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Abstract

An important issue in motor control is to understand what are the basic principles underlying

the accomplishment of natural movements. According to optimal control theory, the problem

can be stated in these terms: what cost function do we optimize to coordinate the many more

degrees of freedom than necessary to fulfill a specific motor goal? This question has not received5

a final answer yet, since what is optimized partly depends on the requirements of the task. Many

cost functions were proposed in the past, and most of them were found to be in agreement with

experimental data. Therefore, the actual principles on which the brain relies to achieve a certain

motor behavior are still unclear. Existing results might suggest that movements are not the

results of the minimization of single but rather of composite cost functions. In order to better10

clarify this last point, we consider an innovative experimental paradigm characterized by arm

reaching with target redundancy. Within this framework, we make use of an inverse optimal

control technique to automatically infer the (combination of) optimality criteria that best fit the

experimental data. Results show that the subjects exhibited a consistent behavior during each

experimental condition, even though the target point was not prescribed in advance. Inverse15

and direct optimal control together reveal that the average arm trajectories were best replicated

when minimizing the combination of two cost functions, nominally a mix between mechanical

energy expenditure and joint-level smoothness. Our results thus support the cost combination

hypothesis and demonstrate that the recorded movements were closely linked to the combination

of two complementary costs.20

Author summary

To reach an object, the brain has to select among a set of possible arm trajectories that can displace

the hand from an initial to a final desired position. Because of the intrinsic redundancy characteriz-

ing the human arm, the number of admissible joint trajectories toward the goal is generally infinite.

However, many studies have demonstrated that the range of the actual candidates can be limited25

to those trajectories that results from the fulfillment of some optimal rules. Various cost functions

were shown to be relevant in the literature. A peculiar aspect of most of these costs is that each one

of them aims at optimizing one specific feature of the movement. The necessary motor flexibility of

everyday life, however, might rely on the combination of such cost functions rather than on a single

one. Testing this cost combination hypothesis has never been attempted. To this aim we propose a30
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reaching task involving target redundancy to facilitate the comparisons of different candidate costs

and to identify the best-fitting one (possibly composite). Using a numerical inverse optimal control

method we show that most participants produced movements corresponding to a strict combination

of two subjective costs, namely the mechanical energy expenditure and the joint-level smoothness.

Introduction35

Numerous experimental studies have demonstrated that biological motion exhibits invariant fea-

tures, i.e. parameters that do not significantly change with movement size, speed, load and direc-

tion [1, 2, 3, 4]. A number of these features was described for point-to-point (e.g. reaching, see [5])

and continuous (e.g. drawing and handwriting, see [6]) movements of the upper limb. Therefore,

despite the infinite number of motor strategies compatible with most of these tasks, regularities40

characterize human voluntary movements, suggesting that the central nervous system (CNS) over-

comes the redundancy of movement accomplishment by following some specific rules or principles.

Many authors investigated these principles in the framework of deterministic optimal control theory.

This theory assumes that biological movements are optimal in the sense that they minimize some

performance criteria or cost/loss functions. In this regard, a plethora of optimal control models45

have been proposed in the literature [7, 8, for reviews] and most of them were found to fit well the

experimental data. Therefore, the exact relationship between different mathematical cost functions

and the movement variables actually represented in the brain still remains unclear and this seems

due to multiple reasons.

The first one is methodological: in many cases, models based on divergent assumptions and mini-50

mizing different costs can yield similar arm trajectories [9, 10]. If one considers the range of human

motor variability and the consequences of model approximations, several cost functions can per-

form well enough to be considered valid. For example, the minimum hand jerk [11], the minimum

torque change [12] but also the minimum variance models [13] make fully acceptable predictions

for point-to-point arm movements performed in the horizontal plane (i.e. quasi-straight hand paths55

with bell-shaped time-courses). The second reason is conceptual: seeking a single and universal cost

function might be useless [10], in particular if the CNS is capable of optimizing a weighted combi-

nation of costs depending on the features of the task [14, 15, 16, 17]. Thus, a part of the present
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collection of models may represent constituent pieces of one motor plan. It is already well-known

for instance that the weight given to objective (e.g. task-related) and subjective (e.g. body-related)60

cost functions can be modulated by the CNS. Increasing the accuracy requirements of a pointing

task while keeping the movement time constant leads to an increase of muscle co-contraction (and

thus of metabolic energy expenditure, see [18]). Conversely, experimentally induced fatigue leads

to a reweighting of accuracy and energy economy requirements in the sensorimotor control of fast

elbow flexions [19]. Hence, cost functions would result in any case from the combination of external65

task demands with internal constraints. In contrast to this well-identified objective/subjective costs

trade-off (see also [20]) it has not been established yet whether or not the CNS actually combines

subjective costs (e.g. neural or mechanical energy expenditures, hand/joint/torque jerk, amount of

torques/forces etc.).

In order to test this cost combination hypothesis, our approach was two-fold. First, we wanted70

to stress the differences between the predictions of different classical models already existing in

literature. To this aim, we designed a pointing task with target redundancy. Precisely, we reduced

the external constraints of the task by asking subjects to reach to a vertical bar. Thus no accuracy

requirement was present in the vertical axis, which had the interesting advantage of discriminating

better between different cost functions than during classical point-to-point experiments (see Figure 175

for a proof-of-concept). Second, we developed a framework permitting us to examine simultaneously

several existing models/costs, as well as any linear combination of them, by means of an automated

inverse optimal control method. Inverse optimal control is a mathematical approach in which

inference about the cost function is made automatically from experimental data, which are assumed

to be optimal [21]. Using such a method, we were able to link the recorded data to an infinite number80

of potential (composite) cost functions, in contrast to the a priori choice of one single cost function

characterizing most of the previous investigations. In this way we could automatically uncover

which single cost or mix of costs fit best with the average behavior of subjects. Direct optimal

control was then used to strengthen the results provided by the inverse method and to compare

directly the recorded and simulated data.85

The experimental results show that participants adopted a consistent behavior although the final

point was not imposed by the experimenter. Inverse optimal control reveals that their average

4



behavior mainly relied on a composite cost function, combining the minimization of mechanical

energy expenditure (here the absolute work of torques) with the maximization of joint smoothness

(here the integrated squared acceleration). Further analyses demonstrate that this mix-of-cost90

model replicated the most important features of arm movements and performed better than any

other single cost function on which our method was based. Results provided therefore support the

cost combination hypothesis and, in particular for this task, emphasize two complementary and

subjective costs.

Materials and Method95

Experimental task

Participants

Twenty naive subjects (16 males, and, mean±std: age 26.9 ± 2.5, range [18; 31]; mass 69.9 ± 8.4

kg; height 1.76 ± 0.06 m) volunteered to participate in the experiment. All of them were healthy,

right-handed and with normal or corrected-to-normal vision. The experimental protocol used was100

in accordance with the principles expressed in the Declaration of Helsinki and approved by a local

ethics committee.

Reaching-to-a-bar task

The motor task that we considered is illustrated in Figure 2A. From a sitting position, participants

were asked to perform a series of pointing movements toward a vertical target bar. The bar was a105

uniform and rigid tube. For the task, shoulder and elbow rotations were allowed, while the wrist

joint was frozen by means of two light and small sticks attached to the distal part of the forearm

and the proximal part of the hand. The vertical bar was placed in front of the participants, in the

para-sagittal plane intersecting the shoulder joint. No target point was emphasized on the bar and

its height was 2.50 meters so that subjects could not see its extremities without moving the head110

or the trunk. The horizontal distance of the shoulder from the bar was set to 85% of the subject’s

full arm length (L = l1 + l2, where l1 and l2 denote the upper arm and forearm lengths respectively,

see Fig. 2A). Five initial arm postures, denoted by P1 to P5, were defined by means of reference
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points located in a vertical plane, placed laterally at approximately 10 cm from the subject’s right

shoulder. Precisely, these five starting postures were defined by imposing the following angular arm115

configurations ([elbow;shoulder] in degrees): [0; 90], [−90; 90], [−120; 120], [−90; 30] and [−80; 140],

respectively from P1 to P5.

