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Abstract—State-of-the-art motorized hand prostheses are en-
dowed with actuators able to provide independent and propor-
tional control of as many as six degrees of freedom (DOFs).
The control signals are derived from residual electromyographic
(EMG) activity, recorded concurrently from relevant forearm
muscles. Nevertheless, the functional mapping between forearm
EMG activity and hand kinematics is only known with limited
accuracy. Therefore, no robust method exists for the reliable
computation of control signals for the independent and propor-
tional actuation of more than two DOFs. A common approach
to deal with this limitation is to pre-program the prostheses for
the execution of a restricted number of behaviors (e.g., pinching,
grasping, and wrist rotation) that are activated by the detection
of specific EMG activation patterns. However, this approach
severely limits the range of activities users can perform with the
prostheses during their daily living. In this work, we introduce
a novel method — based on a long short-term memory (LSTM)
network — to continuously map forearm EMG activity onto
hand kinematics. Critically, unlike previous work, which often
focuses on simple and highly controlled motor tasks, we tested
our method on a dataset of activities of daily living (ADLs): the
KIN-MUS UJI dataset. To the best of our knowledge, ours is the
first reported work on the prediction of hand kinematics that uses
this challenging dataset. Remarkably, we show that our network
is able to generalize to novel untrained ADLs. Our results suggest
that the presented method is suitable for the generation of control
signals for the independent and proportional actuation of the
multiple DOFs of state-of-the-art hand prostheses.

I. INTRODUCTION

The high costs and the often poor functional outcomes
associated with hand transplantation [1] have spurred consid-
erable research efforts into designing hand prostheses. Signif-
icant progress in mechatronics has allowed the development
and commercialization of motorized hand prosthesesi,ii,iii en-
dowed with as many as eighth degrees of freedom (DOF)
actuated by up to six motors [2]. Despite these technological
advances, major limitations in neural interfacing strongly
affect the usability and functionality of these devices [3].
Such limitations are generally so severe that prosthetic hands
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often have functional capabilities not dissimilar to transplanted
hands, tend to be considered as mere assisting tools by their
users [4], and have an average abandonment rate as high as
23% [5].

Both invasive and non-invasive interfaces with either the
central [6, 7] or the peripheral [8, 9] nervous system are
theoretically suitable to extract adequate control signals for
the prostheses. However, in practice, non-invasive interfaces
with the peripheral system — that record surface electromyo-
graphic signals (EMG) from remnant muscles [10] — are
often preferred in clinical settings due to their better cost-
effectiveness. Despite being non-invasive, such methods still
allow the extraction of information about the neural drive to
the muscles, and thus about the motor task the user wants to
perform [3]. Whenever possible, EMG signals are recorded
from the forearm, where the 15 extrinsic muscles mediating
wrist and finger movements are located [11]. However, despite
the large body of research aimed at understanding the func-
tional mapping between forearm EMG activity patterns and
hand movements [12, 13, 14], this mapping is still currently
known only with limited accuracy and is thus the subject
of an active area of investigation [15]. Consequently, up to
date, there is no established method to extract reliable control
signals from the EMGs to actuate all the DOFs of state-of-
the-art prostheses independently and proportionally.

A traditional strategy to overcome this obstacle is to pro-
gram the prostheses to only actuate a single DOF at a time.
Such a strategy ensures that the extraction of two distinct
activation patterns (one per direction) suffices to have robust
control over the selected DOF. However, in this case, users
have to use time-consuming heuristics (e.g., co-contractions)
to switch between DOFs, until the desired one is selected [16].
Most modern hand prostheses adopt a similar principle: they
can still only recognize two activation patterns, but these are
directly mapped to distinct hand functions (e.g., grip types)
rather than individual joint movements [2].

