dataset size. Thus, the tKLd at 100 trials is much smaller for
Bayesian binning. More importantly, Bayesian binning is consistently
better than Gaussian smoothing even for very small numbers of trials.
The generator on the right is smoothed with a 10ms wide Gaussian
kernel. While Bayesian binning can no longer model it perfectly with a
finite number of bins, it is still a better estimator than kernel smoothing
up to at least 100 trials.

We first tested our method by inferring PSTH/SDFs from
artificial data. We generated spiketrains from inhomogeneous
Bernoulli processes with the rate profiles shown in the top
panels of fig.3. To quantify the difference between the gener-
ator and an inferred PSTH/SDF, we employed a time-averaged
version of the Kullback-Leibler divergence (KLd) (Cover and Thomas
1991). LetP(t) andQ(t) be the spiking probability of the

generator and the inferred PSTH/SDF at timet, respectively.
The KLd between them att is

KLd(t)=P(t) log

(

P(t)
Q(t)

)

+(1−P(t)) log

(

1−P(t)
1−Q(t)

)

.(18)

KLd has several interpretations, the one most relevant for
our purposes is the following: if we had observed a spike at

time t, log
(

P(t)
Q(t)

)

= log2 (P(t))− log(Q(t)) would measure

how much more (log-) probable that spike would have been
given the generator versus the inferred PSTH/SDF. Like-

wise, if we had observed no spike, log
(

1−P(t)
1−Q(t)

)

tells us how

much more (log-) probable this event would have been. To
get the expected gain in (log-)probability, we need to av-
erage these terms over the spike/no spike generating distri-
bution att, which is given byP(t) and 1−P(t), respectively.
This averaging yields eqn.(18). It can be shown (Cover and Thomas
1991) that KLd≥ 0 with equality only if P(t) = Q(t), i.e.
the expected log probability of spike/no spike is maximised
by the generating distribution. We average KLd(t) across
all time indexes of interest to yield the time-averaged KLd
(tKld):

tKLd =
1
T

T−1

∑
t=0

tKLd(t) (19)

The top panels in fig.3 show typical PSTH/SDFs inferred
from 1 and 30 trials. ’Typical’ means that the tKLd is close
to the average tKLd for a given number of trials. The Bayesian
binning PSTH is computed from the predictive firing prob-
ability 〈P(spike|t)〉, the dashed lines represent±1 posterior
standard deviation (from eqn.(15)), the prior parametersσm

andγm were equal for all bins and set to their maximum a-
posteriori value. The generating rate profile in the left half of
fig.3 is comprised of bins. Hence, Bayesian binning should
model it with increasing accuracy and reduced uncertainty
as the dataset grows. An indication for that can be seen by
comparing the PSTH/SDFs from 1 and 30 trials: the gen-
erating rate profile is followed much more closely for 30
trials than for 1 and the posterior standard deviations also
decrease noticeably as the number of trials increases. Fur-
thermore, the Bayesian binning PSTH is closer to the gen-
erator than the SDF computed by smoothing the spiketrains
with a 10ms wide Gaussian kernel, which is displayed for
comparison.

Importantly, Bayesian binning is doing well even if the
generator cannot be modelled by a small number of bins: the
right half of fig.3 shows simulation results for a generator
that was smoothed with a 10ms wide Gaussian kernel. Here,
the Gaussian kernel smoothing gives expectably good re-
sults (at least for 30 trials), but note that Bayesian binning is
doing apparently equally as well. More quantitative perfor-
mance comparison results are shown in the bottom panels of
fig.3. We repeated the simulation 100 times for a given num-
ber of trials per dataset, thus obtaining the average tKLd and
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its standard deviation. For the bin generator, Bayesian bin-
ning outperforms Gaussian kernel smoothing for all dataset
sizes. For the smoothed generator, Bayesian binning still
outperforms Gaussian kernel smoothing, while the differ-
ence between the two methods shrinks as the number of tri-
als per dataset increases. But even for 100 trials, Bayesian
binning is as good as Gaussian kernel smoothing. We have
thus reason to hope that Bayesian binning might outperform
other PSTH/SDF estimation methods on real neural data.
This will be shown in the next subsections.

3.2 Data acquisition

The experimental protocols have been described before (Oram et al
2002; van Rossum et al 2008). Briefly, extra-cellular single-
unit recordings were made using standard techniques from
the upper and lower banks of the anterior part of the supe-
rior temporal sulcus (STSa) of two monkeys (Macaca mu-
latta) performing a visual fixation task. The subject received
a drop of fruit juice reward every 500ms of fixation while
static stimuli (10o by 12.5o) were displayed. Static images
were presented centrally on the monitor. Stimuli consistedof
256 gray scale pictures of familiar and unfamiliar objects,
heads, body parts and whole bodies. Visual stimuli were
presented in a random sequence for 333ms with a 333ms
inter-stimulus interval centrally on a black monitor screen
(Sony GDM-20D11, resolution 25.7 pixels/degree, refresh
rate 72Hz), 57cm from the subject. Stimulus contrast was
determined using foreground regions of the image. The 100%
Michelson contrast =Lmax−Lmin

Lmax+Lmin
, whereL is the luminance,

was formed by normalising the foreground pixel values such
that they occupied the monitor full luminance range after
adjusting the initial greyscale image to have mid (50%) lu-
minance. Other contrast versions (75%, 50%, 25%, 12.5%)
were achieved by systematically varying the width of the
distribution of the foreground pixel values of the 100% con-
trast version while maintaining the average foreground lu-
minance. All manipulations were performed after correcting
for the measured gamma function of the display monitor.

Stimulus presentation began after 500ms of fixation cen-
trally on the screen (fixation deviations outside the fixation
window lasting≤100ms were ignored to allow for blink-
ing). Fixation was rewarded with the delivery of fruit juice.
Spikes were recorded during the period of fixation. If the
subject looked away for longer than 100ms, both spike record-
ing and presentation of stimuli stopped until the subject re-
sumed fixation for 500ms. The results from initial screen-
ing (Edwards et al 2003) were used to select stimuli that
elicited large responses from the neuron (effective stimuli)
and to select stimuli that elicited small or no response (inef-
fective stimuli). For different neurons effective and ineffec-
tive stimuli included different views of the head (Perrett et al
1991), abstract patterns and familiar objects (Földiák et al

2004). Details of the stimulus selectivity of these neurons
has been reported elsewhere (Oram et al 2002; Földiák et al
2004; Edwards et al 2003; Barraclough et al 2005; Edwards et al
2003). The anterior-posterior extent of the recorded cells
was from 7mm to 10mm anterior of the interaural plane, in
the upper bank (TAa, TPO), lower bank (TEa, TEm) and
fundus (PGa, IPa) of the superior temporal sulcus (STS)
and in the anterior areas of TE (AIT of [Tanaka1991]), ar-
eas which we collectively call the anterior STS (STSa, see
(Barraclough et al 2005) for further discussion). The recorded
firing patterns were turned into distinct samples, each of
which contained the spikes from−300 ms to 600 ms after
the stimulus onset with a temporal resolution of 1ms.