The initial references were positioned using a wooden hollow frame containing 1.5 cm-spaced thin

vertical fishing wires to which fishing leads (small spheres) indicating the requested fingertip initial

position were attached. Differently colored pieces of scotch-tapes were stuck on the leads to easily120

identify the references. This color-code was then used to verbally specify the initial posture that the

subject had to select at the beginning of each movement. By imposing the initial finger position, a

unique starting posture of the arm was thus defined in the para-sagittal plane. The positions of the

leads were adjusted before the experiment, based on the subject’s upper arm and forearm lengths

and the vertical distance shoulder-ground.125

The experimenter then gave the following instruction to the participants: look at the bar in front

of you, close the eyes and quickly show the location of the bar by touching it with the fingertip,

performing a one-shot movement. No instruction was given to the subjects with respect to where

and how to reach the bar. Because of the features of the task itself, participants had to implicitly

control the finger position along the antero-posterior and lateral directions whereas full freedom130

was left along the vertical one. Note that the challenge for the subjects (i.e. the objective reward

of the task) was to be precise enough to actually touch the bar, since no on-line vision was allowed.

Since subjects were free to moved in 3-D, touching the bar was not so easy because of the presence

lateral and antero-posterior errors and the absence of on-line visual feedback. Nevertheless, it is

worth noting that reaching any point on the vertical bar allowed the subject to perform the task135

successfully. During the protocol, the five initial postures were tested in a random order. For each

initial posture, twenty trials were recorded, so that a total of 100 movements per subject were

monitored. A few trials were repeated during the experiment (less than 5%), when the subjects

clearly missed the bar or did not perform a one-shot movement. Every set of 25 movements,

subjects were allowed to rest. Data from a total of 2000 pointing movements were collected for this140

reaching-to-a-bar task.
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Data collection and processing

Materials

Arm and head motion were recorded by means of a motion capture system (Vicon, Oxford, UK).

Ten cameras were used to capture the movement of six retro reflective markers (15 mm in diameter),145

placed at well-defined anatomical locations on the right arm and head (acromial process, humeral

lateral condyle, ulnar styloid process, apex of the index finger, external cantus of the eye, and

auditory meatus).

Motion analysis

All the analyses were performed with custom software written in Matlab (Mathworks, Natick, MA)150

from the recorded three-dimensional position of the six markers (sampling frequency, 100 Hz).

Recorded signals were low-pass filtered using a digital fifth-order Butterworth filter at a cutoff

frequency of 10 Hz (Matlab filtfilt function).

The temporal finger movement onset was defined as the instant at which the linear tangential

velocity of the fingertip exceeded 5% of its peak and the end of movement as the point at which155

the same velocity dropped below the 5% threshold. All time series were normalized to 200 points

by using Matlab routines of interpolation (Matlab spline function). Standard kinematic parameters

described in previous experimental arm pointing studies were calculated [3, 22]: movement duration

(MD), peak velocity (PV), mean velocity (MV), relative time to peak velocity (TPV) defined as the

ratio between the acceleration duration and MD, index of velocity shape (Vpeak/Vmean) defined160

as the ratio between the peak of velocity and its mean value, and curvilinear distance of the finger

(CD) defined by the integral over time from 0 to MD of the norm of the fingertip velocity vector.

The constant error was computed as the orthogonal distance between the terminal finger position

and the bar. The variable error was defined as the standard deviation computed on the distances

between the measured end-points across trials.165

For subsequent analyses and comparisons with models, we projected the 3-D coordinates of the

markers onto a vertical plane. It will be shown thereafter that the movements carried out by the

participants almost lay on a para-sagittal plane. The motion capture system was calibrated such

that the axes X and Y corresponded to the antero-posterior and vertical axes, respectively. Thus,
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movements were approximately in theXY plane, while the Z direction (lateral) was not significantly170

used.

Angular displacements of the arm segments (upper arm and forearm) were then evaluated using

the inverse kinematic function, relating the (x, y) position of the finger in plane XY to the arm

configuration θ = (θ1, θ2)> (subscript 1 denoting the shoulder joint):

θ1 = arctan yx − arccos(x
2+y2+l21−l22
2l1
√
x2+y2

); θ2 = π − arccos( l
2
1+l22−x2−y2

2l1l2 ). (1)

The shoulder joint was defined as the origin of the frame of reference (see Fig. 3).175

Finally, additional task-relevant parameters were computed. The end-point position consistency

index (CI) was defined as the ratio between the standard deviation of the fingertip position on the

Y -axis and the length of the reachable region. This set was computed from the intersection points

between the bar and a shoulder-centred circle of radius L. The CI parameter provides information

concerning the percentage of the bar used by the subjects. The smaller is this index, the more180

consistent was the subject’s behavior for the selection of a terminal point on the bar. The location

of the reached point was calculated with respect to the shoulder position and normalized by the

subject’s arm length L (referred to as RP). In order to detect whether subjects chose to move

upward or downward, we computed the movement vector angle (denoted by MV) defined as the

counterclockwise-oriented angle between a horizontal line and the line connecting the initial and185

terminal fingertip positions.

Moreover, to assess whether the finger path had a convex or concave curvature, we computed

the signed Index of Path Curvature (sIPC). This was defined as the averaged ratio between the

maximum path deviation from a segment connecting the initial-final finger positions and the length

of this segment, attributing a positive sign when the finger position was above the straight line190

(for concavity). Thus, this parameter evaluates the average or global convexity or concavity of a

hand path. In addition, joint coupling was calculated as the determination coefficients between the

shoulder and elbow angular displacements. In order to compare models predictions and measured

data, we computed the area between paths. Given the complexity of the polygon to be integrated

(whose area is denoted by ∆paths), we used a numerical method based on the evaluation of the195
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integral with a random sampling of the integration region (the standard Monte Carlo integration

method). Note that, throughout this paper, we will distinguish the terms path and trajectory in

that the former refers only to the graph of the trajectory (i.e., the trajectory also includes the

time-course).

Statistical analysis200

We used quantile-quantile plots to visually check that the data were normally distributed (qqplot

Matlab function). Shapiro-Wilk’s test was used to quantify these observations for some relevant

parameters. One-way ANOVAs were also performed to analyze the effects of the initial posture on

certain parameters. Post-hoc tests were conducted with Scheffé’s test when necessary and appro-

priate (the chosen threshold was 0.05).205

Modeling

Previous models of optimal control for arm movements were originally designed by their respective

authors on the basis of some particular assumptions and restrictions. In order to compare several

different costs proposed in the literature and to apply the inverse optimal control technique described

thereafter, we consider a homogeneous framework, compatible with most existing models. The next210

subsections describe the musculoskeletal model, the inverse and direct optimal control techniques

that we employed. Details are deferred to Supporting Information Text S1.

Model of the musculoskeletal system

It will be shown that the recorded 3-D arm movements approximately lied on the para-sagittal

plane. Thus, a reasonable approximation for modeling is to consider the arm as a two-joint rigid215

body moving in the vertical plane. A classical application of Lagrangian mechanics allows us to

express the arm dynamics using the general form [23]:

limb dynamics τ =M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + F θ̇, (2)
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where the variables θ = (θ1, θ2)>, τ = (τ1, τ2)> denote the joint angle and torque vectors, respec-

tively. A dot above a variable stands for the time derivative. The quantities M, C,G andF are

the inertia matrix, the Coriolis/centripetal terms, the gravitational vector and the viscosity matrix,220

respectively. The explicit expressions of the above quantities and numerical values are provided in

Supporting Information Text S1.

Furthermore, we modeled the fact that the joint torques τ are smoothly generated by muscle

contractions, a phenomenon which is subject to a certain dynamics:

actuator dynamics τ̈ = µ. (3)

The control variable µ is the motor command and can be thought as the neural input to muscles225

given by motor neurons. For compatibility between models and simplicity, we thus assume that the

effect of muscle contraction is mechanical and that motor neurons control directly the acceleration

of torques. From now on, we will denote by (Σ) the system composed of Equations 2 and 3. Some

constraints on the state and control variables were also taken into account for biological plausibility

(see Supporting Information Text S1).230

It is noteworthy that, for considering several costs within the same framework, we did not model

neither agonist and antagonist muscles, nor the complex mechanism of muscle contraction. Nev-

ertheless, preliminary tests (not shown) indicated that the results presented in this study do not

critically depend on this choice. For instance, modeling agonist/antagonist muscles as a second

order low-pass filters [24] would not change significantly the predictions of the models compatible235

with such an antagonist structure. The main reason is that the optimal trajectories were found

quite robust with respect to changes of the actuator dynamics (up to some extent of course; for

instance, when the muscle dynamics allowed moving the arm along identical paths).