Recent research efforts have led to the development of
techniques based on pattern recognition that can detect up to
12 activation patterns [17, 18, 19]. This strategy (implemented
also in recent commercial devicesiv,v) eliminates the need to
issue specific commands to switch between functions.

ihttps://tinyurl.com/ottobockus-bebionic
iihttps://tinyurl.com/ossur-i-limb
iiihttps://www.taskaprosthetics.com/
ivhttps://coaptengineering.com/
vhttps://www.i-biomed.com/
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TABLE I
ACTIVITIES OF DAILY LIVING USED FOR TRAINING, VALIDATING, AND TESTING THE NETWORKS

Training Set Validation Set Test Set
ID Description ID Description ID Description
1 Coin: from table to change purse 21 Milk carton: pour content into jug 24 Toothpaste tube: squeeze content on toothbrush
2 Zip: open and close 22 Jug: pour content into glass 25 Spray bottle: spray content on table
3 Coin: from change purse to table 23 Glass: pour content into jug 26 Cloth: wipe table (5 sec)
4 Wooden cube: pick and place (twice)
5 Iron: pick and place
6 Screwdriver: grasp and screw 360◦

7 Nut: grasp and screw onto bolt
8 Key: grasp, insert into lock, and turn 180◦

9 Door handle: turn 30◦

10 Shoelaces: tie
11 Jar lid: grasp, unscrew, and place (twice)
12 Button: pass through buttonholes (twice)
13 Compression stockings: apply to left arm
14 Knife: cut piece of clay
15 Spoon: bring to mouth (five times)
16 Pen: pick, write own name, and place
17 Paper sheet: fold and insert into envelope
18 Paper clip: put on envelope
19 Keyboard: type
20 Phone: grasp, bring to ear, and place

Despite the increase in efficiency, pattern recognition ap-
proaches still suffer from significant limitations. First, the
users can only interact with the environment using the limited
set of actions the prostheses can execute. Second, these actions
can only be executed one at a time; this implies that, for
example, the users cannot simultaneously perform a grasp
and a wrist rotation (e.g., to rotate a doorknob) unless this
combined action is explicitly programmed. Third, the users
typically have little or no control over action speed and applied
force.

Regression-based methods promise to address some of these
issues by allowing independent, simultaneous and proportional
control of multiple DOFs, and have been attracting the atten-
tion of several research groups [20, 21]. Such methods try
to map EMG signals — concurrently recorded from multiple
sites — onto the movement velocity of the available DOFs.
A few recent studies conducted with amputees have demon-
strated the robustness of linear regression methods and their
superior functional performance compared to conventional
control techniques in both laboratory settings [9] and daily
life [22]. Nevertheless, the number of controlled DOFs in these
studies was as small as two (namely, wrist rotation and hand
aperture), which significantly limited participants’ dexterity.
For instance, they could still not control their prosthetic fingers
individually, which is one of the most desired features among
amputees [23].

Numerous research groups have investigated the use of
non-linear regression methods to extract richer control signals
from the forearm EMGs for the independent and proportional
control of multiple DOFs (e.g., [24, 25, 26, 27]). These studies
achieved remarkable offline prediction of the kinematics of
up to 22 hand joint angles by using simultaneously recorded
multisite forearm EMG activation patterns. Nonetheless, the

simple, repetitive, and highly controlled motor behaviors used
in these studies cast doubt on the ability of the proposed
methods to generalize to realistic motor behaviors and online
settings. As a matter of fact, it is well documented that
the EMG patterns recorded from movement-relevant muscles
during the execution of specific movements involving few
joints might change drastically depending on the configuration
of other still joints. For example, [15] reported wrist-position-
dependent amplitude modulations of finger flexor EMGs up to
70% during the execution of individual finger movements. This
might partially explain the poor correlations observed between
offline and online myoelectric control performance [21].