3.3 Inferring PSTHs

To see the method in action on real neural data, inferred a
PSTH from 32 spiketrains recorded from one of the avail-
able STSa neurons (see fig.1, A). We discretised the inter-
val from−100ms pre-stimulus to 600ms post-stimulus into
∆ t = 1ms time intervals and computed the posterior (eqn.(16))
for models with varying number of binsM (see fig.2, C). The
prior parameters were equal for all bins and set toσm = 1
andγm = 32. This choice corresponds to a firing probability
of ≈ 0.03 in each 1 ms time interval (30 spikes/s), which is
typical for the neurons in this study1. Models with 4≤ M ≤
13 (expected bin sizes between≈ 23ms-148ms) were in-
cluded on anα = 0.1 risk level (eqn.(17)) in the subsequent
calculation of the predictive firing rate (i.e. theexpected fir-
ing rate, hence the continuous appearance) and standard de-
viation (fig.1, D). For comparison, fig.1, B, shows a bar PSTH
and a line PSTH computed with the recently developed meth-
ods described in (Shimazaki and Shinomoto 2007c,b). Roughly
speaking, these methods try to optimise a compromise be-
tween minimal within-bin variance and maximal between-
bin variance. In this example, the bar PSTH consists of 26
bins. Panel C in fig.1 depicts a SDF obtained by smoothing
the spiketrains with a 10ms wide Gaussian kernel, a stan-
dard way of calculating SDFs in the neurophysiological lit-
erature.

All tested methods produce results which are, upon cur-
sory visual inspection, largely consistent with the spiketrains.
However, Bayesian binning is better suited than Gaussian
smoothing to model steep changes, such as the transient re-
sponse starting at≈ 100ms. While the methods from (Shimazaki and Shinomoto
2007c,b) share this advantage, they suffer from two draw-
backs: firstly, the bin boundaries are evenly spaced, hence
the peak of the transient is later than visual examination of
the rastergrams would suggest. Secondly, because the bin

1 Alternatively, one could search for theσm,γm which maximise
of P({zi}|σm,γm) = ∑M P({zi}|M)P(M|σm,γm), whereP({zi}|M) is
given by eqn.(9). Using a uniformP(M|σm,γm), we foundσm ≈ 2.3
andγm ≈ 37 for the data in fig.1, A
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duration is the only parameter of the model, these methods
are forced to put many bins even in intervals that are rel-
atively constant, such as the baselines before and after the
stimulus-driven response. In contrast, Bayesian binning is
able to put bin boundaries anywhere in the time span of in-
terest and can model the data with less bins – the model
posterior has its maximum atM = 6 (7 bins), whereas the
bar PSTH consists of 26 bins.

3.4 Performance comparison by cross-validation
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Fig. 4 Comparison of Bayesian Binning with competing methods
by 5-fold crossvalidation. The CV error is the negative expected log-
probability of the test data. The histograms show relative frequen-
cies of CV error differences to our Bayesian binning approach. Left:
Shimazaki’s and Shinomoto’s methods (Shimazaki and Shinomoto
2007b,a).Right, top Bayesian Adaptive Regression Splines (BARS)
(DiMatteo et al 2001).Right, middle: smoothing with a Gaussian ker-
nel of 10ms width.Right, bottom: local likelihood adaptive fitting
(Loader 1997, 1999).

For a more rigorous method comparison, we split the
data into distinct sets, each of which contained the responses
of a cell to a different stimulus. This procedure yielded 336
sets from 20 cells with at least 20 spiketrains per set. We then
performed 5-fold crossvalidation. The crossvalidation error
is given by the negative logarithm of the predicted probabil-
ity (eqn.(13)) of the data (spike or no spike) in the test sets.
Let sn(t) = 1 if trial n of N in the test set contains a spike at
time indext ∈ {0, . . . ,T −1} andsn(t) = 0 otherwise. Then

CV error=−
1
N

N−1

∑
n=0

1
T

T−1

∑
t=0

log〈(P(sn(t)|t))〉 . (20)

Thus, we measure how well the PSTHs/SDFs predict the
test data on average across time and across all test trials.
Note that this CV error is similar to the tKLd (eqn.(19)): the
constant terms referring to the generator have been dropped,
because the generator is not known here and the averaging
is done across the data rather than the generating distribu-
tion for the same reason. We average the CV error over the
5 estimates to obtain a single estimate for each of the 336
neuron/stimulus combinations. The prior parametersσm,γm

were equal for all bins and MAP optimised for each indi-
vidual training dataset. In (Endres et al 2008) we already

Table 1 Average log prediction error differences to Bayesian binning
from 5 fold crossvalidation on 336 datasets. A positive value means
that our method predicts the data better than the competitor.

Method CV error diff.

Shimazaki and Shinomoto (2007b) bar (2.35±0.23)×10−3

Shimazaki and Shinomoto (2007b) line (1.22±0.10)×10−3

Gauss 10ms (1.29±0.11)×10−3

Local likelihood fit (Loader 1997) (7.34±0.48)×10−4

Shimazaki and Shinomoto (2007a) kernel(3.14±0.39)×10−4

BARS (DiMatteo et al 2001) (0.8±1.6)×10−5

Bayesian binning 0

demonstrated that Bayesian binning outperforms SDFs ob-
tained by Gaussian smoothing, and the bin and line his-
togram methods from (Shimazaki and Shinomoto 2007c,b).

We also tested Bayesian binning against the kernel smooth-
ing method described in (Shimazaki and Shinomoto 2007a),
a local likelihood adaptive fit (Loader 1999) and Bayesian
Adaptive Regression Splines (BARS) (DiMatteo et al 2001).
To compare the performances between the different meth-
ods directly, we calculated the difference in CV error for
each neuron/stimulus configuration. Here a positive value
indicates that Bayesian binning predicts the test data more
accurately than the alternative method. Fig.4, shows the rel-
ative frequencies of CV error differences between the other
methods and our approach. In the large majority of cases we
are at least as good, but frequently better than the competi-
tors, indicating the general utility of our approach. Amongst
the competitors, BARS is the only method with a compara-
ble predictive performance on these STSa data. The average
CV error differences, summarised in table 1, support this
claim: they are all significantly> 0, except for the BARS
value.

4 Response latency

Besides the instantaneous firing rate, another frequently used
feature for the description of a neuron’s response is response
latency. But unlike the former, a definition of latency seems
much less agreed. A wide range of methods to estimate re-
sponse latency exist. Changes in phase between neuronal ac-
tivity and sinusoidal drifting gratings with changing stimu-
lus parameters can provide an indirect measure of response
latency (Gawne et al 1996b; Alitto and Usrey 2004). Direct
measures of response latency of neurons with low back-
ground or spontaneous activity can be obtained from the
time of the first spike after stimulus onset (Heil and Irvine
1997; Richmond et al 1999; Syka et al 2000; Stecker and Middlebrooks
2003; Hurley and Pollak 2005; van Rossum et al 2008).

Statistical approaches compare activity levels at two time
points. While the baseline level is usually taken from a ”pre-
stimulus” period the window containing the greatest activ-
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Fig. 5 Left: our minimal latency definition. LatencyL (vertical dashed
line) is that point in time before which the firing probabilitywas con-
sistently below the signal level (dotted horizontal line), andafter which
the firing probability is above the signal level for at least onebin. This
definition has two important implications: the latency is at a bin bound-
ary, and there can be at most one latency (possibly none).Right: A: each
tick mark represents a spike, recorded from the same STSa neuron asin
fig.1 under high-contrast viewing conditions.B: latency posterior. The
two modes ofP(L = t) are at 83ms and 104ms after stimulus onset,
indicated by the dashed vertical lines.C: expected instantaneous firing
rates (thick solid line) plus/minus one standard deviation (thin dashed
lines). This signal levelS is indicated by the horizontal line. For details,
see text.

ity can be used as the reference point (Berenyi et al 2007).
Comparison of the baseline or reference activity with the ac-
tivity in a sliding window using t-tests (Sugase-Miyamoto and Richmond
2005; Berenyi et al 2007) can be used to determine the time
point at which neuronal activity changes and hence provide
an estimate of response latency.