Inverse optimal control

The goal of inverse optimal control is to automatically infer the cost function from observed trajec-240

tories that are assumed to be optimal. Thus, in inverse optimal control problems (inverse OCPs),

the optimal solution is known and the objective is to recover the performance criterion which has
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been optimized. Addressing the motor planning problem in this way is generally more difficult than

using the more standard direct optimal control approach, which consists of guessing a plausible

cost and comparing its predictions with the experimental data. However, inverse OCP is better245

suited to provide, with less a priori, the cost or mix of costs that must be optimized to replicate

the measured arm trajectories. In this paragraph, we present a numerical method for solving an

inverse OCP, which was initially described by [25] and successfully applied to path planning during

locomotion in humanoid robotics.

The method relies on the selection of a set of plausible costs. For the optimal control of arm250

movements, several costs were already proposed in the literature. The models generally fall into

four general classes, each of which making different assumptions on the relevant variables for the

CNS. First, there are the kinematic models: the minimum hand jerk ([11]), the minimum angle

jerk ([26]), or the minimum angle acceleration with constraints ([27]). They suggest a maximum of

smoothness in either the Cartesian or joint spaces. Then inverse kinematics and/or inverse dynamics255

are required to obtain the actual control µ. Alternatively, dynamic models were proposed to avoid

this inverse dynamics computations, such as the minimum torque ([9]) or the minimum torque

change models ([12, 28]). At the junction of kinematic and dynamic models, [29] suggested that

the brain might select the shortest path in configuration space with respect to the kinetic energy

metric. This model is referred to as the geodesic model. Energetic models were also considered in260

several studies, in particular those involving the minimization of work of torques (see [30] for the

peak of work, [31] for the positive work, and [32] for the total absolute work). Here, we will only

consider the total absolute work because this corresponds to the actual mechanical energy spent to

move the arm. Finally neural models, often referred to as minimum effort models, were designed

to optimize the amount of motor neurons activity during a movement ([33, 34]). Although other265

models for movement planning were proposed in the literature, they could not be integrated to the

present work for one of the following reason: (1) they fall in the stochastic context, (2) they require

an accurate modeling of agonist/antagonist muscle mechanisms or (3) they do not assume optimal

control at all. Indeed, a limit of the present methodology is to be able to describe models within

a single mathematical framework, defined by Equations 2-3 and the specification of a cost function270

(see Table 1).
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Therefore, we selected the following costs for further investigation: hand smoothness (Carte-

sian jerk), joint smoothness (angular acceleration and angle jerk models), torque change, torque,

geodesic, mechanical energy, and neural effort (each of which denoted by Ci, i = 1..8, see Table 1

for details). From these eight biologically plausible costs, we could build other costs (called hybrid275

or composite and denoted by C), expressed as a weighted linear combination:

C(α) =
8∑
i=1

αiCi. (4)

The parameterα = (αi)1≤i≤8 is referred to as the weighting vector, whose elements are non-negative.

A weight of zero means that the corresponding cost do not contribute to movement planning.

Thus, the OCP corresponding to the cost C can be stated as follows: Find a control u = µ and

the corresponding trajectory q = (θ, θ̇, τ , τ̇ )> of system (Σ), connecting a source point qs to a final280

point on the target manifold B in time T and yielding a minimal value of the cost C.

Let us denote this problem by Pα. Here, the target is the vertical bar, given by the equation

x− 0.85L = l1 cos θ1 + l2 cos(θ1 + θ2)− 0.85L = 0 in Cartesian and joint coordinates, respectively.

Since subjects had to reach the bar with zero velocity and zero acceleration, the manifold could be

written in state-space as B = {q ∈ R8 such that m(q) = 0}, for some vector-valued mapping m285

(see Supporting Information Text S1). The fact that this mapping is surjective is exactly the reason

why the task is redundant, even though we modeled the arm as a simple two-joint arm moving in

a plane.

Let us denote by qmeas(t), the measured trajectories in state-space. Then, the core of the inverse

optimal method is to formulate a bi-level problem:290

Upper − level minimizeα Φ(q?α,qmeas),

↑↓

Lower − level where q?α is the optimal solution of Pα

(5)

The upper-level consists in solving an optimization problem for α in order to find the best match

between the optimal trajectories of Pα and the measured trajectories. The lower-level precisely

consists in computing the optimal trajectories corresponding to the current cost C(α) (for this
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step, see the next subsection).

Solving such a problem is not straightforward for several reasons. First, the objective function295

Φ in the upper-level is quite long to evaluate because a direct OCP must be solved before (this

can take a few minutes for one evaluation). Moreover, it might be relatively noisy because only

an approximation of the optimal trajectories can be obtained so that Φ can be non-differentiable

with respect to α. Consequently, for the upper-level, the minimization problem had to be solved

with a robust derivative-free technique. Here, we used the method developed by [35] which is an300

extension of the state-of-art Powell’s method based on local quadratical approximations of Φ [36].

This method is called CONDOR for COnstrained, Non-linear, Direct, parallel optimization using

trust region method for high computing load function. It was found to be more efficient than

standard pattern search and stochastic-based (e.g., genetic algorithms) methods for the present

purpose. This observation is in agreement with [25] who used similar numerical techniques for305

inverse optimal control. In the present study, the fitting/error function Φ was defined as:

Φ(q?α(t),qmeas(t)) = 1
5

5∑
i=1

Ei,Cart + Ei,Curv, (6)

where the sum is performed over the different initial postures (P1-P5) and:

Ei,Cart = max
t

d({x?α(t), y?α(t)}; {xmeas, ymeas}),

Ei,Curv = max
t
|d({x?α(t), y?α(t)}; {sx?α , sy?α})− d({xmeas(t), ymeas(t)}; {sxmeas , symeas})|.

(7)

In Equation 7, (x?α(t), y?α(t)) and (xmeas(t), ymeas(t)) denote the Cartesian trajectories of the finger

corresponding to state-space trajectories q?α(t) and qmeas(t), respectively. When t is not written

explicitly then the path rather than the trajectory is meant. The symbol s stands for the straight310

path connecting the initial finger position to the final finger position of the corresponding finger

path. The operator d(·; ·) returns the orthogonal distance from a point of the trajectory to the

path defined in the second argument (similarly to the definition of sIPC parameter, see above). The

reason for including the curvature as a fitting constraint was the fact that curvature is a quite robust

invariant in human movements and that considering Ei,Cart alone could advantage unrealistic paths315

oscillating around the measured one. Therefore, both the end-point position and the shape of the
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paths were integrated to the fitting function Φ (and they had comparable weights, both are simply

expressed in meters).

To improve the algorithm efficiency, we found useful to appropriately scale the step size along each

dimension of the search space. We used a re-scaling vector, r = (1e2, 1e1, 1e3, 1e2, 1e4, 1e5, 1e4, 1),320

obtained from multiple simulations of point-to-point movements using single-cost criteria to evaluate

the magnitude of the optimal movement costs. This scaling/normalization is generally meaningful

because different costs have different units. We could have avoided using this re-scaling, but it

turned out to speed up the inverse optimal control procedure and to yield a better fitting. It has

to be also underlined that among the eight elements of α, only seven were actually independent.325

Indeed, note that the OCPs corresponding to the costs C(α) and C(λα) with λ > 0 are identical.

As in [25], the practical strategy for this was to fix one component of α equal to one and to adjust

the remaining components. Whenever this choice turned out to be inappropriate, this was apparent

during the optimization process. In that case, this component should be set to zero and, then,

another one should be set to one. Setting the angular acceleration coefficient to one resulted to be330

a good choice in this study. To test robustness of the procedure, it was initialized with random

non-negative values or directly with the vector r to initially give a similar weight to all the costs.