These reasons motivate the need to develop and validate
prediction algorithms using EMGs and kinematics recorded
during the execution of realistic motor behaviors. To this
end, in this work, we introduce a long short-term memory
(LSTM) network [28] to perform the online mapping of the
forearm EMG activities, recorded during the execution of
everyday activities, onto the corresponding hand kinematics.
Specifically, we test our approach on a recently published
dataset of activities of daily living (ADLs), the KIN-MUS UJI
dataset [29]. Remarkably, we show that the trained network is
able to generalize to novel ADLs that were not used during
training. To the best of our knowledge, ours is the first reported
work on the prediction of this dataset.

II. METHODS

A. Dataset

To validate our method, we tried to learn a stable func-
tional mapping between the forearm EMG activities and hand
kinematics recorded during the execution of activities of daily
living (ADLs). To this end, we used the KIN-MUS UJI dataset
[29]. This dataset contains recordings of muscle activities (7
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Fig. 1. Robustness analysis. (Top): Pearson’s correlations between ground-truth and predicted angular accelerations for all the trained networks. The results
are averaged across joints, tasks and noise realizations and reported as a function of noise amplitude. (Bottom): corresponding fraction of ground-truth data
variance unexplained by the predictions. (Right): medians and interquartile ranges (IQR) of performance measures pooled across joints, tasks, noise levels,
and noise realizations; medians are ranked in order of decreasing performance.

channels) and hand kinematics (18 DOFs) of 22 participants
during the execution of 26 representative activities of daily
living. Each activity was performed by the participants only
once and lasted several seconds. Further details about the
performed activities are reported for convenience in Table I.

The muscle activities were recorded using surface bipolar
electrodes, whose locations were chosen to maximize the ex-
traction of information generated by the forearm muscles [30].
The hand kinematics were recorded using an instrumented
glove (CyberGlove, CyberGlove Systems LLC), which tracked
fingers’ and wrist’s joint angles. The recorded ADLs include
the 20 actions of the Sollerman Hand Function Test (SHFT)
[31], which are commonly used to assess hand function in
clinical settings and involve the interaction with objects of
different sizes and weights, such as coins, cutlery, and irons.
All the analyses reported in this work are based on the data
from participants 1 through 20. Data from participants 21 and
22 presented missing data and were thus discarded.

Importantly, most proposed methods for the online mapping
of forearm EMGs onto hand kinematics and for the classifi-
cation of hand movements are validated using the Ninapro
database [32]. However, the datasets included in this database
mainly consist of simple and highly controlled movements,
such as fingers’ flexion with static wrist posture and different
types of grips. This is in stark contrast with the dataset we used
in this work, where every task involves a markedly different
form of interaction with daily living objects, in addition to

a reaching and a release phase. For this reason, mappings
learned on this dataset promise a superior ability to generalize
to online settings.

B. Signal Preprocessing

The hand joint angles were acquired at a sampling rate of
100Hz. The EMG signals were acquired at a sampling rate
of 1000Hz with a passband between 20Hz and 460Hz. The
kinematic data were then zero-phase lowpass filtered with
a Butterworth filter (cut-off frequency: 5Hz). To extract the
EMG envelopes, the EMGs were rectified and zero-phase low-
pass filtered with a Butterworth filter (half power frequency:
3Hz). The EMG signals were subsequently subsampled to
100Hz.

The reaching, manipulation, and release phases present in
the original dataset were appropriately concatenated. Since
previous studies have reported significant correlations between
muscle activity and joint accelerations [33], we chose to adopt
an acceleration-based kinematic representation. To this aim,
we numerically differentiated the hand joint angles twice to
compute joint accelerations. All the analyses present in this
work were conducted in MATLAB (MATLAB 2020a, The
MathWorks, Natick, MA).

C. Feature Extraction

An influential study on feature selection for the classifica-
tion of EMG signals [34] reported that features based on signal
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Fig. 2. Example prediction results. Ground-truth (dark gray) and predicted (blue) angular accelerations (α) of the three independent activities of daily living
(used for testing only), for three (out of 18) representative hand joints, for a representative participant (participant 1). All predictions reported here are made
by the 1-layer LSTM network (LSTM1L) in the absence of noise.

energy and those based on frequency content tend to provide
superior classification performance. Inspired by this work,
we built an EMG feature set composed of EMG envelopes
and EMG spectrograms. The spectrograms were computed
on 50ms Kaiser windows within the frequency range 20Hz-
400Hz; the resulting signals were upsampled in time to 100Hz
and binned in frequency (500 bins).

