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Abstract 34 

A long standing hypothesis in the neuroscience community is that the CNS generates the 35 
muscle activities to accomplish movements by combining a relatively small number of 36 
stereotyped patterns of muscle activations, often referred to as “muscle synergies”. Different 37 
definitions of synergies have been given in the literature. The most well-known are those of 38 
synchronous, time-varying and temporal muscle synergies. Each one of them is based on a 39 
different mathematical model used to factor some EMG array recordings collected during the 40 
execution of variety of motor tasks into a well-determined spatial, temporal or spatio-41 
temporal organization. This plurality of definitions and their separate application to complex 42 
tasks have so far complicated the comparison and interpretation of the results obtained across 43 
studies, and it has always remained unclear why and when one synergistic decomposition 44 
should be preferred to another one. By using well-understood motor tasks such as elbow 45 
flexions and extensions, we aimed in this study to clarify better what are the motor features 46 
characterized by each kind of decomposition and to assess whether, when and why one of 47 
them should be preferred to the others. We found that three temporal synergies, each one of 48 
them accounting for specific temporal phases of the movements could account for the 49 
majority of the data variation. Similar performances could be achieved by two synchronous 50 
synergies, encoding the agonist-antagonist nature of the two muscles considered, and by two 51 
time-varying muscle synergies, encoding each one a task-related feature of the elbow 52 
movements, specifically their direction. Our findings support the notion that each EMG 53 
decomposition provides a set of well-interpretable muscle synergies, identifying reduction of 54 
dimensionality in different aspects of the movements. Taken together, our findings suggest 55 
that all decompositions are not equivalent and may imply different neurophysiological 56 
substrates to be implemented. 57 

 58 

Keywords: Muscle Synergies, Non-Negative Matrix Factorization, EMG, Elbow Rotations, 59 
Dimensionality Reduction, Triphasic Pattern 60 
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Introduction 62 

A large amount of studies have provided in the last two decades evidence according to 63 
which the central nervous system (CNS) generates the muscle patterns necessary to achieve a 64 
desired motor behaviour by combining a relatively small number of stereotyped spatial and/or 65 
temporal patterns of muscle activation, often referred to as “muscle synergies”  (Bizzi et al., 66 
2008). An appeal of this framework is that it suggests that the CNS may control movement 67 
execution through a relatively small number of degrees of freedom.  68 

Different conceptual definitions of muscle synergies have been given in the literature. 69 
These in practice translate into different mathematical models used to factor 70 
electromyographic (EMG) array recordings collected during the execution of variety of motor 71 
tasks into different kinds of temporal, spatial or spatio-temporal organizations. Invariant 72 
temporal components (or “temporal synergies”, see Ivanenko et al., 2004, 2005; Dominici et 73 
al., 2011; Chiovetto et al., 2010, 2012) are defined as temporal muscle activation profiles that 74 
can be simply scaled and summed together to reconstruct the actual activity of each muscle. 75 
“Synchronous synergies” (Cheung et al., 2005, 2009, 2012; Ting and Macpherson, 2005; 76 
Torres-Oviedo and Ting, 2007, 2010) are stereotyped co-varying groups of  muscle 77 
activations, with the EMG output specified by a temporal profile defining the timing of each 78 
synergy during the task execution.  “Time-varying synergies” (d’Avella et al., 2003, 2006, 79 
2008, 2011) are genuine spatiotemporal patterns of muscle activation, with the EMG output 80 
specified by the amplitude and time lag of the recruitment of each synergy.  81 

 Typically, previous studies about muscle synergies focused on a given decomposition 82 
that was then used to investigate potential functions of muscle synergies in complex motor 83 
tasks involving a large number of degrees of freedom (dof). Each of these decompositions 84 
has been used successfully to identify common physiologically important factors of muscle 85 
activity (Ivanenko et al., 2005; d’Avella et al., 2006; Cheung et al., 2005). The existence in 86 
the literature of multiple definitions of muscle synergies and their separate application to 87 
complex tasks complicates however the comparison and interpretation of the results obtained 88 
across studies, and it is not always clear why and when one synergistic decomposition should 89 
be preferred to another one. We propose instead here that the systematic study of the 90 
application of all these decompositions to the same and simple dataset for which the 91 
mechanical action of each muscle contraction is well-known would greatly help to build 92 
intuition about the merit and functional interpretation of each synergistic decomposition. This 93 
would moreover be beneficial to the interpretation and comparison of different studies. We 94 
thus considered the extreme case of single-joint elbow movements, characterized by one 95 
kinematic dof, two antagonist muscles (biceps and triceps) and four  experimental tasks 96 
(flexions and extensions along both the horizontal and vertical directions). We applied 97 
systematically decompositions into synchronous, time varying and temporal synergies of 98 
EMG data recorded during this elementary and well documented motor task (see Berardelli et 99 
al., 1996 for a review), whose biomechanical and neurophysiological bases were studied 100 
intensively (Gottlieb et al., 1995; Shapiro et al., 2005). 101 

 Our findings support the notion that each EMG decomposition provides a set of well-102 
interpretable muscle synergies, identifying reduction of dimensionality in different aspects of 103 
the movements. Each temporal synergy indeed conveys information about a specific temporal 104 
phase of the movement (acceleration, deceleration and stabilization). Synchronous and time-105 
varying synergies instead encode respectively the simultaneous and coordinated actions of 106 
specific groups of muscles aiming to achieve a specific action goal and a task-related feature 107 
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of the elbow movements (specifically the direction of motion). Taken together, our findings 108 
suggest that all decompositions are not equivalent and may imply different 109 
neurophysiological substrates to be implemented. 110 

Material and methods 111 

Subjects 112 

Eight healthy right-handed subjects (7 males, 1 female, ages 29 ± 4 years, mass 74 ± 9 113 
kg, height 1.77 ± 0.07 m), participated voluntarily to the experiments that were all performed 114 
at the Robotics, Brain and Cognitive Sciences Department at Italian Institute of Technology 115 
(IIT)  in Genoa (Italy). All subjects were in good health condition and had no previous 116 
history of neuromuscular disease. The experiment conformed to the declaration of Helsinki 117 
and informed consent was obtained from all the participants according to the protocol of the 118 
ethical committee of IIT.  119 