Moreover it was run for all the subjects in order to verify the consistency of the findings. The

algorithm always converged in a few hundred of iterations to a (local) minimum of Φ and the

resulting cost combination vector (α) was found quite stable with respect to the initial guess.335

Direct optimal control

As explained above, the lower-level of the bi-level problem requires solving a direct OCP. This is also

a computational problem per se, especially when dealing with complex costs and dynamics. How-

ever, in the deterministic context that we consider here, there exist efficient numerical techniques to

find approximate solutions. A classical method is to transform the OCP into a nonlinear program-340

ming (NLP) problem with constraints. Here we used an orthogonal collocation method, precisely

the Gauss pseudospectral method. This method is efficiently implemented in the open-source Mat-

lab software GPOPS [37, 38, 39]. The NLP problem was solved by means of the well-established

numerical software SNOPT [40]. This pseudospectral method relies on time discretization at some
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points chosen to be the Legendre-Gauss ones, i.e. the roots of a certain order Legendre polyno-345

mial. Then, the state and control are approximated using interpolating Lagrange polynomials. This

method was proven to be very efficient for a large class of OCPs. Our own tests confirmed that the

software performed very well for the costs proposed in the motor control literature and was even

consistent when the optimal solution involved discontinuous optimal controls. This verification was

performed using a second method for solving an OCP, relying on the direct application of Pontrya-350

gin’s maximum principle (PMP, [41]). The PMP provides necessary conditions of optimality and

can allow obtaining very precise solutions. After some analytical calculations, the PMP generally

leads to a boundary value problem that can be tackled by a shooting method. However, in practice,

a shooting problem is also a difficult computational challenge because the radius of convergence

may be quite small and, therefore, a good initial guess of the optimal solution is usually required355

to get robust convergence. Therefore, a standard approach is to initialize the shooting method by

using a guess arising from a numerical optimal control technique. Interestingly, the PMP can also

deal with point-to-manifold problems by adding transversality conditions on the terminal costate

vector so that its use was purposeful in the present study. Using this methodology, we thus verified

that the numerical method provided good approximations of the optimal trajectories, which was an360

important step for the success of inverse optimal control. Details and instances of resolution using

the PMP are provided in Supporting Information Text S1.

Models versus experimental data comparisons

Apart from the inverse approach, a verification was also conducted by directly analyzing the predic-

tions of each single cost model (defined by Ci). To this aim, we simulated every movement recorded365

in the experiment. Precisely, we simulated the original protocol for the 20 subjects, assuming that

they plan their movements by minimizing one of the costs under investigation. Therefore, anthro-

pometric parameters were set to realistic values for each participant (see Table 1 in Supporting

Information Text S1). Interestingly, this also allowed testing the sensitivity of models with re-

spect to parameters such as inertia, mass and segment lengths. A number of initial parameters370

were set from experimental measures, namely the movement duration T , the initial arm posture

(θ1(t = 0), θ2(t = 0)), and the horizontal bar-shoulder distances to better match the initial experi-
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mental conditions. In total, we ran 16 000 simulations (20 subjects x 5 initial positions x 20 trials

x 8 models) and used their predictions for subsequent analyses. These simulated data were then

treated using the methods described in the Motion Analysis subsection (see above). We eventually375

estimated the sensitivity of the optimal cost with respect to the end point selected on the bar in

order to evaluate the consequence of sub-optimality on the final point. To this aim, movement

costs were evaluated by solving an direct OCP for every possible final finger point and every model.

The reachable region on the bar was discretized every 3 cm (i.e., this region was subdivided in 30

segments) and the optimal cost for each point-to-point movement was computed.380

Results

Experimental observations

Task achievement and general movement features

The behavior of a representative subject is illustrated in Figure 2B. Participants were generally

quite precise in executing the movement. The horizontal constant error (distance to the bar on385

the x-axis) was 2.2 ± 1.4 cm on average across subjects and initial positions, indicating that the

subjects controlled their movements quite accurately in the antero-posterior axis. The variable error

(i.e., the end-point dispersion) was 1.4 ± 0.4 cm. The lateral error was disregarded here because

participants approximately displaced their arm in a vertical plane. Indeed, principal component

analyses performed on the 3-D coordinates of the moving markers for each subject showed that the390

variance accounted for by the two first components was more than 98% and that the angle between

normal vectors of this plane and the vertical plane defined by the acquisition system was about

4◦. Therefore, movements could be considered as approximately effected in a vertical plane and

subsequent analyses could be performed on the projected data without a large loss of information.

Table 2 reports the general motion features. Movement duration slightly varied across participants395

and starting positions, and lasted about 700 ms in general (ANOVA, P1×P2×...×P5, F(4,15) = 3.04,

p < 0.05). In fact, only movements starting from posture P3 were longer than the others, but this

was not significant (post-hoc test). The distance covered by the hand significantly depended on the
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initial posture (F(4,15) = 84.6, p < 0.001), and therefore, the average speed varied accordingly. In

particular, the smaller curvilinear distance was obtained when starting from P2 (about 30 cm) and400

the larger one from P4 (about 70 cm).

Consistency of the behavior

Subjects could reach wherever they desired on the bar (i.e. on the vertical axis). Therefore, it

appeared important to verify whether their behavior was consistent or not. An analysis of the

consistency index (CI, a parameter similar to a normalized variable error along the vertical axis,405

but this is not an error in this task!) showed that the subjects used only 5.3±2.2% of the reachable

region on the bar (average across subjects and conditions). In terms of absolute measure this

corresponded to a standard deviation of 4.5 ± 1.9 cm on the vertical axis. In other words, it was

three times larger than the variability measured on the antero-posterior axis. Nevertheless, this

result was quite remarkable since no constraint was imposed on the vertical axis. Thus, rather410

than using all the available freedom across trials, participants reached toward preferred regions of

the bar. These regions are depicted in Figure 4A. In particular, such a consistency was present

whatever the initial posture without significant differences (ANOVA, F(4,15) = 1.12, p = 0.35).

It has to be noted that among all the tested subjects, only two behaved quite atypically. One of

them exhibited a highly variable behavior, exploring the whole bar across trials. The second one415

started to increase drastically his trial-to-trial variability during the second half of the experiment

while being invariant in the first half. This kind of behavior can be considered as quite marginal

since it appeared for only 2 of our 20 participants, and reflected uncommon motivations/intentions.

In the results above and the following, these subjects were thus removed from intra-subject analyses

of variability but were kept for inter-subject analyses.420

Terminal point on the bar

The average behavior is illustrated in Figure 2B. A qualitative analysis of the RP parameter showed

that the final point depends on the initial posture of the arm. A statistical analysis revealed that

this effect was significant (F(4,15) = 36.5, p < 0.001). Post-hoc analysis showed that the terminal
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point when starting from P1 was significantly different from all the others (p < 0.05). Similarly, the425

point reached when subjects started from P5 was significantly different from all the others. Finally,

no significant difference was found within the group P2-P3-P4, although a trend was apparent and

robust across subjects. Figure 4A summarizes these observations and also depicts the location of

the terminal point for each posture with respect to the shoulder and eye levels (evaluated through

Frankfurt plane).430

Finally, we also conducted an analysis on the movement vector angle (see Fig. 4B). An ANOVA

revealed a significant effect of the starting posture on the MV parameter (F(4,15) = 242.7, p < 0.001).

The MV values were negative for P1 and P5 indicating that the hand moved downward. The most

vertical movements were obtained when starting from P1 and P4 (average MV equal to -35 ad 50

degrees, respectively). Movements starting from P2, P3, and P5 were the most horizontal (MV435

values about 25, 15, -14 degrees, respectively).

Shape of the finger paths

A visual inspection of the shape of paths showed that they were generally curved in the XY -plane.