Subsequently, we applied principal component analysis
(PCA) to reduce the dimensionality of the EMG feature set to
25; the extracted projections retained about 99% of the original
data variance.

Since EMG signals might give rise to different movements
depending on the starting kinematic properties, such as posture
[15], we extended our feature set by also including information
about the previous movements. Specifically, we included the
hand joint accelerations observed 30ms in the past. The
complete feature set thus includes EMG features and kinematic
features. Finally, the resulting features were z-scored.

D. Data Augmentation

To avoid over-reliance on the kinematic features, we aug-
mented the training dataset by adding, for each action, 60
additional training examples. In these examples, the kinematic
features were corrupted by noise, while the EMG features
were left unchanged. Out of the 60 additional examples, 30
were corrupted by white Gaussian noise and 30 by colored
noise with a maximum frequency of 10−7rad/sample; in both

cases the maximum amplitude was 0.1. Overall, this procedure
ensures that the networks learn robust features [35, 36].

E. Network Architecture

To learn the mapping between the complete feature set and
hand joint accelerations, we used LSTM-based networks [28].
This choice was motivated by previous work, which showed
that the ability of gated recurrent neural networks to learn
long-term relationships between signals is instrumental in
allowing the prediction of whole-body human motion [37, 38].
Moreover, LSTM-based networks have recently been proved
to be effective at predicting wrist position (3 DOFs) [39] and
wrist flexion/extension (1 DOFs) [40] by tracking the EMG
activity of 2-5 shoulder and arm muscles.

In brief, LSTM networks are recurrent networks of special
units. Each unit is endowed with two memory cells (namely,
an output memory y and a hidden memory h) and three
gates (namely, an input gate i, a forget gate f , and an output
gate o). The hidden memory cell h allows the network to
store and use important input features indefinitely. The input
gate i modulates the extent to which incoming information
is retained; the forget gate f modulates the extent to which
old information is erased; finally, the output gate o extracts
information from the hidden memory useful to generate an
appropriate output y for the current input u. The output, once
computed, is stored in the output memory cell.



0.4

0.5

0.6

0.7

0.8

0.87

P
e
a
rs

o
n
's

 C
o
rr

e
la

ti
o
n

C
o
e
ff
ic

ie
n
t 
(

)

Noise Amplitude [%]

0 1 5 10 15 30

24 25 26

Activity of Daily Living

35
50

100

150

200

F
ra

c
ti
o
n
 o

f 
V

a
ri
a
n
c
e

U
n
e
x
p
la

in
e
d
 (

1
-R

2
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Joint

Fig. 3. Summary prediction results. (Top): median Pearson’s correlations between ground-truth and predicted angular accelerations for the three independent
test activities of daily living. (Left): medians across participants, joints, and noise realization, reported as a function of activity of daily living and noise amplitude.
(Right): medians across participants, activity of daily living, and noise realization, reported as a function of joint and noise amplitude. (Bottom): corresponding
median fractions of variance unexplained. All predictions reported here are made by the 1-layer LSTM network (LSTM1L) for increasing amounts of noise.
Dot size is proportional to noise amplitude. Error bars represent interquartile ranges.

The gating mechanism is defined by the following equa-
tions:

f (t) = σ(Afy
(t−1) +Bfu

(t) + bf ) (1)

i(t) = σ(Aiy
(t−1) +Biu

(t) + bi) (2)

o(t) = σ(Aoy
(t−1) +Bou

(t) + bo) (3)

where t is the current time step and σ() is the element-wise
sigmoid function.