Protocol 120 

 Subjects sat on a chair with their back straight and perpendicular to the ground. They 121 
were asked to perform one-shot 90 degrees elbow rotations between two reference points 122 
along either a vertical and a horizontal plane (Figure 1). A total of four experimental 123 
conditions were thus studied (vertical flexion, VF, vertical extension, VE, horizontal flexion, 124 
HF and horizontal extension, HE). For movements along the vertical direction, the two 125 
reference points were located in a vertical plane, placed laterally at approximately 10 cm 126 
from the subject’s movement plane. To this aim, we used a wooden hollow frame containing 127 
1.5 cm-spaced thin vertical fishing wires to which fishing leads indicating the requested 128 
fingertip initial position were attached.  One reference point coincided with the subject’s 129 
fingertip position in the vertical plane when the arm was completely relaxed and extended 130 
vertically with the index fingertip pointing at the ground (vertical position number 1, or VP1). 131 
The second point coincided with the subject’s fingertip position in the vertical plane when, 132 
starting from VP1, the elbow was rotated of about 90 degrees so that at the end the forearm 133 
was parallel to the ground (vertical position number 2, or VP2).  The positions of the fishing 134 
leads were adjusted for each subject before the initiation of the experiment, based on the 135 
subject’s upper arm and forearm lengths. For vertical elbow flexion subjects rotated the 136 
elbow so as to move their index finger from VP1 to VP2. On the contrary, during vertical 137 
elbow extension they had to move the fingertip from VP2 back to VP1. For rotation along the 138 
horizontal plane subjects sat in front of a table. One reference point on the table coincided 139 
with the horizontal location of the index fingertip when the upper-arm was kept horizontal 140 
with respect to the ground and perpendicular to the coronal plane and the forearm flexed of 141 
about 90° with respect to the upper-arm (horizontal position 1, or HP1).  The second 142 
reference point coincided with the fingertip location when the whole arm was completely 143 
extended horizontally in front of the subjects and perpendicular to the coronal plane 144 
(horizontal position 2, or HP2). After that (for each subject) HP1 and HP2 were identified, 145 
their location was marked on the table by means of two small squared pieces of colored tape. 146 
The table plane laid 10 cm below the plane of rotation of the arm, avoiding thus to disturb the 147 
accomplishment of the movement.  For horizontal elbow flexion subjects had to rotate the 148 
elbow so as to move their index finger from HP1 to HP2. On the contrary, during horizontal 149 
elbow extension they had to move the fingertip from HP2 back to HP1.  Subjects were 150 
always asked to perform fast movements (mean velocities and average peak velocities are 151 
reported in Table 1 for each subject and condition). They performed 20 elbow flexion and 20 152 
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extensions for each plane orientation.  During the experiment the wrist joint was frozen by 153 
means of two light and small sticks attached to the distal part of the forearm and the proximal 154 
part of the hand. At any trial repetition subjects put their index finger on the starting position. 155 
The experimenter started data acquisition and gave the “go” signal. The subjects performed 156 
the movement after the “go” signal and stopped on the target for about a second. Data 157 
acquisition stopped automatically after two seconds. At the end of the trial the subject 158 
assumed with his arm a relaxing position until the beginning of the next trial. After 20 trials 159 
subjects took a pause of about 3 minutes to avoid fatigue.  160 

Apparatus 161 

During trials’ execution kinematic data were recorded by means of a Vicon (Oxford, 162 
UK) motion capture system. Six passive markers were attached on subjects’ right arm (the 163 
acromion process, lateral epicondyle of the humerus, the styloid process and the tip of the 164 
index finger) and head (external canthus of the eye and auditory meatus). Electromyographic 165 
activity of biceps brachii (Bic) and triceps longus (Tri) was monitored by means of an Aurion 166 
(Milan, Italy) wireless electromyographic system. Impedance between the surface electrodes 167 
was always checked not to exceed 5 KΩ: in the case of higher values, skin was rubbed by 168 
means of an abrasive sponge in order to decrease it. EMG data were amplified (gain of 1000), 169 
band-pass filtered (10 Hz high-pass and 1 KHz low-pass) and digitized at 1000 Hz.  170 

 171 

 172 

Data pre-processing 173 

Data were analysed off-line using customized software written in Matlab (Mathworks, 174 
Natick, MA). Kinematic data were low-pass filtered (Butterworth filter,   cut-off frequency of 175 
20 Hz). The angular displacement of the elbow was computed starting from the markers’ 176 
spatial positions. Elbow angular velocity of rotation was obtained by numerical 177 
differentiation of the angular position. Mean and peak angular velocities were computed for 178 
each trial. The mean velocity was computed as the mean value of the angular velocity over 179 
the movement duration. The time instants of movement initiation (t0) and end (tf) were 180 
defined respectively as the instants at which the bell-shaped angular velocity profile of the 181 
elbow exceeded and dropped below 5% of its peak value. For the EMG analysis, muscle 182 
signals were full-wave rectified, normalized in amplitude with respect to their maximum 183 
value recorded across all trials and conditions and low-pass filtered once more with a zero-lag 184 
Butterworth filter (cut-off frequency 5 Hz). The filtered EMG signals relative to each trial 185 
and comprised between 100 ms before t0 and tf were normalized to a standard time window of 186 
200 samples. By considering 100 ms before movement initiation we wanted to include in the 187 
analysis any kind of anticipatory activity associated with the movement. To identify specific 188 
invariant patterns characterizing the EMG activities of the different subjects, two versions of 189 
non-negative matrix factorization were applied to the low-pass filtered EMGs. The standard 190 
NMF algorithm (Lee and Seung, 1999) was used to identify both temporal components and 191 
synchronous synergies.  192 