It is visible in Figure 2B that the fingertip paths have typical curvatures and that they strongly

differed from straightness. An analysis of the signed index of path curvature parameter (sIPC)440

shows that this result was quite robust across subjects (see Fig. 4C). For most initial postures,

paths were globally concave, except for P4 for which the fingertip path was clearly convex. An

ANOVA confirmed these differences since a significant effect of the starting posture on the sIPC

parameter was found (F(4,15) = 69.9, p < 0.001). Post-hoc tests revealed that three distinct groups

could be extracted. The convex group (P4), the very concave group (P1, P5), and the slightly445

concave group (P2, P3). It is noticeable that for the latter group, some subjects indeed produced

quasi-straight paths (5/20 for P2 and 10/20 subjects for P3). Nevertheless, we never measured

significantly convex paths when starting from P2 and P3. Overall, the index of path curvature was

a quite invariant movement feature.
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Time-course of joint and finger trajectories450

Angular displacements were generally monotonic for all subjects and conditions, except for instance

for posture P4 at the elbow joint (see Fig. 2C first column for the typical subject). Through

correlation analyses, we determined that the forearm and upper-arm segments were globally well

coupled. The determination coefficient between the elbow and shoulder angles was high on average

(r2 = 0.88 ± 0.09). However, the starting posture had a significant effect on the joint coupling455

(F(4,15) = 21.6, p < 0.001). A post-hoc analysis showed that P1 and P4 were significantly different

from other initial postures. Movements starting from P4 showed a reduction of joint coupling for

13/20 subjects (r2 < 0.8) and, more generally, the determination coefficient decreased for all subjects

compared to initial postures P2, P3 or P5. The results were similar for P1, for which the r2 value

decreased significantly for the twenty participants (see Fig. 4D). The low joint coupling measured460

in conditions P1 and P4 were linked to the non-monotonic nature of the angular displacements and,

likely, to the relatively small amplitude measured at the shoulder and elbow joints, respectively

(about 20◦ on average, see Fig. 4E). In fact, an analysis of the angular displacements magnitude

showed (Fig. 4E) that movements tarting from P1 mainly involved an elbow rotation with a small

rotation at the shoulder joint. Starting from posture P2 or P3 involved similar angular excursions465

at both joints, while from posture P4, subjects tended to mainly rotate the shoulder joint with a

significantly smaller forearm flexion. Finally, movements from posture P5 implied large rotations

of both joints (but twice larger for the elbow).

The finger velocity profiles were always bell-shaped, meaning that movements were one-shot without

terminal adjustments (that is they showed unique acceleration and deceleration phases, as depicted470

in Figure 2C second column for the typical subject). Velocity profiles presented some asymmetry:

acceleration always lasted less than deceleration, whatever the starting position. Table 2 shows

that, on average, acceleration represented only 42% of the whole movement time (TPV parameter).

The ratio Vmean/Vpeak ranged between 1.8 and 2.1 (mean 1.97 ± 0.06), indicating quite narrow

velocity profiles in general (for comparison, the value predicted by the minimum hand jerk model475

is 1.875).
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Cost identification

Inverse optimal control results

By means of inverse optimal control, we could identify the cost or mix of cost that best accounted

for the experimental data. Figure 5 depicts the results of the method applied to the most typical480

subject, previously presented in Figure 2B. For this subject (referred to as S1), the algorithm

converged to a particular hybrid cost, defined by the weighting vector shown in Figure 5A. This

vector was composed of energy, geodesic, angle acceleration, hand jerk and angle jerk (given in

decreasing order of weights). Other variables such as torque, torque change and effort had a weight

exactly equal to zero (the lower bound was thus reached by the algorithm). However, the weighting485

vector does not directly reflects the contribution of each element to the total movement cost. For

instance, for this subject, the total optimal cost was mainly composed of energy (on average 58%

of the total cost) and angle acceleration (on average 28%), as illustrated in Figure 5B. Although

the geodesic element had a non-negligible weight, its contribution was less than 1% in general. It

is also apparent that the contribution of each cost depends on the starting position. Nevertheless,490

in general, relatively small contributions of angle jerk and hand jerk were found. The minimization

of angle acceleration and angle jerk both aim at maximizing the joint-level smoothness. Taking

this into account, the joint smoothness contribution to the total cost can be increased to 35% for

this subject. Figure 5C illustrates the trajectories predicted by this particular combination of the 8

elementary costs. Despite the task redundancy and the simplifications made in modeling, this hybrid495

model captured quite well the location of the end-point on the bar and the convexity/concavity of

the finger paths. The maximal distance between the simulated and actual paths was 6 cm on average

while the maximal difference between the simulated and actual path curvatures was about 2 cm on

average (the average errors are obviously smaller). Table 3 reports the fitting errors for all subjects,

the typical subject being denoted by S1.500

Similar results were obtained for several subjects, despite the differences in their movement dura-

tions and anthropometric parameters. The best-fitting weighting vectors α constantly showed the

presence of mechanical energy expenditure (absolute work of torques) and joint smoothness terms

(angle acceleration/jerk energy), while other terms appeared more sporadically (Fig. 6A). Neverthe-
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less, due to the different magnitudes of the cost ingredients, analyzing their relative contribution to505

the total cost revealed itself insightful (Fig. 6B). Particularly, energy and joint smoothness turned

out to be consistently present in the optimal composite cost (about 40% and 35%, respectively, on

average). Thus, their cumulative contribution represented the main part of the total movement

cost. Some contributions of the hand jerk, the geodesic and the torque models were also found

(about 8% on average). Nevertheless, these values were relatively small and erratically present in510

the total cost so that they might be considered marginal. The effort and torque change costs almost

did not contribute to the total cost and, thus, did not seem to be optimized in this task. Although

not shown here, when restricting the inverse optimal method to initial postures P2 and P3, it was

found that the mechanical energy had to be involved in the cost, otherwise the concave curvature

of the finger paths could not be reproduced. Also, a meticulous inspection of Figure 6B shows515

that two subjects did not minimize the mechanical energy expenditure at all. For them (subjects

S12 and S18), the fitting error was significantly larger than for the other subjects (6.1 and 6.2 cm

respectively, see Table 3). It is worth noting that these two subjects corresponded to the ones who

exhibited an atypical behavior, characterized by a very large variability during the experiment. This

finding is interesting since moving arbitrarily to different points on the bar is obviously non-optimal520

with respect to the energy expenditure. Although we restricted the inverse control to the average

behavior of subjects, it turned out that the inverse method could nevertheless detect that these

behaviors were not optimizing the same cost. A couple of subjects also presented slightly different

cost contributions, without excluding nevertheless energy and smoothness terms.

Taken together, the above results provide clues on which costs must be considered to capture525

the basic characteristics of human movements during the reaching-to-a-bar task. The majority of

subjects (15/20) clearly adopted a behavior optimizing a well-characterized hybrid cost, essentially

mixing the absolute work and the angular acceleration (i.e., the other costs are somehow residual).

Consequently, for the further investigations using direct optimal control, we included this identified

composite cost to compare it with the basis costs. Since the ratio between the weighting coefficients530

of energy and angle acceleration was roughly 10:1, the hybrid cost was chosen to be C = α3C3+α8C8

with α3 = 0.1 andα8 = 1, the other coefficients being set to zero. From now on, this weighting vector

will be kept constant for all conditions and all subjects to avoid overfitting and unfair comparisons
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between models.

Direct optimal control verification and comparison535

A preliminary inspection of Figure 7B-I shows that models predicted highly different trajectories.

This was expected because of the large freedom given by the bar reaching experimental paradigm

and the results introduced in Figure 1. A quick overview on these results suggests that the hybrid

model performed better than all the other single-cost criteria. Qualitatively some models yielded

geometric paths that were clearly incompatible with the typical experimental data that we have540

reported again in Figure 7A to facilitate comparisons.

To quantify the matching between models and real data an analysis of the finger path was conducted,

including all subjects and all initial postures. The difference between simulated and measured paths

was first measured through the area ∆paths (see Fig. 8). It is apparent that, on average, the best

single models were the minimum angle jerk/acceleration and minimum energy models, while the545

minimum torque predicted non-realistic paths and resulted in very large errors. The minimum

torque change and minimum effort models also performed quite poorly, while the geodesic and

minimum hand jerk had a moderate level of fitting. The hybrid model replicated globally better the

experimental data, in agreement with what was suggested by the inverse optimal control approach.

Note that in this analysis a fixed composite cost was used even though the inverse results suggest550

that the actual weighting may be subject-dependent.