Several approaches use either the PSTH or the SDF to
determine neuronal response latency. Latency estimates can
be based on peak activity, typically the time at which the
mean activity reaches half the amplitude of the peak (baseline+
0.5× (peak− baseline), e.g. (Gawne et al 1996a; Lee et al
2007)). A statistical method based on a Poisson model com-
pares the mean activity in successive bins during stimulation
with a Poisson process estimated from the ”pre-stimulus”
period (Maunsell and Gibson 1992; Nowak et al 1995; Hanes et al
1995; Thompson et al 1996; Schmolesky et al 2006; Gabel et al
2002; Sary et al 2006). However, Friedman & Priebe (Friedmanand Priebe
1998) concluded that a maximum likelihood estimation of
parameters for a step change in Poissonian generator (rate
1 pre-latency, rate 2 post-latency) was a better methodol-
ogy in terms of mean square error than using half-height
(Gawne et al 1996a) and the Poisson assumption approach
(Maunsell and Gibson 1992).

Some statistical approaches to estimating response la-
tency use measures of the variability obtained from the data
rather than assume Poisson statistics. Simple methods es-
timate response latency as the time point at which activity
exceeds baseline plus some error margin (e.g. 1.96 or 2.58
standard error of mean (SEM) of baseline, (Oram and Perrett
1992; Oram and Perret 1996; Tamura and Tanaka 2001; Edwards et al
2003; Eifuku et al 2004; Kiani et al 2005; van Rossum et al
2008). Such thresholding can also determine if a visually in-
duced response is present (e.g. baseline+3.72 SEM, (Lee et al

2007)). Of course, estimates of latency derived from the
SDF will vary with the width of the smoothing kernel. In-
genious methods involving estimates from multiple kernels
of different widths have been developed to minimise this ef-
fect (Liu and Richmond 2000).

Other methods developed to estimate response latency
include using ROC analysis of single cell recordings (Tanaka and Lisberger
2002). Estimating response latency as the time of the peak in
the derivative of the SDF from multi-unit and local field po-
tential recordings (Fries et al 2001) relies on rapid changein
firing rate at response onset. Taking the first time bin of the
longest monotonic rise in activity (Liu and Richmond 2000)
relies on a large, but not necessarily fast, change in activity.
Finally, Luczak and colleagues (Luczak et al 2007) use the
mean spike time after stimulus onset as a latency measure.

Methods have also been developed that allow for esti-
mation of the response latency of a single trial. Some cal-
culate the trial-by-trial variability of response latencybut
do not give the absolute latency (Nawrot et al 2003). Other
statistical approaches, including the Poisson based methods
(Maunsell and Gibson 1992; Hanes et al 1995; Thompson et al
1996; Sary et al 2006) and the ”baseline+error margin” meth-
ods, can provide latency estimates for single trials although
they may not return a latency estimate for every trial (Friedman and Priebe
1998). The trial alignment approach from (Ventura 2004)
builds on the observation that a PSTH, when normalised
across time, can be interpreted as a probability distribution
for generating spike times. Assuming that the shape of the
PSTH does not change across trials, but may be shifted in
time relative to other trials, the difference between trialla-
tencies must then be equal to the difference of mean spike
times. To compute an absolute latency, (Ventura 2004) rec-
ommends to align all trials to the minimal trial mean and
use a point estimation method on the aligned trials, since
the alignment should facilitate the detection of a sharp on-
set. Confidence intervals on the latency estimates can be ob-
tained via bootstrap.

We note that most of the methods listed above share the
notion of determining latency by estimating a point value.
However, with finite data there is always uncertainty in the
estimate. For example, when latency is estimated as 100ms
it could be 99ms or 101ms with almost as much certainty but
is relatively unlikely to be 90 or 110ms. If we want to search
for patterns or changes in response latency more exacting
analysis techniques should thus incorporate the uncertainty
in a principled fashion. We also want a single method that,
without any change to parameters or code, works with indi-
vidual trials, with a set of trials to a single stimulus and with
all trials from a neuron. We now develop and evaluate la-
tency estimation using our Bayesian binning technique and
show it meets these two criteria.
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4.1 A minimal definition of response latency

Most people interested in latency would probably agree with
the notion that ’latency is where the signal starts’. Signalvs.
no signal can usually be translated into firing rate above or
below a threshold, which we will call thesignal level (see
fig.5, left). In other words,latency is that point in time prior
to which there was no signal, and after which there is a sig-
nal for at least some duration. This is the ’minimal’ latency
definition which we will employ in the following.

For given bin boundaries{km} and firing probabilities
{ fm}, latency must be at a bin boundary, because firing prob-
abilities are constant within each bin. Note that our latency
definition implies that there can be at most one latency. If the
firing probabilities are below the signal level in every bin,or
if f0, the firing rate in the first bin is already above the signal
level, then there will be no latency.

To obtain a latency posterior distribution, we formally
define the probability that the latencyL is at time indext
given {km},{ fm},M and the signal levelS ∈ [0,1] (S is a
firing probability. Division by the discretisation stepsize ∆ t
yields firing rate) as

P(L = t|{km},{ fm},M,S) =

=







1 if ∃k j−1 ∈ {km} : k j−1+1= t
and f j ≥ S and∀m < j : fm < S

0 otherwise
(21)

which can be exactly averaged over the posterior eqn.(8) by
a dynamic programming algorithm similar to that used for
the evidence evaluation, as detailed in appendix B. We thus
obtainP(L= t,{zi}|M,S) and hence, noting thatP({zi}|M)=

P({zi}|M,S):

P(L = t|{zi},M,S) =
P(L = t,{zi}|M,S)

P({zi}|M)
. (22)

What remains to be determined is the signal levelS. Assum-
ing that the data span the response range of the neuron (i.e.
the data contain responses to at least one effective stimulus),
one can proceed as follows: for a givenS, marginalise the
latency posterior across the time interval of interest, thereby
obtaining the probabilityP(L exists) that a latency exists at
thatS. Repeat this procedure for differentS until the maxi-
mal P(L exists) is found. We use 10 golden section refine-
ment steps (Press et al 1986) for the maximum search with
an initial interval of[0Hz,100Hz], thereby achieving an ac-
curacy of≤1Hz.

4.2 Properties of latency posterior distributions

Fig.6 illustrates the consequences of our latency definition
on simulated data. We generated 10 spiketrains from inho-
mogeneous Bernoulli processes with a step in firing rate
10Hz→80Hz or 10Hz→30Hz at 80ms after stimulus onset.
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Fig. 6 Latency posterior and signal separation levels.Left: 10 spike-
trains were drawn from generators with 80Hz and 30Hz peak firing
rate. Both generators had a baseline of 10Hz and a latency at 80ms
after stimulus onset. The dashed lines show the generating rates, the
solid lines represent the predictive firing rate of the Bayesianbinning
PSTHs. The resulting latency posterior distributions are shown at the
bottom, including the latency expectations± 1 posterior standard de-
viation. The posterior uncertainty in the 30Hz peak rate condition is
significantly larger than in the 80Hz condition.Right: determination
of signal separation levelS. P(L exists) is the probability that the la-
tency was somewhere in the latency search interval (here[0,200]ms
after stimulus onset) givenS. The symbols are located at the points
whereP(L exists) was evaluated by a golden section maximum search
(Press et al 1986). TheS was chosen to be the firing rate which max-
imises the probability that a latency exists. In the 30Hz condition, there
is a relatively clear maximum at≈17Hz, whereas in the 80Hz condi-
tion, the maximum is much broader. This is due to the larger difference
between baseline and peak firing rate in the latter condition:even for
this relatively small dataset (10 trials), there is a range of similarly good
signal separation levels that allow for the distinction between baseline
and peak firing. For details, see text.