Temporal synergies (or temporal components) 193 



6 
 

 

NMF was applied to the matrix M of the EMG signals (size m by T, where m is the number 194 
of muscles signals and T the number of time samples), providing two matrices U and C (of 195 
dimension respectively m by Nc and Nc by T, where Nc is the number of temporal 196 
components) such that, at the time intant t, it results            197 

                                                                      Nc 198 

                                                           M(t)=∑UiCi(t) +residuals                                          (1) 199 
                                                                      i=1 200 
 201 

were Ui indicates the i-th column of the matrix U and Ci(t) the i-th element of the column 202 
vector C(t). Note the number of muscles m indicates the number of muscles recorded 203 
during one single experimental trial. When considering multiple trials the matrix M was 204 
obtained by concatenating vertically the matrices of the single trials. 205 

 Synchronous synergies.  206 

NMF was applied to the transpose matrix M′ of M, providing thus two matrices V and W 207 
(this time of dimension respectively T by Ns and Ns by m, where Ns is the number of 208 
synchronous synergies) such that  209 

                                                                                               N s 210 

                                                           M′(t)=∑Vi(t)Wi+residuals                                         (2) 211 
                                                                                              i=1 212 
 213 

were Vi(t) indicates the i-th element of the row vector V(t) and Wi the i-th row of the 214 
matrix W. Note that in (1) the j-th row of the matrix M results from the linear combination of 215 
the rows of the matrix C scaled by the scalar coefficients of the j-th row of the matrix U. 216 
Each row of C therefore contains one temporal component. In (2), conversely, the j-th row of 217 
M′ is obtained by combining linearly the rows of W scaled by the coefficients of the j-th row 218 
of V. Each row of W therefore, of dimension 1 by Ns, represents a vector of muscle 219 
activations, i.e. a synchronous synergy. Note also that, because of the constraints imposed by 220 
NMF on parameters, all the entries of the matrices U, V, C, and W are non-negative. Even in 221 
this case, when considering multiple trials before applying NMF the transposed of the 222 
matrixes of the single trials were concatenated vertically. 223 

Time-varying synergies.  224 

We applied a customized version of standard NMF and that was developed by d’Avella and 225 
colleagues (2003, 2005). Similarly to standard NMF all the identified parameters are non-226 
negative, but temporal shifts of the synergies are also allowed so that each column vector of 227 
M at the instant t is the following relationship is such that 228 

                                     Nt 229 

                                                            M(t)=∑ciwi(t-τi) + residuals                                    (3) 230 
                                                                                             i=0 231 
 232 
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where Nt is the number of time-varying synergies and the ci and τi are respectively the scaling 233 
coefficient and the time delay associated the synergy wi. The algorithm by d’Avella and 234 
colleagues requires specifying the temporal duration of each time-varying synergy. In this 235 
study the time duration of each synergy was set, for each subject, as long as the time duration 236 
of the whole trial after time standardization (200 samples). Note that the residuals in (1), (2) 237 
and (3) decrease as the number of synergies increase. In case of multiple trials, the matrixes 238 
of the single trials were concatenated horizontally. 239 

Selection of the number of synergies to be included in the EMG decomposition and their 240 
significance.  241 

In (1), (2) and (3) the numbers of muscle synergies (Nc, Ns and Nt) are free parameters of the 242 
analysis that can be set arbitrarily by the experimenter.  Here, it was decided to set in all the 243 
three cases the number of synergies according to a criterion based on the computation of the 244 
variance accounted for (VAF) as a function of Nc, Ns and Nt. The VAF was defined as it 245 
follows 246 

                                           VAF = 100·(1-(||M - D||2/||M-mean(M))||2) )                               (4) 247 

 248 

where D is the matrix of the reconstructed EMG obtained by using a certain number of 249 
synergies and mean() is an operator that compute a matrix of the same size of the matrix M 250 
and whose rows are equal point by point to the mean values of the corresponding rows of M. 251 
The number of synergies was determined as the number of components at which the graph of 252 
the cumulative VAF presented a considerable change of slope (an “elbow”) and after which 253 
the slope of the graph became constant (Ferré, 1995). The exact point of change was 254 
quantitatively determined by using a linear regression procedure already used in literature 255 
(Cheung et al., 2005, 2009; d’Avella et al., 2006; Chiovetto et al., 2010, 2012). We computed 256 
a series of linear regressions, starting from a regression on the entire cumulative VAF curve 257 
and progressively removing the smallest value of number of component from the regression 258 
interval. We then compute the mean square residual error of the different regressions and 259 
selected the number of optimal synergies the first number whose corresponding error was 260 
smaller than 10^-3.  To minimize the probability to find local minima, we always ran NMF 261 
25 different times on the same data set and consider as valid solution that provided the lowest 262 
reconstruction error between original and reconstructed error. To test the robustness and 263 
generality of the synergies extracted from each data set we exploited the two following cross-264 
correlation procedures. We divided each data set in 5 parts of the same size. Since every data 265 
set consisted of the EMG activities of the Bic and Tri muscles collected during 20 repetitions 266 
of the same movement accomplished by one subject, each part consisted of the EMG 267 
activities of four trials. We then chose randomly 4 parts to use as training data set and one 268 
part as test data set. We extracted the synergies from the training data set and used them to 269 
reconstruct the activations of the test data set. We used the original and reconstructed test 270 
data sets to compute the VAF to draw the graph of the cumulative VAF.  We also used the 271 
synergies extracted from each subject to reconstruct the EMG data sets of all the other 272 
subjects and assessed the level of reconstruction goodness by computing the VAF.  For all 273 
cases, we verified that the extracted synergies did not result from a bias associated with the 274 
extraction methods by running a simulation. For each subject and decomposition, we 275 
compared the VAF values for the reconstruction of the experimental data obtained by 276 
combining the identified synergies with the VAF values of the reconstruction of random, 277 
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structureless data reconstructed by combination of the synergies identified from those 278 
artificial data. Such data sets were generated by reshuffling the samples of each muscle 279 
independently in each trials of each subject. Reshuffled data were then low-pass filtered (5 280 
Hz cutoff). For each one of the actual data set we simulated 50 artificial data sets and 281 
extracted the synergies by using the same procedure used for the observed data. We estimated 282 
the significance by computing the 95th percentile of the VAF distribution for simulated data.  283 