A specific analysis of task-relevant parameters was also performed (see Fig. 9). The most basic task

parameter was the relative reached point on the bar (RP, Fig. 9A). The angle jerk/acceleration

models predicted remarkably well where subjects did point on the bar on average, with a mean

error of approximately 6% of the arm’s length, i.e., about 5 cm. The second model was the energy555

model which predicted the final finger position with about 11 cm of error on average. The hybrid

model performance was intermediate (about 8 cm), which was still reasonable with respect to the

standard deviation exhibited by subjects in general. Other models tended to make large errors on

the location of the point reached on the bar (up to 23 cm for the effort model, i.e. a cumulative error

22 times larger than for the best model). This was confirmed by an analysis of the movement vector560

angle, reflecting the pointing direction (Fig. 9B). Only the minimum angle jerk/acceleration models
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and the hybrid model replicated well the sequence downward-upward-upward-upward-downward for

initial postures P1-P2-P3-P4-P5 (r = 0.99 with an error of 4◦ on average for MV). The minimum

energy was also relatively efficient in capturing this sequence (r = 0.95 with an error of 13◦ on

average for MV). Again the most discrepant model was the minimum effort model with more565

than 30◦ of error on average (d = 4520) and a behavior across initial postures poorly reproduced

(r = 0.33). Above all, it appeared that where to reach the bar was best explained by angle

jerk/acceleration, energy or a combination of them (hybrid model).

Concerning the shape of the path (sIPC parameter, Fig. 9C), the sequence concave-concave-concave-

convex-concave (following the five postures) was not well predicted by the angle jerk/acceleration570

models (d = 0.016, r = 0.69). In particular for P2 and P3, these models predicted strongly convex

paths to reach the bar, while concave paths were observed experimentally. In fact, all single models

almost predicted the same shape, except the torque, energy and hybrid models which predicted

concave paths. Since the torque model was very discrepant with the data in general and since the

energy model clearly overestimated the concavity of the paths for P2 and P3, only the hybrid model575

predicted well the paths curvature (d = 0.001 and r = 0.97). Interestingly, this model relies on

two extremes: the angle acceleration predicted very convex paths while the energy model predicted

very concave paths. Finally, note that the geodesic model was reasonably accurate to reproduce the

quasi-straight paths produced by some subjects when starting from P2/P3 (d = 0.005 and r = 0.94)

and the final point on the bar, so that this model performed relatively well in general. The same580

cannot be concluded for the effort or torque change models because these models were particularly

inefficient in predicting the final finger position (Fig. 9A and 9C).

The joint coupling analysis (Fig. 9D) revealed that almost all models predicted the experimental

observations. The poor joint co-variation measured for P1 and P4 were accounted for by all models,

except, of course, the angle jerk and acceleration models for which joint coupling was maximal in585

all cases (r2 = 1). Indeed, for these models, the paths in joint space are straight lines. The energy

model tended to over-evaluate the decrease of joint coupling for P1 and P4, because, the optimal

movements resulted in only rotating the elbow for P1 and the shoulder for P4, while keeping the

other joint frozen. This strategy was produced by some subjects in practice. For instance, they

did use a single-joint rotation of the elbow to reach the bar when starting from P1 (8/20 subjects590
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rotated the shoulder less that 10 degrees for P1 and, for every subject, the elbow rotated four times

more that the shoulder). The hybrid model performed again well in reproducing the joint coupling

across initial postures and subjects. An analysis of Figure 9D showed that the hand jerk and effort

models predicted better the joint coupling on average, but since the corresponding finger paths were

not realistic, this finding is considered to be irrelevant.595

We also checked that the hybrid model predicted plausible angular displacements and finger velocity

profiles. Figure 10A shows that the model (dashed lines) and data traces (solid lines) were globally

superimposed, except maybe for posture P4 at the elbow joint. Concerning the finger velocity

profiles, Figure 10B shows that they were bell-shaped for all conditions. Note, however, a slight but

constant discrepancy between the model predictions and the recorded data. In fact, the deceleration600

phase was always longer in reality compared to the hybrid model predictions. Nevertheless, even

the minimum hand jerk model, which is usually considered as one of the best model for predicting

the time-course of the end-effector, would also exhibit the same discrepancy.

Finally, the observed movement variability shows that the behavior of subjects was in fact approxi-

mately optimal on a trial-to-trial basis. Figure 7B-I illustrates that there were regions on the bar for605

which the minimal cost did not vary much (black areas versus white areas). This suggests that, due

to the sensorimotor noise and uncertainty, the subjective motor goal could be to keep the movement

cost below a certain threshold, as proposed in [42]. In Figure 7, this threshold was set to 10% of

the optimal cost in the simulation.

Above all, the modeling analysis showed that the hybrid model, maximizing joint-level smoothness610

and minimizing mechanical energy expenditure, accounted well for many spatial and temporal

features of the observed behaviors, and much better than single cost models (and any other linear

cost combination from the inverse optimal control analysis).

Discussion

In this study we investigated the cost combination hypothesis for the optimal control of arm move-615

ments. To this aim we adapted an inverse optimal control methodology to identify the cost function

that best replicates the participants’ behavior during a task with target redundancy. The results
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show that, when pointing to a bar, subjects restrict themselves to a particular choice of hand trajec-

tories and final point regions. Inverse optimal control revealed that the observed hand paths were

close to the solutions of an optimal control problem relying on a composite cost function mixing620

mechanical energy expenditure and joint smoothness. This hybrid cost was found to fit well the

experimental data, not only much better than any single other cost under comparison, but also

better than any other linear combination of these costs.

On the reaching-to-a-bar paradigm and inverse optimal control

Reaching to objects involving target redundancy is a very common task in everyday life. For in-625

stance, grasping a small ball can be achieved through many task-equivalent solutions, depending on

how one chooses to put his fingers on it. In such a case, like for the bar, target point discriminability

is greatly reduced and, therefore, decision confidence in the brain decreases [43]. Decision making

in such a motor planning context [44, 45] can be essentially driven by optimal control [8]. Indeed,

resolving the indeterminacy of action selection through optimal control implies that a specific cost630

function must be selected. Whereas inverse optimal control was considered as a promising tool

to characterize automatically the cost function in motor control [21], very little has been done in

the context of goal-directed arm movements. Successful applications of inverse methods have been

reported in sensorimotor learning [46, 47], human prehension [48], pointing movements [32]. To

test the cost combination hypothesis for arm movement planning we decided to use a more generic635

method [25]. The extrinsic redundancy of the task reduced the risk that several classical cost func-

tions (and thus, several combinations of them) might replicate well the recorded data, which may

occur if divergent models could not be sufficiently disambiguated. Indeed, being able to discrimi-

nate between different cost functions was precisely a pre-requisite to test whether the CNS combines

several cost functions. Figure 1 illustrates that the bar reaching paradigm has this property. Inverse640

optimal control gave us the possibility to drastically enlarge the number of a priori functions that

are hypothetically minimized by the CNS, which is usually restricted to few candidate functions

in classical studies relying on direct optimal control. In a direct approach, a small number of cost

functions is generally compared and the best one is assumed to be actually optimized by the brain.

The weakness is the lack of evidence that another cost function, with a different biological meaning,645
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could not perform as well or even better. Although our method did not consider every possible cost

function, it improved direct approaches by drastically expanding the search space.

Certain limitations however remain such as the uniqueness of the solution and the problem of local

minima, which are hardly avoidable in the context of complex non-linear optimal control. Unique-

ness of the solution has been addressed recently in static inverse optimization [48, 49], in the context650

of additive cost functions and linear constraints. Previous theoretical work on inverse methods was

developed in other contexts such as (linear) control theory [50] and reinforcement learning [51, 52].

However, the present problem was non-linear and tackled empirically by testing multiple restarts of

the algorithm and check a posteriori the effectiveness of the solution compared to basis cost func-

tions. The specific set of eight candidate cost functions has been chosen among a set of costs which655

could be physiologically interpreted. In this sense, other cost functions such as polynomials could

have been included to fit the experimental data but understanding the meaning of such abstract

costs would have resulted impossible. Instead we exploited the fact that many costs were already

proposed in the literature of arm movement planning. The presence of noise and variability in the

observed data is an additional source of difficulty for identifying the cost using inverse optimization660

because only approximate solutions can be found in practice. However, because the fitting function

(Φ) was presently based on the Cartesian position of markers (a particularly reliable measure in

motion capture systems), the consequence of noise measurement was greatly minimized, in contrast

to more noisy derived signals (e.g. velocities, torques or accelerations). While these quantities are

of course crucial to fully specify a motor plan, attempting to fit those features and introducing addi-665

tional uncertainty may not improve the efficiency of the inverse method. Actually, which metric to

use to compare human movement and models remains unresolved [17]. Here we assumed that hand

paths should be primarily reproduced because the target point was free (as suggested by Figure 1).