The firing rate stayed at this value for 50ms, then dropped
to 45Hz and 20Hz for 200ms before returning to the 10Hz
baseline. In both conditions, most of the probability mass of
the latency posterior (fig.6, left bottom) is concentrated in
the vicinity of the generator’s latency. The best signal sep-
aration levelS (fig.6, right) for each condition reflects the
difference in peak firing rates: for 30Hz,S ≈17Hz, where
as for 80 Hz,S ≈39Hz. In both cases,S is roughly in the
middle between baseline and peak firing rate. Latency was
searched in the interval[0,200]ms after stimulus onset.

In addition to the location of the latency, the latency
posterior distributions (fig.6, left bottom) also contain infor-
mation about uncertainty. It is evident that a smaller step
in firing rate leads to a wider latency posterior, which can
also be captured by computing the standard deviation from
that posterior. This observation is not particularly surprising,
but nevertheless important: virtually all other latency esti-
mation methods ignore uncertainty due to their point esti-
mation nature. As a consequence, the latency posterior con-
tains information about the change in firing rate, which is a
point that we will return to later (section 5) when we anal-
yse latency and firing rate with information-theoretic meth-
ods. Note also that the latency posteriors are far from Gaus-
sian: a description in terms of mean and standard deviation
is therefore inadequate for an information-theoretic analysis
and might distort conclusions drawn from it.
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Non-Gaussian latency posteriors are also observed in the
real data. Fig.5, right, has two distinct peaks, the lower one
at≈ 83 ms, the higher one being at≈ 104 ms after stimulus
onset. The location of these peaks can be understood from
the height of the PSTH (fig.5, right, C) relative to the signal
level: at 83 ms, one can be fairly certain that the PSTH was
below the signal level prior to this time index, and there is
a nonzero probability (albeit not nearly certainty) that the
PSTH is above the signal level directly afterwards. At 104
ms, the PSTH is above the signal level with near certainty
directly after the peak in the latency posterior, whereas one
can not be quite sure that the PSTH was below the signal
level the interval immediately before this point in time. The
expected latency± SEM is (94± 10)ms. A conventional
interpretation of these values would suggest that the bulk of
the probability mass can be found close to the mean, which
is not true.

4.3 Simulation results

For a quantitative evaluation of the accuracy of our latency
detection method, we generated spiketrains from inhomo-
geneous Bernoulli processes with the rate profiles shown
in the insets of fig.7. Root-mean-square (RMS) errors were
computed from 100 repetitions of the simulation for a given
number of trials per dataset, see fig.7. We used the expected
latency as the prediction of Bayesian binning for each dataset
(similar results were found using a MAP estimate). To fur-
ther illustrate the performance of out approach, we com-
pared it to three other ways of latency detection: the half-
height method (Gawne et al 1996a) (’HH’ in fig.7), latency
= the first time where activity exceeds baseline rate plus
2 SEM of baseline rate (Oram and Perrett 1992) (’2SD’ in
fig.7) and the trial alignment approach from (Ventura 2004).
This approach yields a relative latency for each trial, abso-
lute latency can be determined by a suitable change-point
method applied to the aligned trials. We used the half-height
method here, since it gives good estimates of the latency
without alignment.

Our method is more accurate than the others in all tested
conditions. This is true even if the generator has a sloping re-
sponse onset (fig.7, right) and can no longer be easily mod-
elled by bins. In this case, latency is not as clearly defined as
for a step response onset. We took the point of the first rate
inflection at 80ms to be the ’true’ latency. Note that this is an
additional condition which is not a part of our latency defi-
nition. If we had certain knowledge of the generating firing
rates, anyS ∈ (10Hz,80Hz) would be suitable as a separa-
tion level. A consequence of choosing the first point of in-
flection as ’true’ latency is an increase in RMS of Bayesian
binning between 10 and 30 trials for the 80Hz peak, sloping
onset condition. This is due to a very flat signal separation
maximum (see also fig.6, right), i.e. there are many values
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Fig. 7 Comparison of latency estimates. RMS errors were computed
from 100 repetitions of the simulation for a given number of trials per
dataset. ’HH’ are the results from the half-height method (Gawne et al
1996a), ’2SD’ determines latency to be the first time where activity
exceeds baseline rate plus 2 SEM of baseline rate (Oram and Perrett
1992), ’Ventura’ is the trial alignment method from (Ventura 2004)
and ’Bay.Bin’ shows the RMS errors using the expected latency from
our method. Insets show generating rate profiles.Left: generators com-
prised of bins with latency at 80ms. Bayesian binning latency detection
outperforms the other methods for all dataset sizes. The high, flater-
ror curve of the 2SD method in the 80Hz peak firing rate condition
is due to a consistent underestimation of latency, which is an artifact
of Gaussian kernel smoothing combined with a baseline SEM that is
small in comparison with the firing rate step at the latency.Right: gen-
erator with sloping response onsets. We measured the RMS against an
assumed latency of 80ms, even though latency is no longer well de-
fined in these conditions. Our Bayesian binning method is still better
than the competitors, despite the fact that a slope is hard to modelwith
bins. Its increase in RMS between 10 trials and 30 trials in the high
peak firing condition is due to a flat signal separation maximum (see
also fig.6, right).

of S which allow for an almost equally certain separation be-
tween ’firing rate aboveS’ and ’firing rate belowS’. Since
we search for a single maximum, this maximum’s location
will then mostly be determined by noise, and not by differ-
ences in signal quality. If we wanted to bring theL closer
to the first rate inflection point, we would have to optimise
a compromise between largeP(L exists) and smallS. This
could be accomplished by adding a weak prior overS which
prefers smallS. However, this is no longer a ’minimal’ def-
inition of latency, so we will continue to use our original
definition.