Similarity of synergies across subjects.  284 

The similarity between synergies of different subjects was quantified by computing their 285 
scalar products. For synchronous synergies and temporal components we proceeded as 286 
follows. For all possible pairs of normalized synergies of two different subjects the 287 
corresponding scalar products were computed. Note that, by definition, such a product can 288 
only adopt values ranging between 0 and 1. The pair with highest similarity was selected and 289 
the corresponding synergies were removed from the two groups of synergies. The similarities 290 
between the remaining synergies were then computed, and the best matching pair of 291 
synergies was selected and removed from the original and reconstructed model. This 292 
procedure was iterated until all synergies were matched. To compute the similarity between 293 
time-varying synergies the procedure was very similar to the one just described above with 294 
the only difference that in the last case, before computing the scalar product, the matrices of 295 
the synergies were first rearranged by disposing the entries of the matrices in form of vectors. 296 
The similarity between synergies was then quantified by computing the maximum of the 297 
scalar products over all possible time delays of the second synergy with respect to the first. 298 
To access however the significance of the values of similarity provided by the scalar products 299 
we defined a similarity index (S) between two synergies. This index, ranging from 0 300 
(similarity at chance level) and 1 (perfect matching of the synergies) was defined as follows 301 

                                                  S =  (sdata-schance) / (1-schance)                                                               (5) 302 

Where sdata is the scalar product between two synergies extracted from the actual data and 303 
schance is the mean scalar product between 200 pairs of random synergies. We generated the 304 
artificial synergies by resampling randomly from the distribution of the activation amplitude 305 
of each muscle in the data set from which the synergies were extracted and constructed 306 
sequences of random data with the same length of the extracted synergies. Artificial data 307 
were then low-pass filtered to match the smoothness of the actual data.  308 

 309 

Results 310 

To compare systematically the results provided by different synergistic 311 
decompositions when characterizing the same EMG data set, we recorded EMGs during a 312 
series of elbow rotations and then we extracted and compared synchronous, time-varying and 313 
temporal muscle synergies.  314 

To illustrate the data, we begin by showing in Figure 2A the EMGs recorded during a 315 
typical trial accomplished by one subject and relative to an elbow flexion in the horizontal 316 
plane. Consistent with previous literature (Berardelli et al., 1996), such a movement is 317 
characterized by a sequence of three EMG bursts: an initial burst of the agonist muscle 318 
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having the goal of providing the propulsive force to accelerate the movement, followed by a 319 
second burst of the antagonist to decelerate the movement and a third burst of the agonist to 320 
dampen the oscillation that other appears at the end of the movement.  The latter final 321 
corrective action is also reflected in the final overshoot of the finger velocity profile. This 322 
sequence of bursts of activity was found also for elbow extension in the horizontal plane and 323 
flexion and extension in the vertical one (Figure 2B). 324 

We then considered the extraction of synergies from these data. The first interesting 325 
question is how many synergies of each type are needed to describe the data. The number of 326 
synergies to consider was determined, for each subject and type of decomposition, from the 327 
dependence of the percentage of VAF (see Methods) upon the number of synergies. The 328 
latter curves are plotted in Figure 2 for each type of synergy factorization and for each 329 
subject. The VAF curves in each decomposition were very similar across subjects. While for 330 
the temporal and time-varying decomposition we could extract up to 6 synergies (Figure 2A 331 
and 2C) we found that, when referring to a synchronous synergistic decomposition, two 332 
synergies were enough to account for 100% of the variance associated with the original data. 333 
We thus did not extract a number of synergies higher than two. In Figure 3B, however, we 334 
reported an amount of variance equal to 100% even for N = 3,4,5 and 6, to make Figure 3B 335 
graphically coherent with the other two panels, i.e. Figure 3A and 3B.  336 

Figure 3A reports the VAF dependence upon the number of extracted temporal 337 
synergies. For all subject, the VAF reached a high value when including 3 synergies, and the 338 
linear interpolation algorithm that we used (see Methods) indicated that in all subjects 3 339 
temporal synergies were sufficient to explain the vast majority of the variance (with 340 
additional temporal synergies generated by the NMF algorithm adding only a very small 341 
fraction of the total variance). The VAF curves for synchronous (Figure 3B) and time-varying 342 
(Figure 3C) synergies show that, for each individual subject, only two synergies were instead 343 
required to account for the variance of the EMG data.  344 

After having individuated their number, we next considered the shapes of the 345 
synergies extracted by each decomposition. Figure 4A reports the shapes of the three 346 
temporal synergies extracted from the EMGs of a typical subject (LA). The three temporal 347 
components clearly remind of the triphasic organization presented in Figure 2. Each temporal 348 
component is characterized by one major bump. The first temporal synergy can be interpreted 349 
as the component contributing the most to the modulation of the first burst of the agonist 350 
muscle during movement accomplishment: the second as the first burst of the antagonist; and 351 
the third as the second burst of the agonist. Note that the third temporal synergy shows an 352 
initial deactivation before the occurrence of the main peak. This initial part of the synergy can 353 
be associated to the antagonist deactivation, prior to movement initiation, of the anti-354 
gravitational muscles during rotation along the vertical plane. The combination coefficients in 355 
Figure 4B (averaged across the repetitions of each kind of movement) show the contribution 356 
of each component to the activity of each muscle. Consistently with a triphasic pattern, it is 357 
evident that the first component is contributing more to the activity of the biceps during VF 358 
and HF; conversely, it contributes more to the activation of the triceps in VE and HE. 359 
Similarly the second temporal synergy is more active for the muscles opposing the actions 360 
exerted by the muscles activated by the first components. Thus for HF and VF movements 361 
the coefficients of the triceps are higher than those of the biceps. Whereas for VE the 362 
coefficient of the biceps is higher than that of the biceps, for HE movements however the 363 
level of the coefficients of the two antagonist muscles is approximately the same. The 364 
coefficients show then that, in all movements, the third component is contributing to the 365 
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activations of both muscles in approximately equivalent proportion, in order to compensate 366 
for overshoots or to increase the joint stiffness by co-activating opposing muscles.  367 