Using the average behavior of subjects was a further means to circumvent the effects of sensorimotor

noise affecting reproducibility of trials. Finally, differences across subjects are rarely addressed in670

optimal control studies because a single cost, valid for all subjects is generally sought. Inverse opti-

mal control can theoretically reveal if the same costs but weighted differently are actually optimized

by different subjects or if the cost ingredients are simply not the same.
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On the identification of the composite cost function

Inverse optimal control results showed that most subjects (15/20) adopted a behavior which essen-675

tially corresponded to a strict mixture of two subjective costs (absolute work of torques and angular

acceleration energy). More precisely, mixing these two costs was found to fit better the observed

hand paths than other linear combinations of the eight candidate costs we considered. Each subject

could use a different weighting of those two costs but on average their contribution to the total

movement cost was roughly the same (about 40% of the total movement cost).680

Further evidence for mixing energy and smoothness optimality criteria was provided by the direct

optimal control analysis. The bar reaching experiment revealed, as expected, that several previously

proposed costs did not generalize well to the present task. In general, it was relatively easy to

discriminate between different models. Clearly, the most discrepant model was the minimum torque

model, which assumes that the total amount of (squared) torques needed to drive the movement685

has to reach a minimum. This model seemed to be mainly influenced by the maximum exploitation

of the effects of gravity to reach the bar. The minimum torque change model, which maximizes

smoothness in the dynamic space, also predicted non-biological paths since even the movement

direction was poorly predicted in most cases. Similarly, the minimum effort model, optimizing the

amount of neural input to control the movement, was unable to predict some basic features of the690

recorded arm trajectories. Other simulations (not reported here) showed that neither modeling

agonist/antagonist muscles as low-pass filters nor separating the control of static (gravitational)

and dynamic forces (speed-related) could improve the model predictions for this task (large errors

on the movement directions were still clear). By extension, this suggests that the energy of motor

neurons did not play a crucial role during movement planning.695

Maximizing smoothness at the level of the hand was also found to be generally irrelevant with

respect to the geometry of the paths. The minimum hand jerk model predicted to follow the

shortest Euclidean path to reach the bar. It is worth mentioning that this model had been validated

previously for horizontal movements performed with a robotic device [11], which could have induced

this specific motor strategy [53]. We found differently that the geodesic model, which predicts the700

shortest paths in joint space using the kinetic energy metric, generalized reasonably well to the

current task. The geodesic model had been originally validated for unconstrained 3D point-to-
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point movements [29]. These movements involved redundancy but the specification of the exact

target to reach in space combined with the musculoskeletal architecture limiting the joint mobility,

significantly reduced the space of admissible behaviors. Consequently, only small differences were705

observed in many cases between the geodesic model and a model simply predicting straight paths in

angle space. The task we presented in this study enlarged the differences between these models (as

illustrated in Figure 1). While the geodesic model was quite efficient in predicting path curvature,

the minimum angle jerk/acceleration models (predicting straight lines in angle space) captured

very precisely the final point on the bar. When reaching to a bar, the actual final postures thus710

corresponded quite accurately to the final point given by the shortest path in intrinsic space equipped

with the Euclidean metric. Other movement features however implied that joint co-variation was

not the general rule for motor planning. In particular, for certain starting postures, the only means

to replicate the shape of finger paths was to include the minimization of the absolute work of

torques into the cost. Interestingly, minimizing this mechanical energy expenditure also resulted in715

final hand positions that were comparable to the real ones. In agreement with the inverse optimal

control results, relevant features of the bar reaching task were better reproduced by a composite

cost involving two complementary functions. This complementarity revealed itself quite clear with

respect to parameters such as hand path curvature and joint coupling.

On the cost combination hypothesis and the optimization of smoothness/energy720

It is undeniable that a theory of motor planning assuming that the CNS is able to combine different

objectives depending on the task would be very powerful for explaining almost every experimental

fact and could be unfalsifiable [10]. Without any prior expectation on the costs that the CNS may

combine, it is likely that such a theory would be inappropriate to identify the variables represented

by the brain. However, to reduce such a drawback, we propose a more structured view. It is worth725

noting that the combination of energy and smoothness costs was revealed by a task with reduced

external constraints on the target. By extension, we suggest that these costs emerged more clearly

because we focused on natural/unconstrained movements. The present results, however, raise a

fundamental question: why a combination of energy and smoothness? First, since every movement

consumes energy, minimizing its expenditure seems to be an appropriate strategy to keep the mus-730
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culoskeletal system close to its nominal state. For instance, muscle fatigue alters the execution of

actions which might be decisive for species survival. Accordingly, such an optimal behavior may

have arisen from natural selection [54, 55]. Second, self-injuring the musculoskeletal system can

have dramatic consequences so that pulling a muscle or slipping a joint could have undesirable

consequences. Maximizing smoothness therefore contributes also to keep the system close to its735

operational state. The functional meaning of such costs thus appears related to homeostasis, that

is to the process that maintains the internal state of biological systems within bounds [56, 57]. Ac-

cordingly, the relevance of such subjective costs had been previously reported for different species

and motion, but most of the times these studies focused either on energy or on smoothness. Em-

phasizing on the mechanical energy, [58] reported evidence that energy was a primary constraint740

for legged insect locomotion. In a previous study [32], we showed that particular temporal and

electromyographic features of vertical pointing movements reflected mechanical energy minimiza-

tion (i.e. absolute work of torques). Focusing on joint smoothness, [27] showed that a cost function

based on the angular acceleration fit well with point-to-point movements in the horizontal plane.

Part of the few studies considering composite costs (but using direct optimal control), [59] reported745

strong evidence for simultaneous multiple performance objectives including the angular acceleration

and the mechanical energy expenditure during human locomotion.

The fact that, in this study, energy and smoothness were jointly optimized in relatively similar

proportions further supports the relevance of combining subjective costs: minimizing only energy

may be detrimental to smoothness and vice-versa. We speculate that these two costs are quite750

fundamental to the nervous system and have been uncovered from the present experimental data

because of the lack of strong external constraints on the target. In general, objective costs are also

optimized for the task achievement per se. Consider for instance the task of drawing a straight line

on a sheet on paper. In this case, optimizing the jerk at hand would be the best solution to produce

such a path. Energy and joint smoothness costs could however be still integrated in the motor plan755

to determine the remaining degrees of freedom (i.e. joint angles, muscles activities. . . ). Conversely,

when trying to jump at a maximal height, it is likely that the weight given to the energy cost is

decreased. Joint smoothness should instead remain still present to avoid injuries and fulfill goal

achievement. We propose therefore that planning is a dynamic process weighting flexible objective
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costs (e.g. pointing accuracy, path tracking, via-point etc.) with more deeply anchored subjective760

costs. This combination of cost would crucially yield the necessary flexibility for the sensorimotor

system to achieve a variety of tasks, which agrees with other recent results obtained in the stochastic

optimal control context [20].

We still remain ignorant about the detailed neural mechanisms underlying such flexible combinations

of cost functions. We may suggest however that subjective cost functions are encoded at a low level765

of the CNS, while objective cost functions are determined at a higher level. Autonomic motor

system that control basic involuntary function through the sympathic system dealing with body’s

resources might regulate the selection and combination of costs. In other words, we speculate that

hypothalamus, reticular formation and spinal cord, which ensure the regulation of internal body

states contributing to overall physiological balance, would control the optimization process, however770

remaining under the influence of descending pathways.

Such a hierarchical view of motor planning and control is reminiscent of the theory proposed in

[60] where it was suggested that the role of the low-level controller is to compute energy-efficient

motor commands that conform to the higher-level variables encoding the constraints of the task

itself. Most of the time, external constraints are task-dependent (hand accuracy, speed, center of775

mass position etc.), while internal constraints are embodied in the nervous system, as subjective

constraints resulting from evolutionary, hereditary and learning processes. This proposal however

needs to be investigated more deeply. Testing whether these complementary costs are still present

when external constraints and explicit rewards strongly shape the motor output would contribute

to answer this unresolved question.780

30



Legends

Table 1: Classical cost functions already proposed in the literature and that are used in the present

study. Some of them were not originally formulated as OCPs, but for the purpose of this paper,

they were reformulated in this framework.

Table 2: General movement features. Means and standard deviations are reported across subjects

and starting postures.