4.4 Trial-by-trial latency and firing rate estimation

So far, we computed the model posteriors and all quanti-
ties derived thereof on the assumption that there is a sin-
gle ’correct’ PSTH from which the data were generated. In
other words, we presupposed that the experimentally con-
trolled parameters (e.g. stimulus identity and presentation
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Fig. 8 Trial-by-trial latency and firing rate posteriors for three stim-
ulus contrasts.Left: a latency posterior was computed for each trial
and then marginalised across all trials for a given contrast. Thehigh
contrast posterior was calculated on the same data as the latencypos-
terior in fig.5, right. While the posterior uncertainty is increased due to
the trial-by-trial evaluation, the bulk of the probabilityis in the same
post-stimulus time range (≈ 75ms-110ms) as before. Reducing stimu-
lus contrast clearly increases latencies.Right: firing rate posterior den-
sities in the first bin after the latency.

time) were enough to specify the spike train generating pro-
cess up to a random element, which is fully modelled by
the firing probability. One might object to this model. It
is certainly conceivable that for instance latencies and fir-
ing rates of the generator vary between trials. Therefore, it
would be desirable to be able to compute the posterior dis-
tributions of these parameters on a trial-by-trial basis. It is
possible to do that with our method, as indicated by the sin-
gle trials performances in simulations (see fig.3 and fig.7).
Fig.8, left, shows a trial-by-trial latency posterior distribu-
tion marginalised across all trials to stimuli of high (100%),
medium (50%) and low (12.5%) contrast. The high contrast
latency posterior was calculated on the same data as those
used in fig.5, right. While the posterior uncertainty is in-
creased due to the trial-by-trial evaluation, the bulk of the
probability is in the same post-stimulus time range (≈ 75ms-
110ms, withS ≈ 47Hz) as before. Moreover, it is appar-
ent that latency increases with decreasing stimulus contrast,
which was also observed in (Oram et al 2002) using a sta-
tistical approach (Oram and Perrett 1992; Oram and Perret
1996).

To calculate the posterior distribution of firing rates across
trials, one can proceed in a fashion similar to that used for
latency: define the probability density that the firing rate at
t, f (t), is f̃ given the model parameters as

p( f (t) = f̃ |{km},{ fm},M) =

=

{

δ ( f j − f̃ ) if t ∈ {k j−1+1, . . . ,k j}
0 otherwise

(23)

whereδ (x) is the Dirac delta function. In words, this proba-
bility density is concentrated at the firing ratef j of that bin
which contains the time indext if f j = f̃ . By adding the con-
dition that the lower bound of binj is equal to the latency,
we can compute the probability density of the firing rate in
the first bin after the latency, i.e. in the strong transient part
of the response. If{km} and{ fm} are given, then this firing

rate f j depends on the latency only through the signal level
S, becausef j ≥ S (see eqn.(21)). Thus, we can compute the
joint probability (density) of ’latencyL = t ’ and ’firing rate
is f̃ ’ by multiplying the r.h.s of eqn.(23) with the r.h.s of
eqn.(21) if f̃ ≥ S:

p( f (t) = f̃ ,L = t|{km},{ fm},M,S) =

=







p( f (t) = f̃ |{km},{ fm},M)×

×P(L = t|{km},{ fm},M,S) if f̃ ≥ S
0 otherwise.

(24)

Averaging this probability density over the posterior eqn.(8)
is done by an algorithm similar to the one used for latency, as
detailed in appendix C. This yieldsP( f (t)= f̃ ,L= t,{zi}|M,S).
Therefore we have

p( f (t)= f̃ |L= t,{zi},M,S)=
p( f (t) = f̃ ,L = t,{zi}|M,S)

P(L = t,{zi}|M,S)
(25)

i.e. the probability density of the firing rate being̃f given
that the latency is att, the signal level isS and the data{zi}

for a model withM bins. Averaging this firing rate density
across trials yields fig.8, right. Here, firing rates were found
to decrease with stimulus contrast. Furthermore, the poste-
riors are unimodal – this indicates that modelling the trial-
by-trial variations in firing rate by e.g. a mixture of binomial
with a unimodal mixing distribution might be a viable strat-
egy.

5 Information-theoretic analysis of latency and firing
rate

It is often interesting to quantify the amount of information
which a neural response carries about various stimulus pa-
rameters. Information theory (Shannon 1948) provides the
mathematical framework to address this question:mutual in-
formation I(U ;C) (Cover and Thomas 1991) measures how
much we can expect to learn about a (discrete) stimulus pa-
rameterC from a (discrete) neural response measureU , and
vice versa. Given a joint probability distributionP(U,C),
I(U ;C) is defined as

I(U ;C) = ∑
C

∑
U

P(U,C) log

(

P(U,C)

P(U)P(C)

)

(26)

whereP(U) =∑C P(U,C) and likewise forP(C). If a second
neural response measureV and the joint probability distri-
butionP(U,V,C) is available, it is possible to definecondi-
tional mutual information I(U ;C|V ) andjoint mutual infor-
mation I(U,V ;C) (Cover and Thomas 1991):

I(U ;C|V ) = ∑
C

∑
U

∑
V

P(U,V,C) log

(

P(U,C|V )

P(U |V )P(C|V )

)

(27)

I(U,V ;C) = ∑
C

∑
U

∑
V

P(U,V,C) log

(

P(U,V,C)

P(U,V )P(C)

)

= I(U ;C|V )+ I(V ;C) (28)



12

I(U ;C|V ) can be understood as the amount of information
we expect to gain aboutC by observingU if we knew V ,
whereasI(U,V ;C) is the expected information gain aboutC
if we learned the values of bothU andV . Extending these
definitions to continuous variables is straightforward (Cover and Thomas
1991).

In sections 4.1 and 4.4, we developed the formalism to
compute the posterior distribution of the latencyL (eqn.(22))
and the posterior density of the firing ratef (t) in the first bin
after latency (eqn.(25)), providing the joint density

p( f (t) = f̃ ,L = t|{zi},M,S) =

= p( f (t) = f̃ |L = t,{zi},M,S) P(L = t|{zi},M,S) (29)

which we need to compute joint, conditional and marginal
mutual informations betweenL, f (t) and any stimulus pa-
rameter. Note that these distributions/densities are condi-
tioned on the signal levelS. So far, we described a procedure
to determineS for a single stimulus conditionC (see end of
section 4.1). We defineS for multi-valuedC based on two
assumptions:

1. the signal levelS is a property of the cell, not of the stim-
ulus. In other words, there is a singleS per cell across all
C. If S was allowed to vary withC, the choice ofS would
inject stimulus-related information into the information
estimates which is not present in the data.

2. S is determined by maximising the marginal probability
of latency existenceP(L exists|S) (and therefore, signal
existence)

P(L exists|S) = ∑
C

P(L exists|S,C)P(C) (30)

whereP(C) is the prior probability of each stimulus con-
dition, which is controlled by the experimenter.

3. We assume that there is noa-priori dependency between
S andC.

Assumption 2 is a consequence of the experimental design
which we are about to analyse. Cells and stimuli were se-
lected such that there was at least one stimulus which evoked
a strong response, and at least one that evoked a weak re-
sponse (possible none). Maximising the marginal probabil-
ity of latency existence thus has the effect of choosing anS
such that as many stimulus conditions as possible have a de-
tectable latency. If there is a strong and a weak (but still de-
tectable) response, this procedure chooses a relatively small
S such thatP(L exists|S,C) is high for bothC. However, if
there is a strong and a non-detectable response, the value of
S will be higher, since it will be driven only by the strong
response. It remains to be seen if this procedure needs to be
adapted for different cell/stimulus choices.

5.1 Results on simulated data

We mentioned in section 4.2 that the latency posterior in-
evitably contains information about the change in firing rate

at the latency. To illustrate this point, we performed an information-
theoretic analysis of a two-stimulus scenario on simulated
data. Each stimulus evoked a 50ms long transient response,
followed by a sustained response (duration 250ms) with a
firing rate between the transient and the 10Hz baseline. In
the ’no difference’ condition, the two simulated responses
had the same underlying generator. We also varied just the
firing rate (transient: 100Hz vs. 30Hz), just the latency (80ms
vs. 90ms) or both firing rate and latency. Each dataset con-
tained 10 trials per stimulus and was analysed trial-by-trial
(i.e. one PSTH inferred per trial). The average results from
10 repetitions of the simulations are summarised in table 2.
This table shows the mutual informations between stimulus
identityC, and the variables:

– E: latency exists, i.e.L ∈ {30ms, . . . ,250ms}.
– L: L = t for t ∈ {30ms, . . . ,250ms}, see eqn.(22). Addi-

tionally, L has a special value indicating that a latency
does not exist (i.e. no transition from below the signal
thresholdS to aboveS).