There are two points that need to be remarked. First of all in the pre-processing step 368 
all the EMG signals of each muscle were normalized with respect to the maximum value that 369 
was recorded for that muscle across all trials. Such a procedure may consequently lead to a 370 
partial loss of information about the relationship among the EMG amplitudes of different 371 
muscles monitored within the same trial. Moreover, trials were normalized in duration, which 372 
may introduce some supplementary temporal variability when merging all trials together to 373 
extract synergies. These can explain why the average coefficients of biceps and triceps 374 
relative to temporal synergy 2 in Figure 4B had approximately the same value for condition 375 
HE, differently from the expectation according to which the coefficient of the biceps should 376 
have appeared much larger than that of the triceps. According to the triphasic strategy, 377 
indeed, it should have been expected the second component to contribute mainly to the 378 
activation of biceps muscle which, in HE, is devoted to exert the antagonist role.  379 

In addition, it is important to note that the number of identified temporal synergies is 380 
three, which is higher than the number of degrees-of-freedom to control (one joint angle, two 381 
muscles). This may look at first as a useless increase of complexity. However, the strength of 382 
a triphasic strategy in a single-joint motor task lies likely in its flexibility and power of 383 
generalization. Indeed, similar triphasic muscle organizations were found characterizing also 384 
arm raising (Friedli et al., 1984), rapid voluntary body sway (Hayashi 1998) and whole-body 385 
reaching (Chiovetto et al., 2010, 2012) motor tasks. In accordance with this premise, one can 386 
note that the four tasks were all executed through a triphasic motor pattern. While previous 387 
studies mainly demonstrated the powerfulness of the synergy idea to reduce the 388 
dimensionality of motor control and execution, our results show in addition that temporal 389 
synergies present marked functional features.  390 

  Figure 5A depicts the two synchronous synergies extracted from the EMGs of a 391 
typical subject (LA).  Each synergy is characterized by the activation of one single muscle. 392 
Due to their antagonist nature, biceps and triceps therefore were found to share no common 393 
level of activation. Note that, although such a result may seem trivial in a two dimensional 394 
space, we might have obtained a pair of linearly independent vectors characterized by 395 
noticeable activity of both muscles. In Figure 5B the temporal evolution of the scaling 396 
coefficients averaged across movement repetition are shown for each muscle and each 397 
movement. Note how, within each movement condition, the activities of the agonist and 398 
antagonist muscles are always characterized by one main burst in agreement with a classic 399 
triphasic pattern. Only for the first coefficient relative to HF movements the second burst is 400 
not clearly visible, this being very likely due to the averaging procedure.  401 

Finally, the two time-varying synergies are shown in Figure 6A. They were characterized by 402 
one single burst for each muscle, one for the biceps and one of the triceps. The two synergies 403 
differed however for the temporal order in which the two burst occurred: whereas the burst of 404 
the biceps anticipated the burst of the triceps in the first time-varying synergy, the order of 405 
the peaks was reversed in the second one. The average scaling coefficients and temporal 406 
delays corresponding to each synergy are shown in Figure 6B-C. Note that also in this case, 407 
the contribution of each synergy to the EMG activity of each movement is consistent with the 408 
biomechanical feature of the movement itself. Thus time-varying synergy 1, in which the 409 
biceps is activated first, contributes more to HF and VF movements, while time-varying 410 
synergy 2, in which the triceps is activated first, contributes more to HE and VE movements.  411 
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In sum, we found that each kind of muscle decomposition provided a set of interpretable 412 
synergies. Each temporal component described a temporal phase of the movement. Each 413 
synchronous synergy described the simultaneous and coordinated action of a group of 414 
muscles (only one in our case) aiming to achieve a specific action goal. Each time-varying 415 
synergy related instead to a specific task-related variable (specifically a direction of motion). 416 

We used the synergies extracted from each subject to reconstruct the EMG data of 417 
each one of the others and assessed the percentage of VAF. The results are reported in forms 418 
of confusion matrices (Figure 7). The average percentage of VAF computed across subjects 419 
was 90 ± 7 % when temporal synergies were extracted and used for reconstruction, and 87 ± 420 
4 for the data sets reconstructed by using the time varying synergies. These values were 421 
found to be significant and did not result from a bias built in the extraction methods. The 422 
average 95th percentile of the distribution of VAF values obtained from the reconstructions 423 
of the simulated data were indeed much lower of the ones obtained from the reconstruction of 424 
the actual data, respectively 17.6 %  and 39.3%  when data where decomposed according to 425 
the temporal and time-varying synergistic decompositions. The synchronous case was not 426 
considered given the features of the extracted sources and the fact that with such synergies a 427 
perfect match of the actual data could always be achieved. 428 

We quantified how much the synergies illustrated in Figure 4, 5 and 6 for one single 429 
subject were representative also of the synergies extracted from the EMG activity of the other 430 
subjects. To this purpose we computed the average scalar products and similarity indeces 431 
between groups of synergies belonging to different participants. For the temporal 432 
components, the average scalar product was s = 0.93 ± 0.01,   s = 1 ± 0 for the synchronous 433 
synergies and s = 0.91 ± 0.05 for the time-varying ones. The scalar products across subjects 434 
of synchronous synergies were always equal to 1 because for all the subjects the same set of 435 
synchronous synergies was always identified, in which only one single muscle was recruited 436 
at a time. Note that in this case also the similarity index S is always automatically equal to 1. 437 
The mean S values computed between groups of synergies extracted from different subjects 438 
are plotted in Figure 8.  On average S = 0.86 ± 0.06 for the groups of temporal synergies and 439 
S = 0.85 ± 0.11 for the time-varying synergies. Note that in both cases the average similarity 440 
index was much higher than 0 (chance level). In sum, all synergies decompositions show a 441 
very high degree of robustness across subjects.  442 

