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Abstract— Most of their lifetime humans can recover from
disturbances during walking motions very well. Our assumption
is that to recover from disturbances during walking requires
higher internal torques in the joints than motions without
disturbances. To measure the internal joint torques in experi-
ments is complicated and expensive. In this work we propose
an optimality based simulation environment that allows to
determine the internal torques in the joints of a human during
disturbed walking motions. The human is represented by a
two dimensional (2D) rigid multi-body model consisting of 14
segments controlled by torques in 13 rotational joints resulting
in 16 degrees of freedom (DoF). The disturbance is modeled
as external force acting on the model. A least-squares optimal
control problem that minimizes the distance between the joint
angles of the model and joint angles gained from motion capture
experiments, while satisfying the dynamics and constraints of
the human model, is set up. The analysis of perturbed and
unperturbed walking motions shows that the torques in the
joints vary according to the strength and duration of the
disturbance. The calculation of the internal joint torques is
important for the development of new control strategies or set
up of humanoid robots and prostheses. It can also be used in
the context of sport sciences to improve training or therapies.

I. INTRODUCTION

Undisturbed motion barely exists in real world. In ev-
eryday life dangers lurk everywhere. In the usual environ-
ment the floor is not exactly plane. Uneven terrain can
result in a disturbance of the motion. Walking in crowded
places, it can always happen that one is pushed by the
fellow human beings. Usually humans can adapt very well
to unforeseen perturbations during gait. They are able to
recover from the disturbance and carry on walking as long
as the push is not too strong. For elderly people walking
often becomes less stable and to capture from disturbances
can become a hard challenge. The problem of enabling
technical assistive devices such as prostheses or exoskeletons
to react on perturbations and prevent humans from falling
is a future leading field of research. Also for robots it is
still a huge challenge to recover even from small pushes.
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To be able to transfer the ability of humans to recover from
perturbations, it is important to get a better understanding
of the human motion. Therefore we consider data of human
walking motions including the force and the direction of the
perturbation from motion capture experiments of one subject,
see Figure 1. In [17] a list of the typical approaches on how
to handle disturbances during standing, such as the ankle, the
hip and the stepping strategy, is given. In [20] these strategies
are applied to a robot. For this approach force sensors and
a full body model of the robot is needed to calculate the
joint torques required to compensate the external disturbance
force.

Fig. 1: Motion capture experiments of disturbed human
walking motions (left) and a visualization of the motion with
our human model in sagittal plane (right).

Even if the determination of joint torques is essential for
the analysis of human walking and push recovery motions,
the approaches found in literature are rare. Hwang made
investigations to evaluate the joint torques in the lower limb
(hip and knee joint) during gait using torque sensors of an
exoskeleton robot [12]. In [15] the joint torque in the human
knee during level ground walking is compared to torques
in a knee prosthesis. Wit and Czaplicki determine the joint
muscle torques during walking motions in [19]. In [18], Tu
and Lee use a two-link manipulator approach to calculate the
joint torque during walking on various grounds.

In this paper we regard pushes from the back which vary
in strength and in the height of the point at the spine where
the push is applied (push point). The resulting motions could
be described by a two dimensional rigid multi-body human
model. Our approach allows the analysis of the internal
torques appearing in the joints during a motion. The gained
results find three main application fields: The human motion
analysis can be applied in the sport sciences to develop
new training strategies. Motions that result in better joint
protection can be determined. This can also be helpful in the



field of medicine. Better cure therapies could be developed.
In the field of prosthetics, exoskeletons and humanoid robots
the knowledge of the amount of internal joint torques is
important for the development of new technologies, but also
for the improvement of old ones. An estimation of the
amount of power, a motor of a human-like device needs,
can be determined by our approach. Extracting relevant
quantities from the model, our approach can also be useful to
determine new control strategies for push-recovery motions
or disturbance detection.