The hidden memory content is modified according to

h̃(t) = tanh(Ahy
(t−1) +Bhu

(t) + bh) (4)

h(t) = f (t) � h(t−1) + i(t) � h̃(t) (5)

where � denotes the element-wise product operator. Finally,
the output is determined by

y(t) = o(t) � tanh(h(t)) (6)

F. Hyperparameter Optimization

In this work, we considered architectures composed of
nd = {1, 2, 3} LSTM layers of nh units projecting onto a fully
connected layer with 36 units, followed by a dropout layer
([41]) with probability 0.5, and a final fully connected layer
of 18 units. The dynamics of each LSTM layer are defined
by equations (1-6). We chose not to consider deeper LSTM

architectures since evidence suggests that the benefit of adding
more than two layers is generally limited [42].

We used Bayesian hyperparameter optimization (bayesopt()
— [43]) to tune nh, initial learning rate, gradient thresh-
old, and L2 regularization strength. The search ranges were
[30, 600], [10−4, 10−1], [.2, 1] and [10−10, 102], respectively.
The available LSTM units were equally distributed among
the nd layers. The selected cost function was the fraction of
unexplained variance on the validation set.

Hyperparameter optimization automatically stopped when
the maximum number of 100 cost function evaluations was
reached. To efficiently evaluate a candidate hyperparameter
set, we trained the parameters of the corresponding network
for only three epochs. To further speed up the training time, we
based hyperparameter optimization only on the data recorded
from participant 1. Following this procedure, we selected, for
each depth nd, the three best networks in terms of validation
error. Such networks were further trained for 25 epochs
with subject-specific data only. Details about the parameter
optimization are provided in the following section. Overall,
this strategy allowed us to retrieve a good hyperpameter set
reasonably fast: for example, for nd = 1, hypeparameter op-
timization was completed in less than one hour (i.e., 54′47′′).
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Fig. 4. Summary performance across subjects. (Top): Pearson’s correlations between ground-truth and LSTM1L-predicted angular accelerations for the
three independent test activities of daily living. Data are averaged across joints and tasks, and reported as a function of participant. The rightmost bar reports
the average across participants. Error bars represent standard errors. (Bottom): corresponding fractions of variance unexplained. All predictions reported here
are made by the 1-layer LSTM network (LSTM1L) in absence of noise.

G. Parameter Training

The networks were implemented and trained in MATLAB,
using the Neural Network Toolbox. Parameter optimization
was performed using adaptive moment estimation (Adam,
[44]) with a piecewise learning rate schedule with a drop
period of 10 epochs and a drop factor of 10%. To speed
up training, we performed all the optimizations on a shared
GPU (NVIDIA GeForce RTX 2070) using mini batches of
40 sequences. This configuration allowed us to fully train a
network in a limited amount of time: for example, for nd = 1,
the training speed was 8.25 sec/epoch. Parameter optimization
automatically stopped if the validation error did not decrease
for three consecutive training epochs, or if the maximum
number of 30 epochs was reached. For training, validation,
and test we used the EMG signals and corresponding hand
kinematics recorded during the execution of the tasks 1-20,
21-23, and 24-26, respectively. We refer to Table I for further
details about the selected tasks.

H. Assessment of Network Performance

To measure the reconstruction quality of the network’s
predictions, we computed the Pearson’s correlation coefficients
(ρ) between ground-truth and predicted angular accelerations,
and the normalized reconstruction errors (ε). The normalized

reconstruction error is defined as the fraction of unexplained
variance (i.e., ε = 1−R2).

To assess the potential benefit of the recurrence present
in LSTM networks, we also considered standard non-linear
feedforward (FF) networks as a baseline. Specifically, we con-
sidered FF networks of depth nd = {1, 3, 10} with hyperbolic
tangent activation function. A dropout layer with probability
0.5 was added between each couple of layers. For each depth,
similarly to what was done for LSTM networks, we performed
Bayesian hyper-parameter optimization. In this case, we set the
maximum number of units to 3000. All the other parameter
ranges are as above.