Discussion 443 

We used NMF-based methods to extract three different kinds of muscle synergies 444 
from the EMG activity of two antagonist muscles during the accomplishment of single-joint 445 
elbow rotations along both the horizontal and vertical planes. By using a well-understood 446 
motor task, we aimed to clarify better what are the motor features characterized by each kind 447 
of decomposition and to assess whether, when and why one of them should be preferred to 448 
another. We found well-defined interpretable results for each of the EMG signals 449 
decomposition considered. This allow us to discuss more in detail about what motor features 450 
each kind of muscle synergy decomposition encodes and, consequently, to explain why 451 
sometimes the extraction of one type of synergy may be more meaningful than another one. 452 

In some previous studies (Tresch et al., 2006; Ivanenko et al., 2005) different 453 
unsupervised learning algorithms were applied to the same data set to verify the 454 
independence of the synergies from the particular technique used for their identification, or to 455 
test the superiority of an algorithm with respect to another one. In such studies however, all 456 
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the algorithms used always relied on the same generative model, i.e. on the same definition of 457 
synergy. To our knowledge, this is the first study comparing synchronous, time-varying and 458 
temporal muscle synergies extracted from the same data set. Hence it offers the possibility to 459 
gain novel insights into the benefits provided by the different modular decompositions. Our 460 
choice of an elementary motor task for which most of the neuromuscular functions are well-461 
understood, made the interpretations of various synergies as transparent as possible.  462 

The results that we presented revealed that in all the cases NMF led to the 463 
identification of interpretable muscle synergies. The extraction of synchronous synergies 464 
yielded two primitives, each one characterized by the activation of only one of the two 465 
muscles, indicating that biceps and triceps (respectively flexor and extensor of the elbow 466 
joint) assumed independent levels of activation; in other words their activation waveforms 467 
did not, in general, co-vary in time. This might look like a trivial result given the small 468 
number of muscles considered and in view of antagonist nature of the two muscles during 469 
elbow rotations. However, following the generic definition of a muscle synergy as a group of 470 
muscles working together to achieve a common goal, it may appear surprising to find that the 471 
two main muscles controlling the task performance are not synergistic. However, the 472 
definition of synergies can be restated as groups of muscles acting at one or multiple joints to 473 
achieve a specific motor function (in our case the motor function could be simply flexing or 474 
extending the arm; in other terms, accelerate or decelerate the arm). From this point of view, 475 
our interpretation is in agreement with other previous studies considering more complex 476 
movements and a larger number of muscles. Similarly to us, for instance, the synergies 477 
extracted by Cheung and colleagues (2009) from the EMG activations of sixteen elbow and 478 
shoulder muscles of subjects performing a set of arm movements in space can be easily split 479 
in two groups: one encompassing synergies in which the most active muscles are flexor and 480 
another one in which extensor muscles are instead dominating (see Cheung et al. 2009, their 481 
Figure 3A). Also in this case, therefore, the goal associated with each synergy was to flex or 482 
extend the arm. By extension, this may suggest that muscles belonging to the same 483 
synchronous synergy share similarities with respect to their biomechanical function for the 484 
movement to be performed. Synchronous synergies were shown however encoding also other 485 
kinds of functional goals, or “strategies”. Torres-Oviedo and Ting (2007) extracted 486 
synchronous synergies from a set of leg and trunk muscles during a postural task and found 487 
synergies characterized mainly by activation of either ankle or knee muscle. These synergies 488 
resulted therefore in producing muscle activation patterns associated with two well-known 489 
postural strategies, usually referred to as “hip” and “ankle” strategies, which were previously 490 
deeply described in human postural control (Horak and Macpherson, 1996). 491 

When extracting temporal muscle components the application of NMF provided a 492 
decomposition based on three temporal synergies. Each one of them was found playing a 493 
well-determined functional role during movement accomplishment, in agreement with the 494 
three movement phases present in the classical triphasic pattern (see Berardelli et al., 1996,  495 
for a review relative to elbow and wrist movements). The three phases can be resumed as 496 
follows: a first phase (coinciding with the first agonist EMG burst) to provide the impulsive 497 
force to initiate the movement, a second phase (antagonist burst) dedicated to halt the 498 
movement at the desired end-point and a third phase (coinciding with the second agonist 499 
burst) to dampen out the oscillations which might occur at the end of the movement. 500 
Although in a single-joint motor task such a triphasic strategy may look like a useless 501 
increase of complexity due to the fact that the number of synergies is higher than the 502 
number of muscles  to control, its strength  lies likely in its flexibility and power of 503 
generalization. Indeed, similar muscle organizations were found characterizing also arm 504 
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raising (Friedli et al., 1984), rapid voluntary body sway (Hayashi 1998) and whole-body 505 
reaching (Chiovetto et al., 2010, 2012) motor tasks. Along with the need of reducing 506 
movement complexity by reducing the number of degrees of freedom (number of muscles), 507 
the decomposition of EMG activations based on the definition of temporal synergies 508 
showed that at some extent even the temporal dimension of the movement is a source of 509 
complexity that could be controlled and simplified by the CNS. These findings also pose the 510 
question of the neural implementation of this kind of temporal synergies. For single-joint 511 
rotations, Irlbacher et al. (2006) showed that the bursts composing the triphasic pattern were 512 
triggered in cascade with the possibility for the second burst to depend partly on what 513 
occurred during the first burst and not as a complete undividable sequence. This is 514 
compatible with the extraction of three temporal synergies to account for the control of 515 
elbow rotations across several conditions. However, this asks the question whether there are 516 
indeed three 'spinal' temporal patterns recruited by different premotor drives or if the same 517 
temporal pattern is recruited by a delayed sequence of premotor drives. Interestingly, this 518 
idea of time shifts is present in the time-varying model of muscle synergies, which might 519 
have solved this issue. 520 