– f : firing probability f (t) = f̃ in the first bin after latency
for f̃ ∈ [S,1], see eqn.(25).f also has a special value
indicating that a firing probability in the first bin after
latency does not exist.

Note that bothL and f determineE: if latency is some-
where in the latency search interval or if the firing rate in the
first bin after latency is somewhere above the signal level,
thenE is true, otherwiseE is false.E can also be read as
’firing rate went above the signal levelS somewhere in the
latency search interval’, and might therefore be viewed as a
firing rate related variable, rather than a property of latency.
This ambiguity highlights the difficulty of separating firing
rate and latency related information, which is due to latency
being defined by a firing rate based criterion. We choose to
interpretE as carrying firing rate information, since latency
is concerned with thetiming of response onset, rather than
just the presence or absence of a response. Thus, information
aboutC in L is given by the conditional mutual information
I(L;C|E).

The values in the ’no difference’ condition in table 2 rep-
resent the overestimation biases of our method in this sce-
nario. Overestimation of mutual information (and the closely
related underestimation of entropy) from small datasets is
a well-known problem, and many remedies have been de-
vised for it (Optican et al 1991; Panzeri and Treves 1996;
Nemenman et al 2004; Paninski 2004; Endres and Földiák
2005). However, most of these methods assume a set of dat-
apoints as a starting point, not a set of posterior distributions.
Hence, they can not be applied to our analysis unaltered.
Further work will be needed to understand how best to pro-
vide, within our analysis framework, information estimates
whose overestimation is as small as possible.

If there is only a difference in firing rates, thenI( f ;C)>

I(L;C|E) but I(L;C|E) is still significantly greater than in
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Table 2 Mutual informationI in [bit] for simulated neurons with a
baseline firing rate of 10Hz, trial-by-trial analysis.C is stimulus iden-
tity, there were two stimuli.L is latency,f is firing rate in the first bin
after latency and latency existence isE. The latter is the truth value of
the proposition ’Latency is somewhere between 30ms and 250ms after
stimulus onset’. Difference inf means that the peak firing rates were
30Hz for one stimulus and 100Hz for the other, duration of peak re-
sponse 50ms, latency 80ms after stimulus onset. In the ’difference inL’
condition, both neurons had a peak firing rate of 100Hz for 50ms,with
a latency of 80ms for one stimulus and 90ms for the other. ’No differ-
ence’ means that both peak firing rates (100Hz) and latencies (80ms)
were equal. Errors are SEM computed from 10 repetitions of thesim-
ulations. For details, see text.

Difference in I(E;C) I(L;C|E) I( f ;C)

no difference 0.002±0.001 0.045±0.004 0.008±0.002
f : 100/30Hz 0.255±0.023 0.079±0.014 0.314±0.023
L: 80/90ms 0.007±0.002 0.084±0.010 0.016±0.004
f : 100/30Hz,

0.206±0.026 0.072±0.007 0.265±0.023
L: 80/90ms

the ’No difference’ condition. In other words, even though
the simulated cells were designed to have the same latency
(80ms), the latency posterior distributions inferred froma fi-
nite sample carry information about the magnitude of the fir-
ing rate change – a large response allows for the determina-
tion of latency with greater certainty than a small one. Com-
pare this to the ’difference inL’ condition: whileI(L;C|E) is
about as large as before,I(L;C|E)> I( f ;C), i.e. our method
is able to distinguish between (un)certainty related and vari-
ability related latency information via the information inf .
Furthermore, in both ’difference inf ’ conditions,E contains
a large fraction of the firing rate information, i.e. knowing
whether the signal threshold was crossed is the most infor-
mative aspect off .

In summary, our method yields the results one would ex-
pect for each condition: if the stimulus identityC is encoded
in f , thenI( f ;C) is maximal, if changes inC cause changes
in L, I(L;C|E) is maximal. If bothL and f are influenced by
C, then both can be used together to determineC.

5.2 Results on STSa data

It is known that stimulus contrast influences latency of STSa
neurons (Oram et al 2002; van Rossum et al 2008). We now
examine responses to high-contrast presentations to ask whether
latency changes convey stimulus identity related informa-
tion in the absence of contrast change. The results of a trial-
by-trial analysis of mutual informations computed from 29
STSa neurons under high-contrast viewing conditions are
shown in table 3. Entropy of stimulus identityC is H(C)≈1
bit for all cells. SinceI( f ;C)> I(L;C|E), firing rate f in the
first bin after latency carries slightly more information about
C than latencyL, but the difference is not significant. The
joint code of latency and firing rate is almost as informative

Table 3 Average trial-by-trial mutual informations and standard er-
rors of the mean (SEM) computed from 29 STSa neurons under high-
contrast viewing conditions. Entropy of stimulus identityC is H(C)≈1
bit for all cells.E, L and f have the same meaning as in table 2. Fir-
ing rate f in the first bin after latency carries slightly more information
about stimulus identityC than latencyL. For details, see text.

Mutual information betweenC and average± SEM [bit]

signal existenceE I(E;C) 0.0594±0.0191
latencyL givenE I(L;C|E) 0.0650±0.0075
firing rate f I( f ;C) 0.0730±0.0205
firing rate given latency I( f ;C|L) 0.0136±0.0020
latency given firing rate I(L;C| f ) 0.0649±0.0077
joint code I( f ,L;C) 0.1379±0.0074

as the sum of the individual codes,I( f ,L;C) ≈ I( f ;C) +

I(L;C|E). This is also indicated byI(L;C| f ) ≈ I(L;C|E):
the stimulus identity information in firing rate which is re-
dundant with latency is almost completely contained inE.
In other words, the most informative firing rate feature is
whether the firing rate crosses the signal threshold or not. To
decode stimulus identity, we should therefore answer ques-
tions about latency and firing rate in the following order
of importance:has the cell fired aboveS, when has it fired
aboveS, how much has it fired aboveS? While these conclu-
sions are certainly conditioned on our small stimulus set (2
stimuli per cell), the values of the mutual informations are
small compared to the theoretical maximum of 1 bit. This
makes ceiling effects unlikely.

6 Summary

We have extended our exact Bayesian binning method (Endres et al
2008) for the estimation of PSTHs. Besides treating uncer-
tainty – a real problem with small neurophysiological datasets
– in a principled fashion, it also outperforms several compet-
ing methods on real neural data. Amongst the competitors,
we found that only BARS (DiMatteo et al 2001) offers com-
parable predictive performance. However, BARS requires
sampling to compute posterior averages, which can poten-
tially take very long or even get stuck, a problem which
we observed on data sets containing only a small number
of spikes. Bayesian binning allows for the exact evaluation
of posterior averages (within numerical roundoff errors) in-
dependent of the contents of the data set. It also offers au-
tomatic complexity control because the model posterior can
be evaluated. While its computational cost is significant, it
is still fast enough to be useful: evaluating the predictive
probability takes less than 1s on a modern PC2, with a small
memory footprint (<10MB for 512 spiketrains). We showed
how our approach can be adapted to extract characteristic
features of neural responses in a Bayesian way, e.g. response

2 3.2 GHz Intel XeonTM , SuSE Linux 10.1
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latencies or firing rate distributions. But we are not restricted
these features: we can use our method to compute expecta-
tions of any function of the PSTH, subject to the condition
that the function depends on the PSTH in a bin-wise fashion.
A free software implementation is available at the machine
learning open source software repository3. This implemen-
tation contains a short tutorial, computes expected PSTH
and posterior standard deviations, separation level and la-
tency posterior. It also allows for the optimisation of the
prior hyperparameters. The code for the information theo-
retic calculations is available from the authors on request,
but it requires a cluster computer to run efficiently: the inte-
gration over the posterior distribution of the firing rate needs
to be done numerically and is time consuming (≈ 1-2 days
per processor per spiketrain for a trial-by-trial analysis).