To measure the robustness of the trained networks, we
also assessed their ability to make accurate predictions in the
presence of random noise corrupting the angular acceleration
measurements. Specifically, we considered noise levels of
amplitudes ξa = {0, 1, 5, 10, 15, 30}%. The amplitudes are
defined as percentages of the maximum angular acceleration
measured during a task, across all joints.

In the following sections, we report the test performance
(measured on the independent activities of daily living 24, 25,
and 26) of the resulting six networks: three LSTM and three
FF networks.



III. RESULTS

Figure 1 summarizes the performance of the networks
trained after hyper-parameter optimization: for low levels noise
(ξa ≤ 5%) most networks are able to predict the joint angular
velocities measured during the performance of the test tasks
well (ρ > .7). This is not trivial since these test tasks were
not used at any stage of the training. The only exception is
represented by the 10-layer feedforward network, which shows
poor performance also for low levels of noise. In this low noise
regime, the 1-layer and 3-layer feedforward networks (FF1L,
FF3L) and the 1-layer LSTM network (LSTM1L) display the
best performance (ρ > .8).

However, as the noise increases (ξa > 5% — simulating a
more realistic scenario of online usage of the prosthesis), the
performance pattern changes drastically: whereas all feedfor-
ward networks become unable to make accurate predictions
(ρ < .5), all LSTM-based networks are still able to track the
ground-truth data with sufficient accuracy (ρ > .6). Overall,
the network LSTM1L displayed the most accurate and robust
performance across all tested noise levels (Fig. 1 — right),
and will be the main focus of the following sections.

Figure 2 shows ground-truth and LSTM1L predictions of
angular accelerations during test tasks for few representative
joint angles. It is worth noting that the network makes good
predictions even though the hand kinematics vary substantially
across tasks. As a matter of fact, despite the heterogeneity of
hand kinematics across joints and the variability across tasks,
LSTM1L average performance does not drastically change
across joints (Fig. 3 — right) or task (Fig. 3 — left). However,
it is clear that the network’s prediction performance for some
joints (e.g., joints 1, 4, and 17) degrades substantially when
the noise amplitude is particularly high.

Overall LSTM1L displayed satisfying average prediction
performance (ρ = .824, ε = 39.9% — Fig. 4). Moreover, de-
spite the high across-subjects behavioral variably, consequence
of the loose task constraints, the prediction performance was
remarkably stable across subjects (ρ ≥ .79, ε ≤ 45.9% — Fig.
4).

IV. DISCUSSION

In this work, we trained LSTM and feedforward (FF) neural
networks to predict hand kinematics during the execution of
activities of daily living from forearm EMG muscles. In the
presence of low noise levels, shallow FF networks and LTSM-
based networks tend to perform similarly. In the presence
of higher noise levels — which simulate a scenario that is
more relevant for the online control of a hand prosthesis —
LSTM-based networks tend to over-perform FF networks. This
suggests that the mapping learned by the recurrent models is
more robust and more suitable for online prosthesis control.
Stacking multiple LSTM layers did not provide any apparent
additional benefits, in agreement with previous reports [42].
In fact, we found that the best performing network was the
one with only one hidden LSTM layer: LSTM1L

Remarkably, we showed that the mapping learned by
LSTM1L is robust enough to generalize across activities of

daily living it was never trained on. Furthermore, the overall
performance is stable across tasks and hand joints. To the best
of our knowledge, these are the first prediction results to ever
be reported in the literature on this dataset.