We found that two time-varying muscle synergies could account quite well for the 521 
EMG activity associated with elbow movements. Each synergy was characterized by two 522 
main bursts of activation for both the biceps and triceps, whereas the time of occurrence of 523 
their peaks was inverted in the two synergies. While the burst of the biceps in the first 524 
synergy of Figure 6A occurs for first and may be thought to contribute therefore to start 525 
elbow flexion and the burst of the triceps to brake it, in the second synergies to role of the 526 
two muscles is inverted and the synergy is consistent with the pattern associated with an 527 
elbow extension. The two synergies seem therefore to intrinsically encode the direction of 528 
motion, or in other words, the motor task, and therefore may allow a hierarchical control of 529 
movements, in which task goals are only needed to be specified to generate complete muscle 530 
patterns.  This finding is coherent with the results presented in previous investigations 531 
regarding arm movements (d’Avella et al. 2006, 2008, 2011) in which, even when a larger 532 
number of muscles was taken into account in the analysis, time-varying synergies where 533 
found to be directionally tuned, so that they resulted active only when the movements 534 
occurred in well-determined directions. We also stress the subtle difference between the 535 
interpretation of time-varying synergies and synchronous synergies: with the first time-536 
varying synergy only flexions can be performed (maybe varying its speed or amplitude 537 
depending the way it is recruited). In contrast, the first synchronous synergy can be used for 538 
both flexion (to accelerate) and extensions (to decelerate), showing that both representations 539 
encode divergent aspects of the movements data set. 540 

 The use of very simple motor tasks characterized by well-known triphasic pattern allows us 541 
to evaluate some pros and cons of each of the decompositions used in this study. Previous 542 
works demonstrated that, in a triphasic pattern, the time of activation of the antagonist muscle 543 
is controlled independently by the cerebellum (Manto et al., 1995). Other studies (Cheron and 544 
Godaum, 1986) also reported that the timing of the antagonist burst onset increases with the 545 
movement amplitude, whereas the one of the agonist does not. Our results showed that 546 
neither the temporal synergistic decomposition nor the time-varying one can capture such 547 
timing features. In the first case, indeed, each one of the three bumps of Figure 4 is invariant 548 
in time and cannot be shifted temporally. This makes impossible to model the inter-trial 549 
variability of the onset of the antagonist muscle. Rather, each bump represents the average 550 
temporal evolution of the corresponding bursts across all trials. In the second case, 551 
differently, in each of the time-varying synergies that we identified from the experimental 552 
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data set, the time lag between the activation of the two antagonist muscles is constant. This 553 
prevents the possibility, when reconstructing the data, to vary from trial to trial the time 554 
interval between the activations of the agonist and antagonist muscles, as observed in human 555 
subjects. Different considerations can instead be made for the results associated with the 556 
synchronous decomposition. As each synergy that was identified from the data is responsible 557 
for the recruitment of one single muscle indeed, the activation profile of each muscle can be 558 
set arbitrarily and independently for each trial. This allows therefore not only to model 559 
independently the times of activation of each burst in each trial, but also their amplitudes, in 560 
agreement with other experimental observations. Hannaford and colleagues (1985) 561 
demonstrated indeed that the first agonist burst is not modified by the vibration of the agonist 562 
muscle. In contrast the amplitude of the second agonist burst is increased and the vibration of 563 
the antagonist muscle increases the amplitude of the antagonist burst. Similarly to the 564 
synchronous one, even the temporal decomposition is suitable to capture such features of the 565 
amplitudes in the reconstructed data, as it allows the separate scaling of each one of the three 566 
identified bumps. The time-varying decomposition, on the contrary, introduces instead by 567 
construction a correlation between the amplitudes of the different muscles. 568 

It was demonstrated that discrete movements regulated by a triphasic pattern may present an 569 
oscillatory component in the neural command (see for instance Cheron & Godaux, 1986). 570 
Very recently, it was also shown by the analysis of the dynamical structure of reaching 571 
movement that non-periodic movement such as the one presented here contains a strong 572 
rhythmic structure (Churchland et al, 2012). In this study the authors proved that, although 573 
EMG responses do not themselves exhibit state-space rotations, EMG can however be 574 
constructed from underlying rhythmic components. It makes thus sense to wonder which one 575 
of the decomposition methods that we investigated can be more useful or complementary for 576 
the understanding of the oscillatory nature of the control of movement. Each model might 577 
indeed provide a set of synergies revealing specific oscillatory features underlying the EMGs. 578 
In this framework, synchronous components cannot be of help, as they carry spatial and not 579 
temporal information. Interesting results might instead be provided by drawing the phase 580 
plots associated with each temporal component or with the activity of each muscle trace in a 581 
time-varying synergy. In case the plots presented evident rotations indeed, the hypothesis put 582 
forward by Cheron and Godaux and later by Churchland and colleagues would be 583 
strengthened. In the contrary case, however, the results obtained by these authors would not 584 
be discredited, as the absence of rhythmic features in the components might instead be due to 585 
the incapability of the synergy models to account for such features correctly.   586 

  We have in this discussion tried to provide evidence that the simple results that we 587 
found for the simple movement and system considered in this study might very likely hold 588 
also for more complex behaviours involving the action of large number of muscles. We think 589 
therefore that, in general, each kind of muscle synergy may encode a different motor feature. 590 
Specifically, temporal components encode different temporal phases of the movement, each 591 
one playing a specific functional role.  Synchronous synergies encode the simultaneous and 592 
coordinated actions of specific groups of muscles aiming to achieve a specific motor function 593 
(e.g. accelerate the body toward the target). Finally, time-varying synergies encode high-level 594 
task-related functions (in this case the direction of motion). This suggests that the type of 595 
factorization to be chosen in each condition depends on which of these aspects the study 596 
intents to reveal. Note however that each type of synergies may not always characterize 597 
uniquely only one single motor feature, mainly because two or more variables may be 598 
correlated. Thus, for instance, the direction of motion can be inferred also from the amplitude 599 
of the scaling coefficients relative to temporal components (Figure 4B) once the action 600 
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exerted by the muscles in known, or the triphasic temporal organization can be also reflected 601 
in the temporal evolution of the scaling coefficients in Figure 5B. 602 