The purpose of this paper is to propose an optimality
based simulation environment to derive the internal torques
in the joints during disturbed human walking motions. To
gain these torques we use a two dimensional rigid multi-
body human model described by differential equations of
motions including the disturbance as external force. A least-
squares optimal control problem (OCP) is formulated to fit
this model to the recorded disturbed human walking motions.
As the model is controlled by the internal joint torques, the
solution of this OCP gives information about the internal
joint torques required for the motion. A similar approach
has been made in [10] for undisturbed human motions.

The paper is organized as follows. Section II is divided
in four parts: First the human model is described, then
the optimal control problem and its solution is presented
and in the last part the generation of the reference data
by motion capture experiments is described. In Section III
the numerical results for five different disturbed and two
undisturbed human walking motions are presented. In the
last Section IV we give some conclusions and perspectives
for future work.

II. METHODS

For our analysis of human push recovery motions, the
human is represented by a dynamical multi-body system
that allows to include external forces representing the dis-
turbance. We define a least-squares optimal control problem
to fit our model to data from motion capture experiments.
A description of the model, the optimization tools and the
generation of the reference data is given in this section.

A. Model

In this section the multi-body model which is able to
represent the dynamics of human push recovery motions is
described.

A similar model to the model used in this paper has
already been presented in [16]. It is a multi-body system
in the sagittal plane that consists of 14 segments connected
by 13 joints that enable rotations around the y-axis. The
locations of the joints are shown in Figure 2. To allow for
movements of the whole body in space, the pelvis is modeled
as a floating base that enables translation in the z- and x-
directions and rotations around the y-axis. In total the model
has 16 degrees of freedom and is described by 32 state
variables, consisting of all position and velocity variables.
The motion is controlled by 13 control variables, representing
the internal torques in the joints.

Fig. 2: The two dimensional rigid multi-body human model
visualized with MeshUp [9] from different perspectives and
the definition of the joints and segments. The joints are
marked by yellow dots.

The model used in this work is implemented in the rigid
body dynamics library RBDL [8]. It is based on the HeiMan
model [11], a highly parametrized rigid multi-body model
for humans. The human body is approximated by a system
of rigid bodies connected by rotational joints. Usually four
phases are distinguished describing a human step. They are
defined by the change of contacts with the ground, [7]. The
dynamics of the model can be described by the following
differential equation of motion

M(q)q̈+C(q, q̇) = τττ. (1)

Pelvis position and orientation and the joint angles are
defined by the vector q = (q(1), . . . ,q(nq)), q(i) : R → R,
i= 1, . . . ,nq, with nq being the number of degrees of freedom.
Analogously q̇ defines the corresponding velocities and q̈
the accelerations. The joint torques are described by the
vector τττ = (0,0,0, τ̃ττT )T ∈ Rnq , where the first three entries
correspond to the free floating body. Note, that in the context
of optimal control the control vector is defined by the
nq− 3 elements of the torque vector which correspond to
the actuated joints τ̃ττ . The inertia term is described by the
symmetric and positive definite matrix M depending also on
the joint angles. The vector of functions C(q, q̇) describes
the amount of forces that has to be applied such that the
acceleration q̈ is zero. This term includes the Coriolis and
gravity as well as centrifugal and friction forces. For the
simulation of contacts, additional constraint equations

g(q) = 0 (2)

have to be fulfilled. They describe the difference between a
point and its desired position. To include these conditions
equation (1) is changed to

M(q)q̈+C(q, q̇) = τττ +G(q)T
λλλ , (3)



where λλλ ∈ Rm are the constraint forces resulting from a
contact (m = number of constraint equations) and G(q) :=
∂

∂q g(q) is the Jacobi Matrix of the constraints depending on
the vector of functions q.

By differentiation of the constraints g(q) = 0, equation (3)
can be formulated as a linear system with the unknowns q̈
and λλλ ∈ Rm:(

M GT

G 0

)(
q̈
−λλλ

)
=

(
−C+ τττ

−Ġq̇

)
. (4)

It has to be ensured that the constraints g(q) = 0 are satisfied
at the beginning. After that they are fulfilled on acceleration
level.

In our model there are two sources of external forces
acting on the model. One is the ground reaction force which
is described by constraint forces. In our model the contact
of the feet with the ground during a step is represented by
two contact points per foot: one in each heel and one in each
hallux. In total there are four contact points for the ground
contact.