Table 3: Inverse optimal control fitting errors. For each subject, the error value is averaged across

all starting postures and, more precisely, it is computed as 1
5
∑5
i=1

1
2(Ei,Cart + Ei,Curv).

Figure 1: Proof of concept: illustration that the hand jerk and torque change costs are more

discernible during reaching to a bar than to a point. A. Simulated hand paths for point-to-point

movements in the horizontal plane. Targets (T1 to T6) were located approximately as in [11]. B.

Simulated hand paths for the point-to-bar case. The starting points are the same as in panel A,

but we replaced the target points by target lines/bars. The shaded areas emphasize the amount of

difference between these two cost functions.

Figure 2: A. Illustration of the experimental paradigm. The reachable region from the sitting

position is emphasized on the bar. The 5 initial postures under consideration are also shown (P1 to

P5). B. Experimental trajectories for a representative subject. Dotted lines depict the initial arm

posture of the subject (upper arm and forearm). The average fingertip path is shown in thick black

line for each initial posture, from P1 to P5. The 20 trials are depicted in thin gray lines for every

initial postures. C. Experimental angular displacements and finger velocity profiles for the most

typical subject. First column: joint displacements at the shoulder and elbow joints; Second column:

Finger velocity profiles with shaded areas indicating the standard deviation. Time is normalized,

not amplitude.

Figure 3: Model of the arm and definition of the parameters. The extrinsic and intrinsic coordinates

are denoted by (x, y) and (θ1, θ2), respectively. L is the total arm length, while l1 and l2 are the

upper arm and forearm lengths. The subscript 1 denotes the shoulder joint. These segments have

massmi, inertia Ii and distance to the center of mass lci, with i = 1, 2. The Cartesian bar equation is

given by x = 0.85L. The solid and dotted lines are the measured and simulated paths, respectively.
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The parameters RP, MV and sIPC are the reached point, movement vector angle and the signed

index of path curvature.

Figure 4: Quantitative experimental results. A. Reached point (final finger position) on the bar

for each initial posture from P1 to P5 (RP parameter). The unit on the vertical bar is normalized

by the arm length (percentage). The horizontal zero baseline is the level of the shoulder joint.

Each point indicates the average location of the pointing movement, and error bars indicate the

variability (standard deviation) across subjects. B. Movement vector angle (MV). The graph gives

the angle between the movement vector and the horizontal line. Negative and positive values

correspond to downward and upward movements, respectively. C. signed Index of Path Curvature:

The graph depicts sIPC values for every initial posture. Positive and negative values correspond

to globally concave and convex paths, respectively. D. Joint coupling. r2 values are reported.

Low values indicate low level of correlation between the shoulder and elbow angular displacements.

E. Amplitudes of angular displacements. The graphs correspond to the shoulder (left) and elbow

(right) joints, respectively. The magnitude of joint displacements (in degrees) is given for all initial

postures.

Figure 5: Inverse optimal control results: details for the most typical subject. A. Weighting

coefficients, i.e., elements of the vector α (normalized by the maximum value). B. Contribution of

each cost ingredient with respect to the total cost, for each simulation. It is visible that mainly

the energy and the angle acceleration are involved in general, with low contributions of the hand

and angle jerks and a residual contribution of the geodesic cost. Torque, torque change, and effort

costs do not contribute at all. C. Finger paths obtained from the best cost combination found by

the inverse optimal procedure. Errors between the measured paths and the simulated ones (Ei,Cart

and Ei,Curv parameters) are reported, for each initial posture. Note that this is the best criterion,

and that any other cost combination would replicate the data less accurately.

Figure 6: Inverse optimal control results for the 20 subjects. A. Weighting coefficients, i.e. elements

of the vector α (normalized such that the sum equals 1). Each bar corresponds to one subject. B.

Contribution of each cost ingredient to the total cost, for each subject. The energy and angle

acceleration costs, which are predominant in the total movement cost, are highlighted with shaded

areas. This result is not evident when looking only at the weighting vector.
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Figure 7: Predictions of the different tested models. A. Typical experimental data in order to

facilitate comparisons (already depicted in Fig. 2). B-H. Predicted hand paths for each model.

I. Hybrid model, maximizing smoothness and minimizing energy (with a ratio 10:1 for the energy

component). Black and white bars are reported to show the regions on the bar for which the cost is

relatively close to the optimal one (here, black areas correspond to movement costs below the 10%

threshold relative to the minimum cost value).

Figure 8: Areas between simulated and recorded finger paths. This parameter qualifies as a general

error measure. Values were first averaged across initial postures for each participant, and then, the

mean and standard deviation were finally reported across participants. It is apparent that the

energy and angle jerk/acceleration models performed quite well (with a lower standard deviation

for the energy model), while the geodesic and hand jerk models performed moderately. The worst

models were the torque change, effort and torque models, given in decreasing order of performance.

The best model was the hybrid model, in agreement with the results provided by the inverse optimal

control approach.

Figure 9: Comparisons between models and real data, for relevant parameters. A and B depict

the reached point (RP) and movement vector (MV) parameters, which are the relevant parameters

for the finger path. An analysis confirmed that energy and angle jerk models, as well as the hybrid

model (red trace), were quite efficient in predicting the terminal point on the bar and the movement

direction (upward or downward). C and D depict the signed index of path curvature (sIPC) and

joint coupling (r2), and are reported for the sake of completeness. However, they are not relevant

when the final point is poorly predicted by a model. It is apparent that only the hybrid model is

able to predict successfully these additional parameters (sIPC and joint coupling r2). Parameters

reported on the graphics: parameter d is the cumulative error across all starting positions Pi:

d =
∑

Pi(p
simu − pmeas)2, with p being one of the following parameters: RP, MV, sIPC, or joint

coupling; parameter r is the correlation coefficient between the simulated and measured data.

Figure 10: Simulated angular displacements and finger velocity profiles. A. Angular displacements

at the shoulder and elbow joints. B. Finger velocity profiles. In both graphs, solid lines correspond

to the experimental data, which are recalled from Figure 10 to facilitate comparisons. Dashed

lines correspond to the simulated data (averaged across subjects), for the hybrid model, mixing the
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minimization of the mechanical energy expenditure and the angle acceleration energy. Shaded areas

indicate the standard deviation. Time is normalized, but not amplitude.
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Tables

Criterion Cost function (Ci) References
Hand jerk C1 =

∫ T
0
...
x 2 +

...
y 2dt [11]

Angle jerk C2 =
∫ T

0
...
θ

2
1 +

...
θ

2
2dt [26]

Angle acceleration C3 =
∫ T

0 θ̈2
1 + θ̈2

2dt [27]
Torque change C4 =

∫ T
0 τ̇2

1 + τ̇2
2 dt [12, 28]

Torque C5 =
∫ T

0 τ2
1 + τ2

2 dt [9]
Geodesic C6 =

∫ T
0 (θ̇>M(θ)θ̇)1/2dt [29]

Energy C7 =
∫ T

0 |θ̇1τ1|+ |θ̇2τ2|dt [31, 32]
Effort C8 =

∫ T
0 µ2

1 + µ2
2dt. [33, 34]

Table 1:

P1 P2 P3 P4 P5
Movement duration (s) 0.71± 0.08 0.71± 0.08 0.78± 0.08 0.74± 0.09 0.70± 0.07
Mean velocity (m/s) 0.70± 0.15 0.42± 0.11 0.58± 0.10 0.95± 0.16 0.67± 0.11
Time to Peak velocity 0.44± 0.05 0.40± 0.03 0.42± 0.03 0.42± 0.04 0.44± 0.03

Vpeak/Vmean 1.98± 0.10 1.97± 0.11 1.98± 0.09 1.88± 0.09 2.05± 0.13
Curvilinear distance (m) 0.51± 0.09 0.30± 0.06 0.47± 0.06 0.72± 0.07 0.49± 0.07

Constant error on X-axis (m) 0.02± 0.01 0.03± 0.02 0.02± 0.01 0.02± 0.02 0.02± 0.01

Table 2:

Subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Error (cm) 4.1 3.9 1.8 6.5 3.3 3.5 4.6 3.9 3.4 2.9
Subject S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Error (cm) 3.2 6.1 2.5 4.6 2.5 1.7 2.7 6.2 3.6 1.8

Table 3:
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Figure 3:

Figure 4:
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Figure 5:
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Figure 9:
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