  We conclude by stressing that a unifying synergy extraction method capturing all 603 
those aspects at once could simplify the interpretation of future works. If all these 604 
representations of synergies are simultaneously valid, then a more general model on the top 605 
of them should exist. Used systematically, such a model could allow better comparisons and 606 
interpretations of muscle synergy studies in more complex motor tasks.  607 
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 690 

Captions 691 

Figure 1: Sketch of the experimental paradigm. Subjects sat on a chair and had to 692 
accomplish flexions or extensions of the elbow along both the vertical (V) and horizontal (H) 693 
plane. 694 

Figure 2: Typical EMG and kinematic associated with the experimental paradigm. A.   695 
EMG traces of individual rapid flexion and extension movements of the elbow in a normal 696 
subject. In all conditions the triphasic pattern results clearly present. B. From the top, angular 697 
elbow displacement and velocity associated with one typical elbow flexion in the horizontal 698 
plane are respectively depicted, along with the EMG activities of Bic and Tric muscles. In the 699 
two panels at the bottom, the smoothest lines represent the envelopes of the rectified EMGs 700 
and were obtained by low-pass filtering the rectified EMG at 5 Hz, the spikiest ones at 20 Hz. 701 
Clearly, different filtering frequencies do not modify the main temporal features of the 702 
signals. 703 

Figure 3: Levels of approximation as a function of the number of synergies. A. 704 
Percentage of VAF as a function of the number of temporal synergies. B. Percentage of VAF 705 
as a function of the number of synchronous synergies. C.  Percentage of VAF as a function of 706 
the number of time-varying synergies. Each coloured line is associated to a specific subject 707 
(see most right panel), which in the figure is identified by the initials of his first and last 708 
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name. In all the three panels the vertical arrows indicate the number of primitives at which 709 
the curves satisfy the linear regression criterion to choose the number of primitives (see 710 
Methods). These points are invariant across subjects and coincide, in most of the cases, with 711 
the points at which the curves present an “elbow” and start becoming straight.  712 

Figure 4: Identified temporal synergies. A. Temporal components extracted from one 713 
typical subject (LA), ordered according to the time of the occurrence of their main peaks. B. 714 
Corresponding scaling coefficients.  715 

Figure 5: Identified synchronous synergies. A. Synchronous synergies identified from one 716 
typical subject (LA). B. Temporal evolution of the corresponding scaling coefficients  717 

Figure 6: Identified time-varying synergies. A. Time-varying synergies extracted from the 718 
EMG activity of one typical subject (LA). B. Corresponding scaling coefficients. C. 719 
Corresponding temporal delays. 720 

Figure 7: Cross-validation results. A. Percentage of VAF for the reconstruction of the 721 
actual EMG data set of one subject by using the temporal synergies identified from the data 722 
sets of the other subjects. VAF values along each row are associated with the reconstruction 723 
of the data of one single subject. B. Percentage of VAF for the reconstruction of the actual 724 
EMG data set of one subject by using the time-varying synergies identified from the data sets 725 
of the other subjects.  726 

Figure 8: Average level of similarity between groups of synergies identified from the 727 
EMG data of the 8 subjects that participated to the experiment. A. Similarity between 728 
groups of temporal synergies. B. Similarity between groups of time-varying synergies. The 729 
average level of similarity between synchronous synergies is not shown as the identified set 730 
of synchronous synergies was the same across all subjects. 731 
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Table 1:  Average mean and peak angular velocities. For each movement and subject the 742 
average velocities (± standard deviation) are reported. Averages and standard deviations were 743 
computed over all trials repetitions. 744 

           HF    HE     VF       VE 

Peak vel.  AL 8.86 ± 0.91 -8.95 ± 0.77 10.81 ± 1.12 -11.65 ± 2.37
(rad/s) AR 11.78 ± 0.97 -9.84 ± 1.29 12.51 ± 0.89 -12.55 ± 1.11

CA 9.69 ± 1.35 -8.26 ± 0.92 9.63 ± 1.66 -9.08 ± 2.59
MA 7.09 ± 0.99 -7.45 ± 1.83 7.18 ± 0.83 -7.92 ± 1.42
FR 4.85 ± 0.41 -7.37 ± 0.77 5.84 ± 1.07 -5.29 ± 0.57
FA 11.32 ± 1.01 -10.35 ± 1.03 9.72 ± 1.24 -12.04 ± 1.30
GI 7.96 ± 0.93 -8.17 ± 0.89 9.99 ± 0.69 -9.28 ± 1.48
LA 8.56 ± 2.10 -9.70 ± 0.68 10.19 ± 0.69 -12.63 ± 0.93

Mean vel.  AL 3.26 ± 1.00 -3.47 ± 0.74 4.31 ± 0.68 -4.06 ± 0.98
(rad/s) AR 3.55 ± 0.34 -2.92 ± 0.83 3.95 ± 0.56 -3.69 ± 0.76

CA 3.86 ± 0.81 -3.65 ± 0.42 3.53 ± 0.60 -3.06 ± 0.64
MA 3.01 ± 0.37 -2.68 ± 0.49 3.00 ± 0.43 -2.81 ± 0.47
FR 2.04 ± 0.31 -1.61 ± 0.78 2.56 ± 0.35 -2.18 ± 0.47
FA 4.10 ± 0.92 -2.15 ± 0.54 3.68 ± 0.64 -3.54 ± 0.71
GI 3.41 ± 0.37 -3.65 ± 0.29 3.82 ± 0.63 -3.58 ± 0.54
LA 3.24 ± 1.89 -3.57 ± 0.60 3.66 ± 0.70 -3.47 ± 0.54
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