The other source is the disturbance of the motion simulated
as an external force acting on the model. For the simulation
for the disturbances a fifth contact point is added to the model
at three different locations at the spine. The Jacobian of the
push point Gpush is calculated. Combined with the applied
force fpush it is included into the model by adding it to the
torques in the joints

τττ 7−→ τττ +GT
pushfpush.

The constraints and right hand sides of the differential
equation describing the dynamics of the model are changing
during a gait cycle.

B. Optimal Control

To fit the model to the recorded push recovery motions,
an optimal control problem is defined:

min
x,u,p

nph

∑
j=1

∫ t j

t j−1

φ j(x(t),u(t),p)dt (5)

s.t. ẋ(t) = f j(t,x(t),u(t),p), for t ∈ [t j−1, t j], (6)
j = 1, . . . ,nph, t0 = 0, tnph = T,

x(t+j ) = x(t−j )+ J(t−j ,x(t
−
j ),p), (7)

j = 1, . . . ,nph,

g j(t,x(t),u(t),p)≥ 0, for t ∈ [t j−1, t j], (8)

req(x(t0), . . . ,x(tnph),p) = 0, (9)

rineq(x(t0), . . . ,x(tnph),p)≥ 0, (10)

where x = (x(1), . . . ,x(nx)),x(i) : [0,T ]→ R, i = 1, . . . ,nx de-
fines the states (in this paper, positions q and velocities
q̇), u = (u(1), . . . ,u(nu)),u(i) : [0,T ] → R, i = 1, . . . ,nu the
controls (in this paper, internal joint torques τ̃ττ), and p ∈Rnp

are parameters. The variable t defines the continuous time
variable, t0 = 0 the initial and tnph = T the final time. The

transition times between the nph phases are given by t j for
j = 1, . . . ,nph − 1. The right hand side of the differential
equation in phase j is denoted by f j. In our case the right
hand side (equation (6)) is defined by the equation of motion
describing the dynamics of the model described in Section
II-A. For each phase initial, final and coupled conditions can
be formulated. They are defined in the vector of functions
req and rineq. Other equality and inequality constraints are
described by the vector of functions g j. The contacts of the
feet with the ground are defined by the equations (8)-(10).

An objective function for equation (5), that minimizes the
distance between the joint angles q̃ from the reference data
and the joint angle q from the model, is defined as a weighted
difference between these angles:

φ(x(t),u(t),p) =
nq

∑
k=0

ωk(qk(t)− q̃k(t))2 (11)

+0.01u(t)T Wuu(t). (12)

A further criterion which is a suitably weighted minimization
of all squared joint torques is added for regularization (12).

In this paper the phase transition times t1, . . . , tnph are fixed
to values suitable for the reference data.

C. Solution Strategy

To solve the resulting optimal control problem, we rely
on a direct multiple shooting approach for the discretization
coupled with an efficient sequential quadratic programming
(SQP) method for the optimization, [5], implemented in
the software package MUSCOD-II of the Interdisciplinary
Center for Scientific Computing, Heidelberg University, [14].

More precisely, the phases of the hybrid system are divided
into smaller subintervals, specifying the multiple shoot-
ing nodes. By piecewise discretization of the controls and
parametrization of the states using a Runge-Kutta scheme,
the infinite dimensional problem is reformulated as a discrete
nonlinear program (NLP), which is solved by a structure
exploiting SQP method, [5].

D. Reference Data

For our approach of the analysis of human push recovery
motions reference data is needed. In this work we fit to
the joint angles to compute a motion of our model that is
as close as possible to the reference data while fulfilling
the constraints of the model. The generation of this data is
described in this section.