The latency alignment procedure of Ventura (2004) was
developed to quantify trial-by-trial variation of the response
latencies, and as such was not intended to determine an ab-
solute latency estimate. However, Ventura (2004) suggested
that the minimal latency estimate from the individual tri-
als could be used. We find this yields a poor estimate of
absolute latency which tends to get worse with increasing
number of trials. We therefore used the half height method
from (Gawne et al 1996a) on the aligned spiketrains to im-
prove the absolute latency estimate. This appears to make
the estimate largely independent of the number of trials (see
fig.7). In the majority of cases, this procedure still underes-
timates the absolute latency, since the trials are aligned to
the minimal trial latency. To counter this systematic under-
estimation, we experimented with shifting all aligned trials
by the difference between the total pre-alignment and post-
alignment means, thereby restoring the original total mean
spike time. However, this did not improve results notably.
Aligning trials by mean spike time works well on relatively
regular spiketrains (such as the gamma order 8 ISI distri-
bution simulations used in (Ventura 2004)). In our simula-
tions with short transients and Bernoulli spike generation, it
appears not to work. We would therefore conclude that the
poor performance of this method is due to poor estimates of
the mean spike time of each trial.

Substituting our observation model eqn.(2) with any other
distribution is straightforward, as long as the replacement is
also comprised of bins. One might e.g. model each spike
train within a bin by a separate Bernoulli process and mix
these with a suitable distribution to capture the inter-trial dif-
ferences. Alternatively, one could use a model similar to that
of (Shinomoto and Koyama 2007): choose a Gamma pro-
cess for the inter-spike intervals and model the time-dependent
rate with a bin model.

There are a number of other approaches to PSTH/SDF
estimation which were not included in our comparisons. Per-
haps most noteworthy (from a Bayesian perspective) are (Shinomoto and Koyama

3 http://www.mloss.org, package ’binsdfc’.

2007) and a recent Gaussian process model (Cunningham et al
2008). We have not yet directly compared our method to ei-
ther of them. Comparisons to (Cunningham et al 2008) and
(Shinomoto and Koyama 2007) will be interesting future work,
once the authors of these works release their code.

Finally, we used our approach to compute exact (up to
roundoff errors) expectations of information-theoretic quan-
tities, e.g. mutual informations between latency, firing rate
and stimulus identity. We demonstrated that STSa neurons
convey most of the information about stimulus identity through
changes in firing rate. Specifically, we found that the cross-
ing of a signal thresholdS is the most informative firing rate
feature. However, extra information about stimulus identity
can be gained by looking at the response latency.
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Appendix A: Computing the evidence with dynamic
programming

The evidence, or marginal likelihood of a model withM bins is given
by (see eqn.(9)):

P({zi}|M) =
T−2

∑
kM−1=M−1

kM−1−1

∑
kM−2=M−2

. . .

. . .
k1−1

∑
k0=0

P({zi}|{km},M)P({km}|M) (A-1)

where the summation boundaries are chosen such that the bins are non-
overlapping and contiguous and

P({zi}|{km},M) =
∫ 1

0
d{ fm}P({zi}|{ fm},{km},M)p({ fm}|M).(A-2)

Recall that the probability of a (multi)set of spiketrains{zi}= {z1, . . . ,zN},
assuming independent generation, is given by eqn.(3):

P({zi}|{ fm},{km},M) =
N

∏
i=1

M

∏
m=0

f s(zi,m)
m (1− fm)

g(zi,m)

=
M

∏
m=0

f s({zi},m)
m (1− fm)

g({zi},m) (A-3)

wheres({zi},m) = ∑N
i=1 s(zi,m) is the number of spikes in all spike-

trains in binm andg({zi},m) = ∑N
i=1 g(zi,m) is the number of all non-

spikes, or gaps. The prior of the firing rates (eqn.(5)) is

p({ fm}|M) =
M

∏
m=0

B( fm;σm,γm). (A-4)

The integrals in eqn.(A-2) can be evaluated by virtue of eqn.(A-3) and
eqn.(A-4):

P({zi}|{km},M) =
M

∏
m=0

B(s({zi},m)+σm,g({zi},m)+ γm)

B(σm,γm)
(A-5)
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where B(x,y)= Γ (x)Γ (y)
Γ (x+y) is Euler’s Beta function (Davis 1972). Eqn.(A-5)

is a product with one factor per bin, and each factor depends only on
spike/gap counts and prior parameters in that bin. To compute eqn.(A-1),
we can therefore use an approach very similar to that described in
(Endres and F̈oldiák 2005; Endres 2006) in the context of density es-
timation and in (Hutter 2006, 2007) for Bayesian function approxima-
tion: define the function

getIEC(ks,ke,m) := B(s({zi},ks,ke)+σm,g({zi},ks,ke)+ γm) (A-6)

wheres({zi},ks,ke) is the number of spikes andg({zi},ks,ke) is the
number of gaps in{zi} between the start intervalks and the end interval
ke (both included). Furthermore, collect all contributions toeqn.(A-1)
that do not depend on the data (i.e.{zi}) and store them in the array
pr[M]:

pr[M] :=
∏M

m=0
1

B(σm,γm)
(

T −1
M

) . (A-7)

Substituting eqn.(A-5) into eqn.(A-1) and using the definitions (A-6)
and (A-7), we obtain

P({zi}|M) ∝
T−2

∑
kM−1=M−1

. . .
k1−1

∑
k0=0

M

∏
m=1

getIEC(km−1+1,km,m)×

×getIEC(0,k0,0) (A-8)

with kM = T −1 and the constant of proportionality being pr[M]. Since
the factors on the r.h.s. depend only on two consecutive bin boundaries
each, it is possible to apply dynamic programming (Bertsekas 2000):
rewrite the r.h.s. by ’pushing’ the sums as far to the right as possible:

P({zi}|M) ∝
T−2

∑
kM−1=M−1

getIEC(kM−1+1,T−1,M)×

×
kM−1−1

∑
kM−2=M−2

getIEC(kM−2+1,kM−1,M−1)×

× . . .
k1−1

∑
k0=0

getIEC(k0+1,k1,1)getIEC(0,k0,0). (A-9)

Evaluating the sum overk0 requiresO(T ) operations (assuming that
T ≫ M, which is likely to be the case in real-world applications). As
the summands depend also onk1, we need to repeat this evaluation
O(T ) times, i.e. summing outk0 for all possible values ofk1 requires
O(T 2) operations. This procedure is then repeated for the remaining
M − 1 sums, yielding a total computational effort ofO(MT 2). Thus,
initialise the array subE0[k] := getIEC(0,k,0), and iterate for allm =
1, . . . ,M:

subEm[k] :=
k−1

∑
r=m−1

getIEC(r+1,k,m)subEm−1[r], (A-10)

A close look at eqn.(A-9) reveals that while we sum overkM−1, we
need subEM−1[k] for k = M −1;. . . ;T −2 to compute the evidence of
a model with its latest boundary atT −1. We can, however, compute
subEM−1[T −1] with little extra effort, which is, up to a factor pr[M−
1], equal toP({zi}|M − 1), i.e. the evidence for a model withM − 1
bin boundaries. Moreover, having computed subEm[k], we do not need
subEm−1[k−1] anymore. Hence, the array subEm−1[k] can be reused to
store subEm[k], if overwritten in reverse order. Table A-T1 shows this
algorithm in pseudo-code (E[m] contains the evidence of a model with
m bin boundaries inside[tmin, tmax] after termination).