Notable technological advances in mechatronics have led to
the development of highly flexible human-like motorized hand
prostheses. Nevertheless, the complex functional mapping be-
tween forearm muscle signals and hand kinematics, together
with the tendency to validate control algorithms on datasets
of highly simplified movements, have severely hampered the
design of efficient algorithms capable of providing natural and
dexterous control of these devices. In this work, we introduced
a method based on LSTM networks to learn such a mapping.
Critically, unlike previous works, we validated the method
on a dataset of realistic arm and hand movements involving
complex interactions with daily living objects. Our results
show that the mapping is stable across postures and interaction
types. This suggests that our method can be used to provide a
natural interface between forearm muscle activity and state-of-
the-art motorized hand prostheses. Future work will deal with
developing a suitable interface layer between the network’s
predictions and the actuators of the prosthesis.
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for Transradial Prostheses Based on Remnant Muscle Activity and Its
Relationship with Proprioceptive Feedback”. In: Sensors 20.17 (2020),
p. 4883.

[11] Ebubechi Okwumabua, Margaret A. Sinkler, and Bruno Bordoni.
“Anatomy, Shoulder and Upper Limb, Hand Muscles”. In: StatPearls
[Internet]. StatPearls Publishing, 2020.

[12] Charles Long and Mary Eleanor Brown. “Electromyographic kinesi-
ology of the hand: muscles moving the long finger”. In: JBJS 46.8
(1964), pp. 1683–1706.



[13] Marc H Schieber. “Muscular production of individuated finger move-
ments: the roles of extrinsic finger muscles”. In: Journal of Neuro-
science 15.1 (1995), pp. 284–297.

[14] ZM Li, VM Zatsiorsky, and ML Latash. “Contribution of the extrinsic
and intrinsic hand muscles to the moments in finger joints”. In: Clinical
biomechanics 15.3 (2000), pp. 203–211.

[15] Carl R Beringer et al. “The effect of wrist posture on extrinsic finger
muscle activity during single joint movements”. In: Scientific Reports
10.1 (2020), pp. 1–11.

[16] Anna Lisa Ciancio et al. “Control of prosthetic hands via the peripheral
nervous system”. In: Frontiers in neuroscience 10 (2016), p. 116.

[17] Ganesh R Naik, Ali H Al-Timemy, and Hung T Nguyen. “Transradial
amputee gesture classification using an optimal number of sEMG
sensors: an approach using ICA clustering”. In: IEEE Transactions on
Neural Systems and Rehabilitation Engineering 24.8 (2015), pp. 837–
846.

[18] Marina M-C Vidovic et al. “Improving the robustness of myoelectric
pattern recognition for upper limb prostheses by covariate shift adap-
tation”. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 24.9 (2015), pp. 961–970.

[19] Youngmok Yun et al. “Maestro: an EMG-driven assistive hand ex-
oskeleton for spinal cord injury patients”. In: 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2017,
pp. 2904–2910.

[20] Janne M Hahne et al. “Linear and nonlinear regression techniques
for simultaneous and proportional myoelectric control”. In: IEEE
Transactions on Neural Systems and Rehabilitation Engineering 22.2
(2014), pp. 269–279.

[21] Han-Jeong Hwang, Janne Mathias Hahne, and Klaus-Robert Müller.
“Real-time robustness evaluation of regression based myoelectric con-
trol against arm position change and donning/doffing”. In: PLoS One
12.11 (2017), e0186318.

[22] Janne M Hahne et al. “Longitudinal Case Study of Regression-Based
Hand Prosthesis Control in Daily Life”. In: Frontiers in neuroscience
14 (2020), p. 600.

[23] Francesca Cordella et al. “Literature review on needs of upper limb
prosthesis users”. In: Frontiers in neuroscience 10 (2016), p. 209.

[24] Jimson G Ngeo, Tomoya Tamei, and Tomohiro Shibata. “Continuous
and simultaneous estimation of finger kinematics using inputs from an
EMG-to-muscle activation model”. In: Journal of neuroengineering
and rehabilitation 11.1 (2014), pp. 1–14.

[25] Parviz Ghaderi et al. “Hand kinematics estimation to control prosthetic
devices: a nonlinear approach for simultaneous and proportional esti-
mation of 15 dofs”. In: 2015 22nd Iranian Conference on Biomedical
Engineering (ICBME). IEEE. 2015, pp. 233–238.