The motion capture data were recorded in the motion cap-
ture lab at CIN in Tübingen. An overview of the generation
of the motion capture data is shown in Figure 3. A Vicon
(Oxfor, UK, [4] ) motion capture systems made of 10 infrared
cameras was used to record whole-body motion kinematics.
The systems tracked the spatial positions of 42 reflective
markers with high spatial resolution (error below 1.5 mm).
The markers were attached with double-sided adhesive tape
to tight clothing worn by the participants. Markers were
placed on the locations specified by the Vicons PlugInGait
marker set. A Vicon system is used to detect markers a
person is wearing on predefined points on the body. The



(a) (b) (c) (d)

Fig. 3: Overview of the conversion of the human motion to the joint angles used in the model: (a) Person and push device
with markers for the motion capture procedure with Vicon, (b) Visualization of the marker position with Mokka, (c) Joint
angles of the kinematic MMM model, (d) Motion of planar dynamical human model visualized with MeshUp.

positions of these points according to a coordinate system is
saved as data files. The force of the disturbance is measured
with a 3D force sensor from OptoForce [3]. Both, the motion
and the push are recorded with a rate of 100 Hz. The
motion kinetic and kinematic analyzer Mokka [2] can be
used to visualize this data. At KIT the Master Motion Map
(MMM) [1] has been developed. It was used to map the
three dimensional position data of the markers to a kinematic
model to calculate the joint angles. This data is converted
to the planar human model based on HeiMan described in
detail in SectionII-A which can be visualized with MeshUp
[9]. Therefore it is important to ensure that the motion that
is to be analyzed is mostly in sagittal plane.

We consider motions with disturbances from the back
at different height and of various strength. During the ex-
periments the probands were wearing a protector to secure
from pain and injure. The influence of the tissue of the
protector was neglected in our simulation. By the time of
the experiments the pushed subject was 1.77 m tall, weighted
57 kg and of an age of 23 years.

III. COMPUTATIONAL RESULTS

The methods, described in the previous sections, are ap-
plied to motions with and without disturbances. We formulate
the hypothesis that for stronger and higher located pushes the
internal joint torques are higher. In this section four main
results are presented.
• First, we analyze how well our solution fits the reference

data.
• Second, the internal joint torques are compared with

respect to the different joints and the location of the
push point.

• Third, it is shown that there is no strict relation between
a high variation in the joint angles and the internal joint
torques.

• Forth, a first analysis of relevant quantities as integral
means of joint torques, duration and step length, that
could be use as objective functions for motion genera-
tion, is given.

For our analysis we consider seven motions of the same
subject. Two undisturbed walking motions (referred to as
’NoPush’) are taken into account to show that also these
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Fig. 4: Strength and duration of the disturbances for the five
analyzed motions.

are not equal, but have a comparable shape. The pushes
are applied at three different locations at the spine: at the
pelvis, the middle and the upper trunk, see Figure 2. The
pushes differ also in strength as well as in profile and
in timing. They are applied from the back, which is the
negative x-direction in our model. We model one single
step. The start and duration of the disturbance does not
vary a lot. In the considered motions the perturbation is
applied during the swinging phase of the left leg: after the
liftoff of the left hallux and before the touchdown of the left
heel. An overview of the time dependent amplitude and the
normalized force of the disturbances in the different motions
is shown in Figure 4 and Table I.

As the model motion is very similar to the recorded motion
of the human, we can transfer the results from the model to
the human. In Table II in the first two columns the errors of
the fit of the model to the reference motions is given. We
calculate the root-mean squared (RMS) error for translational
and rotational DoF separately:

err =

√√√√ 1
nqm

[
∑

k∈C

m

∑
j=0

(qk(t j)− q̃k(t j))2

]
, (13)

where m is the total number of multiple shooting nodes of
the optimal control problem and C is the set of indexes



TABLE I: Properties of the push and timing of the motion. The events in the graph on the right stand for 1: Push Start, 2:
Right Heel Liftoff, 3: Push End, 4: Left Heel Touchdown, 5: Left Hallux Touchdown, 6: Right Hallux Liftoff.