Table A-T1 Computing the evidences of models with up toM bin
boundaries

1. for k := 0. . .T −1 : subE[k] := getIEC(0,k,0)
2. E[0] := subE[T −1]×pr[0]
3. for m := 1. . .M :

(a) if m = M thenl := T −1 elsel := m
(b) for k := T −1. . . l

subE[k] := ∑k−1
r:=m−1 subE[r]×getIEC(r+1,k,m)

(c) E[m] = subE[T −1]×pr[m]
4. return E[]

Appendix B: Computing the posterior distribution of
the latency

We compute the joint probability of the latencyL = t and the observed
spiketrains{zi} given the number of bins and the signal separation
level S via

P(L = t,{zi}|M,S) =
T−2

∑
kM−1=M−1

kM−1−1

∑
kM−2=M−2

. . .

. . .
k1−1

∑
k0=0

P(L = t,{zi},{km}|M,S) (B-11)

where

P(L = t,{zi},{km}|M,S) =

=
∫ 1

0
d{ fm}P(L = t|{km},{ fm},M,S)p({zi},{ fm},{km}|M).(B-12)

Note thatP(L= t|{km},{ fm},M,S) is the r.h.s of eqn.(21) andp({zi},{ fm},{km}|M)
is the numerator of the r.h.s. of eqn.(8). As a consequence of eqn.(21),
the only nonzero contributions to the average are models which have
a (lower) bin boundary att. Assumet was at the lower bound of bin
j, i.e. att = k j−1+1 (the{km} are inclusive upper bin boundaries, as
defined above). Carrying out the integrals over the{ fm} yields:

P(L = t,{zi},{km}|M,S)

=
∫ 1

0
d{ fm}P(L = t|{km},{ fm},M,S)p({zi},{ fm},{km}|M)

=
∫ S

0
d f0 . . .

∫ S

0
d f j−1

∫ 1

S
d f j

∫ 1

0
d f j+1 . . .

∫ 1

0
d fM p({zi},{ fm},{km}|M)

(B-13)

The integration boundaries in the last line of eqn.(B-13) area conse-
quence of our latency definition: all binsm < j will contribute to the
integral only as long asfm < S, hence the upper bound of their inte-
grals is atS. Bin j contributes only iff j ≥ S, thus the lower bound of
the integral overf j is S. The binsm > j are not affected by the latency
probability (eqn.(21)) whence their integrals still run from 0 to 1. By
virtue of eqn.(3) and eqn.(5), we obtain

P(L = t,{zi},{km}|M,S) =
j−1

∏
m=0

BS(s({zi},m)+σm,g({zi},m)+ γm)

× B̃S(s({zi}, j)+σm,g({zi}, j)+ γm))

×
M

∏
m= j+1

B(s({zi},m)+σm,g({zi},m)+ γm)

×
M

∏
m=0

1
B(σm,γm)

P({km}|M) (B-14)

whereBS(a,b) =
∫ S

0 ta−1(1− t)b−1dt is the incomplete Beta function
(Davis 1972) andB̃S(a,b) =

∫ 1
S ta−1(1− t)b−1dt = B(a,b)−BS(a,b)
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is its complement. Note that up to the factorP({km}|M), eqn.(B-14)
is basically eqn.(A-5) with some of the Beta functions replacedby in-
complete Beta functions. Hence, the remaining summations over the
{km} can be carried out by using

getIECL(ks,ke,m) :=

=















BS(s({zi},ks,ke)+σm,g({zi},ks,ke)+ γm) if ke < t
B̃S(s({zi},ks,ke)+σm,g({zi},ks,ke)+ γm)) if ks = t
B(s({zi},ks,ke)+σm,g({zi},ks,ke)+ γm) if ks > t
0 otherwise

(B-15)

instead of getIEC(ks,ke,m) (eqn.(A-6)) in the evidence computation
algorithm. This procedure yields the desiredP(L = t,{zi}|M,S). The
above derivation is an instance of the general framework for comput-
ing expectations of functions of bin boundaries and firing probabilities
described in (Endres and Földiák 2005).

Appendix C: Computing the posterior density of the
firing rate

We compute the joint probability density of the firing ratef (t) = f̃ ,
the latencyL = t and the observed spiketrains{zi} given the number
of bins and the signal separation levelS via

P( f (t) = f̃ ,L = t,{zi}|M,S) =

=
T−2

∑
kM−1=M−1

kM−1−1

∑
kM−2=M−2

. . .
k1−1

∑
k0=0

P( f (t) = f̃ ,L = t,{zi},{km}|M,S)

(C-16)

where

p( f (t) = f̃ ,L = t,{zi},{km}|M,S) =

=
∫ 1

0
d{ fm}P( f (t) = f̃ ,L = t|{km},{ fm},M,S)p({zi},{ fm},{km}|M)

(C-17)

Note thatP( f (t) = f̃ ,L = t|{km},{ fm},M,S) is the r.h.s of eqn.(24)
andp({zi},{ fm},{km}|M) is the numerator of the r.h.s. of eqn.(8). As a
consequence of eqn.(24), the only nonzero contributions to the average
are models which have a (lower) bin boundary att. Assumet was at the
lower bound of binj, i.e. att = k j−1+1 (the{km} are inclusive upper
bin boundaries, as defined above). Integrating out the{ fm} yields

p( f (t) = f̃ ,L = t,{zi},{km}|M,S) =

=
j−1

∏
m=0

BS(s({zi},m)+σm,g({zi},m)+ γm)

× f̃ s({zi}, j)+σm−1 (1− f̃ )g({zi}, j)+γm)−1

×
M

∏
m= j+1

B(s({zi},m)+σm,g({zi},m)+ γm)

×
M

∏
m=0

1
B(σm,γm)

P({km}|M) (C-18)

where the second line is a result of eqn.(3) and eqn.(5) multiplied with
the Dirac delta function in eqn.(23). Hence, the remaining summations
over the{km} can be carried out by using

getIECf ,L(ks,ke,m) :=














BS(s({zi},ks,ke)+σm,g({zi},ks,ke)+ γm) if ke < t
f̃ s({zi},ks,ke)+σm−1 (1− f̃ )g({zi},ks,ke)+γm)−1 if ks = t
B(s({zi},ks,ke)+σm,g({zi},ks,ke)+ γm) if ks > t
0 otherwise

(C-19)

instead of getIEC(ks,ke,m) (eqn.(A-6)) in the evidence computation
algorithm. Thus we obtainP( f (t) = f̃ ,L = t,{zi}|M,S).
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