[26] Agamemnon Krasoulis, Sethu Vijayakumar, and Kianoush Nazarpour.
“Evaluation of regression methods for the continuous decoding of
finger movement from surface EMG and accelerometry”. In: 2015 7th
International IEEE/EMBS Conference on Neural Engineering (NER).
IEEE. 2015, pp. 631–634.

[27] Qin Zhang et al. “Simultaneous and Proportional Estimation of Mul-
tijoint Kinematics From EMG Signals for Myocontrol of Robotic
Hands”. In: IEEE/ASME Transactions on Mechatronics 25.4 (2020),
pp. 1953–1960.

[28] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[29] Néstor J Jarque-Bou et al. “A calibrated database of kinematics and
EMG of the forearm and hand during activities of daily living”. In:
Scientific data 6.1 (2019), pp. 1–11.

[30] Néstor J Jarque-Bou et al. “Identification of forearm skin zones with
similar muscle activation patterns during activities of daily living”. In:
Journal of neuroengineering and rehabilitation 15.1 (2018), p. 91.

[31] Christer Sollerman and Arvid Ejeskär. “Sollerman hand function
test: a standardised method and its use in tetraplegic patients”. In:
Scandinavian Journal of Plastic and Reconstructive Surgery and Hand
Surgery 29.2 (1995), pp. 167–176.

[32] Manfredo Atzori et al. “Electromyography data for non-invasive
naturally-controlled robotic hand prostheses”. In: Scientific data 1.1
(2014), pp. 1–13.

[33] Masataka Suzuki et al. “Relationship between cocontraction, move-
ment kinematics and phasic muscle activity in single-joint arm move-
ment”. In: Experimental brain research 140.2 (2001), pp. 171–181.

[34] Angkoon Phinyomark, Pornchai Phukpattaranont, and Chusak Lim-
sakul. “Feature reduction and selection for EMG signal classification”.
In: Expert systems with applications 39.8 (2012), pp. 7420–7431.

[35] Stephan Zheng et al. “Improving the robustness of deep neural net-
works via stability training”. In: Proceedings of the ieee conference
on computer vision and pattern recognition. 2016, pp. 4480–4488.

[36] Andrew Ilyas et al. “Adversarial Examples Are Not Bugs, They Are
Features”. In: NeurIPS. 2019.

[37] Julieta Martinez, Michael J Black, and Javier Romero. “On human
motion prediction using recurrent neural networks”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 2891–2900.

[38] Hongsong Wang and Jiashi Feng. “Vred: A position-velocity recurrent
encoder-decoder for human motion prediction”. In: arXiv preprint
arXiv:1906.06514 (2019).

[39] Peng Xia, Jie Hu, and Yinghong Peng. “EMG-based estimation of
limb movement using deep learning with recurrent convolutional neural
networks”. In: Artificial organs 42.5 (2018), E67–E77.

[40] Dongwon Kim et al. “Simultaneous Estimations of Joint Angle and
Torque in Interactions with Environments using EMG”. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 3818–3824.

[41] Nitish Srivastava et al. “Dropout: a simple way to prevent neural
networks from overfitting”. In: The journal of machine learning
research 15.1 (2014), pp. 1929–1958.

[42] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. “Visualizing and un-
derstanding recurrent networks”. In: arXiv preprint arXiv:1506.02078
(2015).

[43] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical
bayesian optimization of machine learning algorithms”. In: Advances
in neural information processing systems 25 (2012), pp. 2951–2959.

[44] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).


	I INTRODUCTION
	II METHODS
	II-A Dataset
	II-B Signal Preprocessing
	II-C Feature Extraction
	II-D Data Augmentation
	II-E Network Architecture
	II-F Hyperparameter Optimization
	II-G Parameter Training
	II-H Assessment of Network Performance

	III RESULTS
	IV DISCUSSION