Motion Push Force Duration Push Right Heel Push Left Heel Left Hallux Right Hallux
(Maximum) of Step Start Liftoff End Touchdown Touchdown Liftoff

[N] [sec] [sec] [sec] [sec] [sec] [sec] [sec]
NoPush1 0 0.730 0.38 0.60 0.73 0.79
NoPush2 0 0.670 0.40 0.53 0.67 0.69

Pelvis 227 0.610 0.09 0.26 0.35 0.53 0.61 0.62
Middle1 143 0.630 0.09 0.25 0.39 0.54 0.63 0.65
Middle2 223 0.530 0.22 0.37 0.48 0.52 0.53 0.58
Upper1 169 0.470 0.01 0.14 0.35 0.44 0.47 0.51
Upper2 247 0.500 0.05 0.22 0.32 0.46 0.50 0.52

TABLE II: RMS errors of the motion fitting, step length and integral of squared torques for the different considered motions.

Motion RMS error RMS error Step Length Step Length Step Length Squared Torques Squared Torques Squared Torques
Translation Rotation Before After Difference Legs Body Arms

[m] [rad] [m] [m] [m] [Nm2] [Nm2] [Nm2]
NoPush1 0.0127 0.0103 0.404 0.459 0.055 4770 239.05 19.42
NoPush2 0.0090 0.0138 0.468 0.507 0.039 2968 288.84 12.87

Pelvis 0.0137 0.0127 0.415 0.635 0.220 4289 144.98 30.99
Middle1 0.0198 0.0117 0.496 0.655 0.159 4689 218.78 6.28
Middle2 0.0134 0.0190 0.390 0.405 0.015 5939 116.70 64.29
Upper1 0.0235 0.0206 0.419 0.481 0.062 5009 220.17 38.86
Upper2 0.0361 0.0261 0.443 0.847 0.404 7258 211.48 68.15

belonging to the translational or rotational DoF. The transla-
tional RMS error varies between 0.009 and 0.0361 m and the
rotational between 0.0103 and 0.261 rad. The values of the
translations vary around 0.8 m and the rotational angles with
around 1.2 rad. Therefore the error between the motion of
the model and the reference data is very small. Interestingly
the error is less for the disturbances at the pelvis than for
the ones at the middle and upper trunk even if the push is
stronger. This could be due to the fact that we approximate
the 24 joints of the spine with only two joints.

The focus of this work lies in the analysis of the internal
torques in the joints. They are constant on the time intervals
coming from the discretization of the controls of the model
as described in Section II-C The strength of the disturbance
as well as the location of the push point have an influence on
the set of joints with increased torques and their amplitude.
There are some distinct differences for the different motions
considered. For all but the motions without disturbances and
the one with the lowest push the torques in both shoulders
are higher in the middle of the step the more the motion
is disturbed, see Figure 6 line four and five column one.
The differences in the torques in the legs are not the same
in both legs. In the stance leg (right) the torques in the
ankle are higher at the point in time when the push ends
for all disturbed motions compared with the motions without
disturbances. For all disturbed motions but the one with push
at the pelvis also the torque in the knee is higher. In the swing
leg (left) there are only higher torques for the motions with
pushes at the upper body. For strong pushes at the middle
and upper trunk the torques in the head joint are higher than
in the undisturbed walking motions.

Looking at the relation between the variation of the
joint angles and the variation of the internal torques, the

importance of our approach becomes clear. In most joints
it can be observed that a higher internal torque results in a
change of the joint angle velocity. But the opposite does not
hold: For example in the left ankle a change in the velocity
can be observed for the strong push at the upper body at
t = 0.5 sec (see Figure 5 third line first column), but the
torques are around 0 Nm, see Figure 6 third line second
column. This observation can be due to the influence of the
dynamics of the model that cannot be measured. Therefore it
is important to be able to calculate the internal joint torques
based on a model as presented in this paper.

As a motivation for future work, we analyze relevant quan-
tities that can lead to valuable results for motion generation.
For our approach of motion generation [16] an objective
function is needed. A common approach is the minimization
of the squared joint torques, meaning the control of our
model, leading to energy minimal motions, the minimization
of the duration of the step or the maximization of the step
length. In general, the steps with disturbances are faster than
the ones without disturbances, but there is no direct relation
between the duration of the step and the force of the push:
For the middle trunk the duration decreases for a stronger
push, while for the upper trunk the duration increases, see
Table I column two. Analyzing the step length, there is no
direct relation between step length variation (between the
step length at the beginning and the end of the motion)
and the force strength or the point where the disturbance is
applied, see also Table II column three to five. We calculated
the squared internal of joint torques for different groups of
joints (Legs: Hips, Knees, Ankles; Body: Lumbar, Thorax,
Neck; Arms: Shoulders, Elbows). For the legs and the arms
the assumption, that a stronger disturbance applied at a



Normalized Time
0 0.5 1

T
ra

ns
la

tio
n 

[m
]

0

0.2

0.4

0.6

0.8

Pelvis Trans-X

Normalized Time
0 0.5 1

T
ra

ns
la

tio
n 

[m
]

0.85

0.9

0.95
Pelvis Trans-Z

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

0.2

0.3

0.4

0.5

Pelvis Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.6

-0.4

-0.2

0
Right Hip Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

0

0.2

0.4

0.6

0.8

Right Knee Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.2

0

0.2

Right Ankle Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-1

-0.8

-0.6

-0.4

-0.2
Left Hip Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

0

0.5

1

Left Knee Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.2

0

0.2

Left Ankle Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.4

-0.3

-0.2

-0.1

Lumbar Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

0

0.1

0.2

Thorax Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.8

-0.6

-0.4

-0.2

0

0.2

Right Shoulder Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-1

-0.5

0
Right Elbow Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

0

0.5

1
Left Shoulder Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.8

-0.6

-0.4

-0.2

Left Elbow Rot-Y

Normalized Time
0 0.5 1

A
ng

le
 [r

ad
]

-0.2

0

0.2

Neck Rot-Y

NoPush1 REF
NoPush1 RES

NoPush2 REF
NoPush2 RES

Pelvis  REF
Pelvis  RES

Middle1 REF
Middle1 RES

Middle2 REF
Middle2 RES

Upper1  REF
Upper1  RES

Upper2  REF
Upper2  RES

Fig. 5: Translation of the pelvis and joint angles of the reference data (dotted lines) and the model (solid lines) for the seven
analyzed motions.

higher point at the spine results in higher torque integral,
holds. Interestingly, this assumption does not hold for the
body: A stronger push results in a lower torque integral for
the pushes in the middle and the upper trunk, while the torque
integral still increases the higher the disturbance is located
at the spine, see also Table II column six to eight.

All in all our assumption: “the stronger the disturbance and
the higher the push point is located at the spine, the higher
the torques in the joints” holds. Note, that further research
with a wider range of motions is necessary to gain results
that can be seen as general rule.

IV. CONCLUSION AND OUTLOOK

In this work an optimization based simulation approach
to obtain the internal joint torques during disturbed walking
motion of a human is presented. A planar model is included
into an optimal control problem that minimizes the difference
between the joint angles of the reference data and the joint
angles of the model to obtain a motion that fulfills the con-
straints of the model and represents the dynamics. Additional
a description of how to implement external perturbations
and an overview of the optimization algorithms used for
the forward dynamics optimization is given. Furthermore the

recording of the motion capture data is described. The motion
resulting from a motion fitting optimization to this data leads
to a good approximation of this reference data. With a model
as considered in this work it is possible to gather data, that
is hard to get from a real human, as the center of mass, and
data, that is impossible to calculate with a kinematic model,
as the calculation of ground reaction forces.

In future work we plan to investigate for more push recov-
ery motions of more than one subject with a larger variety
of pushes and to analyze more potential objective functions,
extend the model to allow for multiple steps and pushes
from different direction (3D model), as well as to improve
the modeling of the spine to get even better approximations
of disturbed motions. We will also follow the approach of
motion generation from [16] using a variety of objective
functions, e.g. minimization of time or maximization of step
length, use inverse optimal control to identify the weights
of these criteria, which lead to human like motions, [6] and
apply the presented optimal control framework to dynamic
robot models (HRP2/HeiCub) to compute optimal recovery
motions and recovery primitives, [13].
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Fig. 6: Internal torques in the joints of the model for the
seven analyzed motions.
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